QGIS Developers Guide

Release 3.4

QGIS Project

mar 15, 2020

Contents

Padrao de codificacao do QGIS

HIG (Human Interface Guidelines)

Acesso GIT

Comecando a trabalhar com QtCreator e QGIS
Teste de unidade

Teste de Processamento de Algoritmos

OGC Conformance Testing

15

17

25

33

45

51

QGIS Developers Guide, Release 3.4

Bem vindo as paginas sobre Desenvolvimento do QGIS. Aqui vocé encontrard regras, ferramentas e passos para
contribuir fécil e eficientemente ao cédigo do QGIS.

Contents 1

QGIS Developers Guide, Release 3.4

2 Contents

cHAPTER 1

Padrao de codificacdo do QGIS

e Classes
— Nomes

— Membros

Fungoes do acessorio

Funcgoes

Argumentos de fungdo

Valores de retorno da fungdo
* API Documentation
— Methods
— Members Variables
* Qt Designer
— Classes Geradas
— Didlogos
* Arquivos C++
— Nomes
— Cabegalho Padrdo e Licenca
* Nomes de Varidveis
* Tipos Enumerados
* Constantes Globais & Macros
* Comments
* Ot Signals e Slots

e Editando

— Tabulagoes

QGIS Developers Guide, Release 3.4

— Indentagdo
— Parénteses

* Compatibilidade da API

» SIP Bindings
— Header pre-processing
— Generating the SIP file
— Improving sipify script

* Estilo de Codificacdo

Sempre que possivel, generalize o codigo

Prefira Ter Constantes Antes nos Predicados

Espagos Podem Ser Seus Amigos

Coloque comandos em linhas separadas

Indente modificadores de acesso

» Créditos para as contribuicdes

Recomendagoes de Livros

Esses padroes devem ser seguidos por todos os desenvolvedores do QGIS

1.1 Classes

1.1.1 Nomes

A classe em QGIS comeca com Qgs e é formada usando camel case.
Exemplos:

* QgsPoint

* QgsMapCanvas

* QgsRasterlLayer

1.1.2 Membros

Os nomes dos membros da classe comegcam com um m mintsculo e sdo formados usando maitsculas e mintisculas.
* mMapCanvas
* mCurrentExtent

Todos os membros da classe devem ser privados. Membros publicos na classe sio FORTEMENTE desenco-
rajados. Os membros protegidos devem ser evitados quando o membro pode precisar ser acessado a partir de
subclasses Python, uma vez que os membros protegidos ndo podem ser usados nas ligagdes Python.

Mutable static class member names should begin with a lower case s, but constant static class member names
should be all caps:

¢ sRefCounter

e DEFAULT_QUEUE_SIZE

4 Chapter 1. Padrao de codificacao do QGIS

QGIS Developers Guide, Release 3.4

1.1.3 Funcoes do acessorio
Os valores dos membros da classe devem ser obtidos através das fungdes do acessorio. A fungdo deve ser nomeada
sem um prefixo de obtencdo. As fungdes de acessério para os dois membros privados acima seriam.

* mapCanvas ()

e currentExtent ()

Certifique-se de que os acessadores estejam corretamente marcados com ‘‘ const*‘. Quando apropriado, isso pode
exigir que as variaveis de membro do tipo de valor em cache sejam marcadas com ‘‘ mutable‘‘.

1.1.4 Funcoes
Os nomes das fun¢des comecam com uma letra mindscula e sdo formados usando maidsculas e mindsculas. O
nome da fungdo deve transmitir algo sobre o propésito da fungao.

* updateMapExtent ()

e setUserOptions ()

Por consisténcia com a API QGIS existente e com a API Qt, abreviagdes devem ser evitadas. Por exemplo.
SetDestinationSize aoinvés de setDestSize, setMaximumValue ao invés de setMaxVal.

Os acronimos também devem utilizar camel case para consisténcia. Por exemplo. SetXml ao invés de set XML.

1.1.5 Argumentos de fungao
Function arguments should use descriptive names. Do not use single letter arguments (e.g. setColor (const
QColoré& color) instead of setColor (const QColor& c)).

Preste muita aten¢@o quando os argumentos devem ser passados por referéncia. A menos que os objetos dos argu-
mentos sejam pequenos e copiados trivialmente (como objetos QPoint), eles devem ser passados por referéncia.
Por consisténcia com a API Qt, mesmo os objetos compartilhados implicitamente sdo passados por referéncia (por
exemplo, setTitle (const QString & title) aoinvésde setTitle (QString title).

1.1.6 Valores de retorno da funcao

Return small and trivially copied objects as values. Larger objects should be returned by const reference. The one
exception to this is implicitly shared objects, which are always returned by value. Return QOb ject or subclassed
objects as pointers.

e int maximumValue () const

* const LayerSet& layers() const

* OString title() const (QString isimplicitly shared)

* QList< QgsMaplLayerx > layers () const (QList isimplicitly shared)

* QgsVectorLayer =*layer () const; (QgsVectorLayer inherits Q0bject)

* QgsAbstractGeometry =*geometry () const; (QgsAbstractGeometry is abstract and will
probably need to be casted)

1.2 API Documentation

It is required to write API documentation for every class, method, enum and other code that is available in the
public APL.

1.2. APl Documentation 5

QGIS Developers Guide, Release 3.4

QGIS uses Doxygen for documentation. Write descriptive and meaningful comments that give a reader informa-
tion about what to expect, what happens in edge cases and give hints about other interfaces he could be looking
for, best best practice and code samples.

1.2.1 Methods

Method descriptions should be written in a descriptive form, using the 3rd person. Methods require a \since
tag that defines when they have been introduced. You should add additional \ since tags for important changes
that were introduced later on.

* Cleans the laundry by using water and fast rotation.
+ It will use the provided \a detergent during the washing programme.

* \returns True if everything was successful. If false is returned, use
* \link error() \endlink to get more information.

* \note Make sure to manually call dry() after this method.

* \since QGIS 3.0
* \see dry/()

1.2.2 Members Variables

Member variables should normally be in the private section and made available via getters and setters. One
exception to this is for data containers like for error reporting. In such cases do not prefix the member with an m.

J ok k
* \ingroup core
* Represents points on the way along the journey to a destination.
*
* \since QGIS 2.20
*/
class QgsWaypoint
{
/%
* Holds information about results of an operation on a QgsWaypoint.
*
* \since QGIS 3.0
*/
struct OperationResult
{
QgsWaypoint: :ResultCode resultCode; //!< Indicates if the operation completed
—successfully.
QString message; //!< A human readable localized error message. Only set 1if
—the resultCode is not QgsWaypoint::Success.
QVariant result; //!< The result of the operation. The content depends on the_
—method that returned it. \since QGIS 3.2
}i
bi

6 Chapter 1. Padrao de codificacao do QGIS

QGIS Developers Guide, Release 3.4

1.3 Qt Designer

1.3.1 Classes Geradas
Classes QGIS geradas a partir dos arquivos Qt Designer (ui) devem ter o sufixo Base. Isto identifica a classe como
uma classe base gerada.
Exemplos:
* QgsPluginManagerBase

* QgsUserOptionsBase

1.3.2 Dialogos

Todos os didlogos devem implementar dicas de contexto para todos os icones da barra de ferramentas e outros
widgets relevantes. Dicas de contexto auxiliam muito na descoberta de funcionalidade tanto para usudrios novos
quanto experientes.

Garanta que a ordem das tabulacOes para os widgets seja atualizada sempre que o layout de um didlogo for
alterado.

1.4 Arquivos C++

1.4.1 Nomes
Arquivos C++ de cddigo e cabecalhos devem ter extensdo .cpp e .h, respectivamente. Nomes de arquivos devem
ser todos em minusculas e, no caso de representar uma classe, ter o mesmo nome da classe.

Example: Class QgsFeatureAttribute source files are ggsfeatureattribute.cpp and
qggsfeatureattribute.h

Nota: No caso de ndo ter ficado claro na declarag@o acima, o nome do arquivo combinar com o nome da classe
significa, implicitamente, que cada classe deve ser declarada e implementada em seu préprio arquivo. isto torna
muito mais fcil para recem-chegados identificar onde o c6digo relativo para uma classe especifica estd localizado.

1.4.2 Cabecalho Padrao e Licenca

Cada arquivo de codigo fonte deve conter uma se¢do de cabecalho padronizado conforme o exemplo a seguir:

/***
ggsfield.cpp — Describes a field in a layer or table
Date : 01-Jan-2004
Copyright: (C) 2004 by Gary E.Sherman
Email: sherman at mrcc.com

/***

* This program is free software; you can redistribute it and/or modify
* 1t under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

***/

1.3. Qt Designer 7

QGIS Developers Guide, Release 3.4

Nota: Este é um template para o Qt Creator no git. Para usi-lo, faca uma cépia local de doc/
gt_creator_license_template, ajuste o endereco de email e - se necessdrio - o nome e configure o
QtCreator para usé-lo: Tools — Options — C++ — File Naming.

1.5 Nomes de Variaveis

Nomes de varidveis locais devem comecar com uma letra mindscula e serem formadas por maitsculas e mindscu-
las. Nao use prefixos como my ou the.

Exemplos:
* mapCanvas

* currentExtent

1.6 Tipos Enumerados

Tipos enumerados devem ser nomeados usando CamelCase iniciando com uma maidscula. Exemplo:

enum UnitType
{
Meters,
Feet,
Degrees,
UnknownUnit

}i

Nao use nomes de tipos genéricos que causardo conflito com outros tipos. Exemplo. Use UnknownUnit ao
invés de Unknown

1.7 Constantes Globais & Macros

Constantes globais e macros devem ser escritas em maitsculas e separadas por sublinha. ex.:

’const long GEOCRS_ID = 3344;

1.8 Comments

Comments to class methods should use a third person indicative style instead of the imperative style:

J ok k
* Creates a new QgsFeatureFilterModel, optionally specifying a \a parent.
*/
explicit QgsFeatureFilterModel (QObject xparent = nullptr);
~QgsFeatureFilterModel () override;

1.9 Qt Signals e Slots

Todos as conexdes de signal/slot devem ser feitas utilizando as conexdes “new style” disponiveis no Qt5. Mais
informagdes sobre este requisito esta disponivel em QEP #77.

8 Chapter 1. Padrao de codificacao do QGIS

https://github.com/qgis/QGIS-Enhancement-Proposals/issues/77

QGIS Developers Guide, Release 3.4

Evite utilizar a auto conexdo de slots do Qt (ex. aquelas nomeadas com void
on_mSpinBox_valueChanged). Conexdes automdticas sdo frageis e tendem a se quebrar sem aviso
se os didlogos sao alterados.

1.10 Editando

Qualquer editor de texto/IDE pode ser utilizada para editar o cédigo do QGIS desde que os seguintes requisitos
sejam satisfeitos.

1.10.1 Tabulacoées

Ajuste seu editor para emular tabulagdes com espacgos. As tabulacdes devem ser ajustadas para 2 espagos.

Nota: No vin isto € feito com set expandtab ts=2

1.10.2 Indentacao

Source code should be indented to improve readability. Thereisa scripts/prepare—commit . sh thatlooks
up the changed files and reindents them using astyle. This should be run before committing. You can also use
scripts/astyle. sh to indent individual files.

As newer versions of astyle indent differently than the version used to do a complete reindentation of the source,
the script uses an old astyle version, that we include in our repository (enable WITH_ASTYLE in cmake to include
it in the build).

1.10.3 Parénteses

Parénteses devem iniciar na linha seguindo a expressao:

if(foo == 1)
{
// do stuff

}

else

{
// do something else

1.11 Compatibilidade da API

There is API documentation for C++.

Tentamos manter a API estavel e com compativel com versdes anteriores. Limpezas na API devem ser feitas de
maneira similar ao cédigo fonte Qt. ex.

class Foo
{
public:
J/ ok k
* This method will be deprecated, you are encouraged to use
* doSomethingBetter () rather.

1.10. Editando 9

https://qgis.org/api/3.4/

QGIS Developers Guide, Release 3.4

* \deprecated doSomethingBetter ()
*/
Q_DECL_DEPRECATED bool doSomething() ;

VAT
* Does something a better way.
* \note added in 1.1
*/

bool doSomethingBetter();

signals:
J ok k
* This signal will is deprecated, you are encouraged to
* connect to somethingHappenedBetter () rather.
* \deprecated use somethingHappenedBetter ()
*/
#ifndef Q MOC_RUN
Q_DECL_DEPRECATED
#endif
bool somethingHappened() ;

J ok k
* Something happened
* \note added in 1.1
*/
bool somethingHappenedBetter () ;

1.12 SIP Bindings

Some of the SIP files are automatically generated using a dedicated script.

1.12.1 Header pre-processing
All the information to properly build the SIP file must be found in the C++ header file. Some macros are available
for such definition:

e Use #ifdef SIP_RUN to generate code only in SIP files or #ifndef SIP_RUN for C++ code only.
#else statements are handled in both cases.

e Use SIP_SKIP to discard a line
* The following annotations are handled:
— SIP_FACTORY: /Factory/
- SIP_OUT: /Out/
— SIP_INOUT: /In,Out/
— SIP_TRANSFER: /Transfer/
— SIP_PYNAME (name): /PyName=name/
— SIP_KEEPREFERENCE: /KeepReference/
— SIP_TRANSFERTHIS: /TransferThis/
— SIP_TRANSFERBACK: /TransferBack/

* private sections are not displayed, except if you use a #1 fdef SIP_RUN statement in this block.

10 Chapter 1. Padrao de codificacao do QGIS

QGIS Developers Guide, Release 3.4

* SIP_PYDEFAULTVALUE (value) can be used to define an alternative default value of the python
method. If the default value contains a comma , , the value should be surrounded by single quotes '

* SIP_PYTYPE (type) can be used to define an alternative type for an argument of the python method. If
the type contains a comma , , the type should be surrounded by single quotes '

A demo file can be found in tests/scripts/sipifyheader.h.

1.12.2 Generating the SIP file

The SIP file can be generated using a dedicated script. For instance:

scripts/sipify.pl src/core/qggsvectorlayer.h > python/core/qgsvectorlayer.sip

As soon as a SIP file is added to one of the source file (python/core/core.sip, python/gui/gui.sip
or python/analysis/analysis.sip), it will be considered as generated automatically. A test on Travis
will ensure that this file is up to date with its corresponding header.

Older files for which the automatic creation is not enabled yet are listed in python/auto_sip.blacklist.

1.12.3 Improving sipify script

If some improvements are required for sipify script, please add the missing bits to the demo file tests/
scripts/sipifyheader.h and create the expected header tests/scripts/sipifyheader.
expected. si. This will also be automatically tested on Travis as a unit test of the script itself.

1.13 Estilo de Codificacao

Aqui sdo descritas algumas dicas de programacio que, esperamos, reduzirdo erros, tempo de desenvolvimento e
manutengdo.

1.13.1 Sempre que possivel, generalize o cédigo
Se fizer copia-cola do cddigo, ou escrevendo a mesma coisa mais de uma vez, considere consolidar o cédigo em
uma funcio.
Isso vai:
 permitir que alteragdes sejam feitas em apenas um local ao invés de varios
* ajuda a prevenir inchago no c6digo

* tornar mais dificil para vdrias cdpias irem se diferenciando longo do tempo, tornando mais dificil a com-
preensdo e a manutengao para os outros

1.13.2 Prefira Ter Constantes Antes nos Predicados

Prefira colocar as constantes primeiro nso predicados.
0 == value aoinvésde value ==

Isso ajudard a impedir que os programadores acidentalmente usem ‘‘ = ‘* quando eles pretendem usar *‘ == *‘, o
que pode introduzir erros de l6gica muito sutis. O compilador gerard um erro se vocé usar acidentalmente *‘ = *
em vez de ‘‘ == *‘ para comparagdes, uma vez que as constantes nao podem ser atribuidas valores inerentes.

1.13. Estilo de Codificacao 11

QGIS Developers Guide, Release 3.4

1.13.3 Espacos Podem Ser Seus Amigos

Adicionar espacos entre operadores, declaragdes e fungdes torna mais facil para os humanos analisar o c6digo.

O que € mais facil de ler, isto:

’if (la&sab)
ou isto:
’if (! a && b))

Nota: scripts/prepare—commit .sh will take care of this.

1.13.4 Coloque comandos em linhas separadas

Ao ler o cédigo, € facil perder os comandos, se ndo estiverem no inicio da linha. Ao ler rapidamente o cédigo,
é comum ignorar linhas se nao se parecem com o que vocé procura nos primeiros caracteres. Também é comum
esperar um comando apds um condicional como ‘¢ if*‘.

Considere:

if (foo) bar();

baz (); bar();

E muito f4cil perder parte do fluxo de controle. Em vez disso use

if (foo)
bar () ;

baz () ;
bar () ;

1.13.5 Indente modificadores de acesso

Os modificadores de acesso estruturam uma classe em se¢des de API publica, API protegida e API privada.
Os préprios modificadores de acesso agrupam o codigo nesta estrutura. Indente o modificador de acesso e as
declaragdes.

class QgsStructure
{
public:
J ok k
* Constructor
*/
explicit QgsStructure();

1.13.6 Recomendacoes de Livros

e Effective Modern C++, Scott Meyers
* More Effective C++, Scott Meyers
 Effective STL, Scott Meyers

* Design Patterns, GoF

12 Chapter 1. Padrao de codificacao do QGIS

https://shop.oreilly.com/product/0636920033707.do
https://www.informit.com/store/more-effective-c-plus-plus-35-new-ways-to-improve-your-9780201633719
https://www.informit.com/store/effective-stl-50-specific-ways-to-improve-your-use-9780201749625
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

QGIS Developers Guide, Release 3.4

Vocé também deve realmente ler este artigo do Qt Quarterly sobre designing Qt style (APIs)

1.14 Créditos para as contribuicoes

Colaboradores de novas funcdes sdo encorajados em deixar as pessoas saberem sobre suas contribui¢des por:

* Adicionando uma nota ao changelog na primeira versdo em que o c6digo for incorporado, do tipo:

This feature was funded by: Olmiomland https://olmiomland.ol
This feature was developed by: Chuck Norris https://chucknorris.kr

 writing an article about the new feature on a blog, and add it to the QGIS planet https://plugins.qgis.org/
planet/

* Adicionando seu nome em:
— https://github.com/qgis/QGIS/blob/release-3_4/doc/CONTRIBUTORS
— https://github.com/qgis/QGIS/blob/release-3_4/doc/AUTHORS

1.14. Créditos para as contribuicées 13

https://doc.qt.io/archives/qq/qq13-apis.html
https://plugins.qgis.org/planet/
https://plugins.qgis.org/planet/
https://github.com/qgis/QGIS/blob/release-3_4/doc/CONTRIBUTORS
https://github.com/qgis/QGIS/blob/release-3_4/doc/AUTHORS

QGIS Developers Guide, Release 3.4

14 Chapter 1. Padrao de codificacao do QGIS

CHAPTER 2

HIG (Human Interface Guidelines)

In order for all graphical user interface elements to appear consistent and to all the user to instinctively use dialogs,
it is important that the following guidelines are followed in layout and design of GUIs.

1.

10.

11.

Agrupar elementos relacionados usando caixas: Tente identificar elementos que podem ser agrupados em
conjunto e, em seguida, use caixas com um rétulo para identificar o tépico desse grupo. Evite o uso de
caixas com apenas um item dentro.

Capitalise first letter only in labels, tool tips, descriptive text, and other non-heading or title text: These
should be written as a phrase with leading capital letter, and all remaining words written with lower case
first letters, unless they are nouns

Capitalize all words in Titles (group box, tab, list view columns, and so on), Functions (menu items, but-
tons), and other selectable items (combobox items, listbox items, tree list items, and so on): Capitalize all
words, except prepositions that are shorter than five letters (for example, ‘with’ but “Without), conjunctions
(for example, and, or, but), and articles (a, an, the). However, always capitalize the first and last word.

N3ao termine rétulos de itens e de caixas com dois pontos: a adicdo de dois pontos causa ruido visual e
ndo fornece significado adicional; portanto, ndo os use. Uma excecdo a essa regra é quando vocé tem dois
rétulos préximos, por exemplo: Rétulol Complemento (Caminho:) Rétulo2 [/caminho/para/complemento]

. Keep harmful actions away from harmless ones: If you have actions for ‘delete’, ‘remove’ etc, try to im-

pose adequate space between the harmful action and innocuous actions so that the users is less likely to
inadvertently click on the harmful action.

Use sempre um QButtonBox para botdes como ‘OK’, ‘Cancelar’ etc : Usando uma caixa de botdo vocé
garante que a ordem dos botdes ‘OK’ e ‘Cancelar’ etc, seja coerente com o sistema operacional / local
/ambiente de trabalho que o usudrio esta usando.

Abas ndo devem ser justapostas. Se vocé usar abas, siga o estilo das abas usadas em QgsVectorLayerProp-
erties / QgsProjectProperties etc. ,ou seja, abas na parte superior com imagens de 22x22.

Widget stacks should be avoided if at all possible. They cause problems with layouts and inexplicable (to
the user) resizing of dialogs to accommodate widgets that are not visible.

Try to avoid technical terms and rather use a laymans equivalent e.g. use the word ‘Opacity’ rather than
‘Alpha Channel’ (contrived example), ‘Text’ instead of ‘String’ and so on.

Use iconografia consistente. Se vocé precisar de uma imagem ou elementos de imagem, entre em contato
com Robert Szczepanek na lista de discussdo para obter assisténcia.

Place long lists of widgets into scroll boxes. No dialog should exceed 580 pixels in height and 1000 pixels
in width.

15

QGIS Developers Guide, Release 3.4

12.

13.

14.

2.1

Separar as opgdes avancadas das bdsicas. Os usudrios iniciantes devem acessar rapidamente os itens
necessdrios para atividades bdsicas sem se preocupar com a complexidade dos recursos avangados. Os
recursos avangados devem estar localizados abaixo de uma linha diviséria ou colocados em uma guia sepa-
rada.

Nao adicione opgdes para ter muitas outras opgdes. Esforce-se para manter a interface do usudrio minimal-
ista e usar padrdes coerentes.

If clicking a button will spawn a new dialog, an ellipsis char (...) should be suffixed to the button text.
Note, make sure to use the U+2026 Horizontal Ellipsis char instead of three periods.

Autores

Tim Sutton (autor e editor)
Gary Sherman

Marco Hugentobler
Matthias Kuhn

16

Chapter 2. HIG (Human Interface Guidelines)

CHAPTER 3

Acesso GIT

Instalacdo
— Instalar git para o GNU/Linux
— Instalar git no Windows
— Instalar git para OSX
Acessando o Repositorio
Check out a branch
Fontes de documentag¢do QGIS
QOGIS website sources
GIT Documentation
Development in branches
— Purpose
— Procedure
— Testing before merging back to master
Submitting Patches and Pull Requests
— Pull Requests
x Best practice for creating a pull request
* Special labels to notify documentors
* For merging a pull request
Patch file naming
Create your patch in the top level QGIS source dir
— Getting your patch noticed

— Due Diligence

Obtaining GIT Write Access

17

QGIS Developers Guide, Release 3.4

Esta secdio descreve como usar o repositério GIT QGIS. Antes de fazer isso, vocé precisa primeiro ter um git
cliente instalado em seu sistema.

3.1 Instalacao

3.1.1 Instalar git para o GNU/Linux

Debian based distro users can do:

sudo apt install git

3.1.2 Instalar git no Windows

Windows users can obtain msys git or use git distributed with cygwin.

3.1.3 Instalar git para OSX

The git project has a downloadable build of git. Make sure to get the package matching your processor (x86_64
most likely, only the first Intel Macs need the 1386 package).

Ao terminar de baixar, abra a imagem de disco e rode o instalador.

PPC/source note

The git site does not offer PPC builds. If you need a PPC build, or you just want a little more control over the
installation, you need to compile it yourself.

Download the source from https://git-scm.com/. Unzip it, and in a Terminal cd to the source folder, then:

make prefix=/usr/local
sudo make prefix=/usr/local install

Se vocé ndo precisa de nenhum dos extras, Perl, Python ou TclTk (GUI), vocé pode desativa-los antes de executar
com:

export NO
export)
export NO_PYTHON=

PERL=

3.2 Acessando o Repositério

Para clonar QGIS master:

’git clone git://github.com/qgis/QGIS.git

3.3 Check out a branch

To check out a branch, for example the release 2.6.1 branch do:

cd QGIS

git fetch

git branch --track origin release-2_6_1
git checkout release-2_6_1

18 Chapter 3. Acesso GIT

https://gitforwindows.org/
https://cygwin.com
https://git-scm.com/
https://git-scm.com/

QGIS Developers Guide, Release 3.4

To check out the master branch:

cd QGIS
git checkout master

Nota: In QGIS we keep our most stable code in the current release branch. Master contains code for the so
called ‘unstable’ release series. Periodically we will branch a release off master, and then continue stabilisation
and selective incorporation of new features into master.

See the INSTALL file in the source tree for specific instructions on building development versions.

3.4 Fontes de documentacao QGIS

If you’re interested in checking out QGIS documentation sources:

’git clone git@github.com:ggis/QGIS-Documentation.git

You can also take a look at the readme included with the documentation repo for more information.

3.5 QGIS website sources

If you’re interested in checking out QGIS website sources:

’git clone git@github.com:qgis/QGIS-Website.git

You can also take a look at the readme included with the website repo for more information.

3.6 GIT Documentation

See the following sites for information on becoming a GIT master.
* https://services.github.com/
* https://progit.org
* http://gitready.com

3.7 Development in branches

3.7.1 Purpose

The complexity of the QGIS source code has increased considerably during the last years. Therefore it is hard
to anticipate the side effects that the addition of a feature will have. In the past, the QGIS project had very long
release cycles because it was a lot of work to reestablish the stability of the software system after new features
were added. To overcome these problems, QGIS switched to a development model where new features are coded
in GIT branches first and merged to master (the main branch) when they are finished and stable. This section
describes the procedure for branching and merging in the QGIS project.

3.4. Fontes de documentacao QGIS 19

https://services.github.com/
https://progit.org
http://gitready.com

QGIS Developers Guide, Release 3.4

3.7.2 Procedure

* Initial announcement on mailing list: Before starting, make an announcement on the developer mailing
list to see if another developer is already working on the same feature. Also contact the technical
advisor of the project steering committee (PSC). If the new feature requires any changes to the QGIS
architecture, a request for comment (RFC) is needed.

Create a branch: Create a new GIT branch for the development of the new feature.

git checkout -b newfeature

Now you can start developing. If you plan to do extensive on that branch, would like to share the work with other
developers, and have write access to the upstream repo, you can push your repo up to the QGIS official repo by
doing:

’git push origin newfeature

Nota: If the branch already exists your changes will be pushed into it.

Rebase to master regularly: It is recommended to rebase to incorporate the changes in master to the branch on
a regular basis. This makes it easier to merge the branch back to master later. After a rebase you need to git
push -f to your forked repo.

Nota: Never git push -f to the origin repository! Only use this for your working branch.

git rebase master

3.7.3 Testing before merging back to master

When you are finished with the new feature and happy with the stability, make an announcement on the developer
list. Before merging back, the changes will be tested by developers and users.

3.8 Submitting Patches and Pull Requests

There are a few guidelines that will help you to get your patches and pull requests into QGIS easily, and help us
deal with the patches that are sent to use easily.

3.8.1 Pull Requests

In general it is easier for developers if you submit GitHub pull requests. We do not describe Pull Requests here,
but rather refer you to the GitHub pull request documentation.

If you make a pull request we ask that you please merge master to your PR branch regularly so that your PR is
always mergeable to the upstream master branch.

If you are a developer and wish to evaluate the pull request queue, there is a very nice tool that lets you do this
from the command line

Please see the section below on ‘getting your patch noticed’. In general when you submit a PR you should take
the responsibility to follow it through to completion - respond to queries posted by other developers, seek out a
‘champion’ for your feature and give them a gentle reminder occasionally if you see that your PR is not being
acted on. Please bear in mind that the QGIS project is driven by volunteer effort and people may not be able to
attend to your PR instantaneously. If you feel the PR is not receiving the attention it deserves your options to
accelerate it should be (in order of priority):

20 Chapter 3. Acesso GIT

https://help.github.com/articles/using-pull-requests
https://changelog.com/posts/git-pulls-command-line-tool-for-github-pull-requests
https://changelog.com/posts/git-pulls-command-line-tool-for-github-pull-requests

QGIS Developers Guide, Release 3.4

Send a message to the mailing list ‘marketing’ your PR and how wonderful it will be to have it included in
the code base.

Send a message to the person your PR has been assigned to in the PR queue.
Send a message to Marco Hugentobler (who manages the PR queue).

Send a message to the project steering committee asking them to help see your PR incorporated into the
code base.

Best practice for creating a pull request

Always start a feature branch from current master.

If you are coding a feature branch, don’t “merge” anything into that branch, rather rebase as described in
the next point to keep your history clean.

Before you create a pull requestdo git fetch originandgit rebase origin/master (given
origin is the remote for upstream and not your own remote, check your .git/config or do git
remote -v | grep github.com/ggis).

You may do a git rebase like in the last line repeatedly without doing any damage (as long as the only
purpose of your branch is to get merged into master).

Attention: After a rebase you need to git push -f£ to your forked repo. CORE DEVS: DO NOT DO
THIS ON THE QGIS PUBLIC REPOSITORY!

Special labels to notify documentors

Besides common tags you can add to classify your PR, there are special ones you can use to automatically generate
issue reports in QGIS-Documentation repository as soon as your pull request is merged:

[needs—docs] to instruct doc writers to please add some extra documentation after a fix or addition to
an already existing functionality.

[feature] in case of new functionality. Filling a good description in your PR will be a good start.

Please devs use these labels (case insensitive) so doc writers have issues to work on and have an overview of things

to do.

BUT please also take time to add some text: either in the commit OR in the docs itself.

For merging a pull request

Option A:

click the merge button (Creates a non-fast-forward merge)

Option B:

Checkout the pull request
Test (Also required for option A, obviously)
checkout master, git merge pr/1234

Optional: git pull --rebase: Creates a fast-forward, no “merge commit” is made. Cleaner history,
but it is harder to revert the merge.

git push (NEVER EVER use the -f option here)

3.8. Submitting Patches and Pull Requests 21

https://gist.github.com/piscisaureus/3342247

QGIS Developers Guide, Release 3.4

3.9 Patch file naming

If the patch is a fix for a specific bug, please name the file with the bug number in it e.g. bug777fix.patch, and
attach it to the original bug report in GitHub.

If the bug is an enhancement or new feature, it’s usually a good idea to create a ticket in GitHub first and then
attach your patch.

3.10 Create your patch in the top level QGIS source dir

This makes it easier for us to apply the patches since we don’t need to navigate to a specific place in the source
tree to apply the patch. Also when I receive patches I usually evaluate them using merge, and having the patch
from the top level dir makes this much easier. Below is an example of how you can include multiple changed files
into your patch from the top level directory:

cd QGIS

git checkout master

git pull origin master

git checkout newfeature

git format-patch master --stdout > bug777fix.patch

This will make sure your master branch is in sync with the upstream repository, and then generate a patch which
contains the delta between your feature branch and what is in the master branch.

3.10.1 Getting your patch noticed

QGIS developers are busy folk. We do scan the incoming patches on bug reports but sometimes we miss things.
Don’t be offended or alarmed. Try to identify a developer to help you and contact them asking them if they can
look at your patch. If you don’t get any response, you can escalate your query to one of the Project Steering
Committee members (contact details also available in the Technical Resources).

3.10.2 Due Diligence

QGIS is licensed under the GPL. You should make every effort to ensure you only submit patches which are
unencumbered by conflicting intellectual property rights. Also do not submit code that you are not happy to have
made available under the GPL.

3.11 Obtaining GIT Write Access

Write access to QGIS source tree is by invitation. Typically when a person submits several (there is no fixed
number here) substantial patches that demonstrate basic competence and understanding of C++ and QGIS coding
conventions, one of the PSC members or other existing developers can nominate that person to the PSC for
granting of write access. The nominator should give a basic promotional paragraph of why they think that person
should gain write access. In some cases we will grant write access to non C++ developers e.g. for translators
and documentors. In these cases, the person should still have demonstrated ability to submit patches and should
ideally have submitted several substantial patches that demonstrate their understanding of modifying the code base
without breaking things, etc.

Nota: Since moving to GIT, we are less likely to grant write access to new developers since it is trivial to share
code within github by forking QGIS and then issuing pull requests.

22 Chapter 3. Acesso GIT

https://github.com/qgis/QGIS/issues
https://github.com/qgis/QGIS/issues

QGIS Developers Guide, Release 3.4

Always check that everything compiles before making any commits / pull requests. Try to be aware of possible
breakages your commits may cause for people building on other platforms and with older / newer versions of
libraries.

When making a commit, your editor (as defined in $EDITOR environment variable) will appear and you should
make a comment at the top of the file (above the area that says ‘don’t change this’). Put a descriptive comment
and rather do several small commits if the changes across a number of files are unrelated. Conversely we prefer
you to group related changes into a single commit.

3.11. Obtaining GIT Write Access 23

QGIS Developers Guide, Release 3.4

24 Chapter 3. Acesso GIT

cHAPTER 4

Comecando a trabalhar com QtCreator e QGIS

* Instalando QtCreator
* Preparando seu projeto
* Setting up your build environment

e Setting your run environment

* Running and debugging

QtCreator is a newish IDE from the makers of the Qt library. With QtCreator you can build any C++ project,
but it’s really optimised for people working on Qt(4) based applications (including mobile apps). Everything I
describe below assumes you are running Ubuntu 11.04 ‘Natty’.

4.1 Instalando QtCreator

Essa parte é facil:

’sudo apt—-get install gtcreator gtcreator-doc

Ap6s a instalacdo vocé deve encontrd-lo no menu do gnome

4.2 Preparando seu projeto

I’m assuming you have already got a local QGIS clone containing the source code, and have installed all needed
build dependencies etc. There are detailed instructions for gir access and dependency installation.

On my system I have checked out the code into $HOME/dev/cpp/QGIS and the rest of the article is written
assuming that, you should update these paths as appropriate for your local system.

Ao abrir o QtCreator:
Arquivo -> Abrir Arquivo ou Projeto*

Depois use o didlogo de sele¢do de arquivo resultante para procurar e abrir este arquivo:

25

https://htmlpreview.github.io/?https://github.com/qgis/QGIS/blob/master/doc/INSTALL.html

QGIS Developers Guide, Release 3.4

SHOME/dev/cpp/QGIS/CMakelLists.txt

Look in: [[fi_.’hume,.r‘l:imljnux,.r‘dEufcppruantum-GIS ¢] @ %‘; @ @
!_' Compuker Mame ¥ | Size Z
[timlinux S tests

— (M tools

gl Downloads I_:I BUGS 1KB

g gisdata : 65 KB
. B CMakelists.ext N 18 KB
gl testdata | | CMakeLists.txt.user 14 KB

e :

[] CODING 46 KB | |

[] COPYING 18 KB
| | Doxyfile 67 KB

_ 1QPICS
di ui |] Exception_to_GPL_for_Qt.bxt 24EB |=
= |] INSTALL 51 kKB
il web L] INSTALL~ 54KB
|] INSTALL.orig 52kKB
| | PROVEMAMNCE 3KB [
| | gbrowser. 58...es
|] ggis.1 2KB [+
[4] Il [»]

File name: [CMakeLists.txt] gpen
Files of type: [ALL Files (*) =] x Cancel

Next you will be prompted for a build location. I create a specific build dir for QtCreator to work in under:

SHOME/dev/cpp/QGIS/build-master—gtcreator

Its probably a good idea to create separate build directories for different branches if you can afford the disk space.

CMake Wizard
Build Location
2 Build Location
Run CMake Please enter the directory in which you want to build your project.
Build directory: [home/timlinu¢/dev/cpp/Quantum-CIS/build-master-gtcreator l
Next =] [Cancel

Next you will be asked if you have any CMake build options to pass to CMake. We will tell CMake that we want
a debug build by adding this option:

26 Chapter 4. Comecando a trabalhar com QtCreator e QGIS

QGIS Developers Guide, Release 3.4

—-DCMAKE_BUILD_TYPE=Debug

CMake Wizard

Run CMake

Refreshing cbp file in fhome/timlinux/dev/cpp/Quantum-GCIS/build-
master-gtcreator.

?’ Run CMake

Arguments | -DCMAKE_BUILD_TYPE=Debug | [Run CMake

h Finish H Cancel

That’s the basics of it. When you complete the Wizard, QtCreator will start scanning the source tree for autocom-
pletion support and do some other housekeeping stuff in the background. We want to tweak a few things before

we start to build though.

4.3 Setting up your build environment

Click on the ‘Projects’ icon on the left of the QtCreator window.

4.3. Setting up your build environment

27

QGIS Developers Guide, Release 3.4

Projects

Select the build settings tab (normally active by default).

gais1.8.0

| RunSettings | Editor Settings | Dependencies |

We now want to add a custom process step. Why? Because QGIS can currently only run from an install directory,
not its build directory, so we need to ensure that it is installed whenever we build it. Under ‘Build Steps’, click on
the ‘Add BuildStep’ combo button and choose ‘Custom Process Step’.

Custom Process StEE

Make

Agora vamos definir os seguintes detalhes:
Enable custom process step: [yes]
Comando: make
Working directory: $HOME/dev/cpp/QGIS/build-master-qtcreator

Argumentos de comando: install

28 Chapter 4. Comecando a trabalhar com QtCreator e QGIS

QGIS Developers Guide, Release 3.4

Build Steps
Make: make Details =
Custom Process Step make install Details ~

Enable custom process skep [¥

Command: [make]

Working directory: [$HOME,fdevfcppruantum-GIS,fbuiLd-master-qtcreator]

Command arguments: [instalL]

Add Build Step -

You are almost ready to build. Just one note: QtCreator will need write permissions on the install prefix. By default
(which I am using here) QGIS is going to get installed to /usr/local/. For my purposes on my development
machine, I just gave myself write permissions to the /usr/local directory.

To start the build, click that big hammer icon on the bottom left of the window.

4.4 Setting your run environment

As mentioned above, we cannot run QGIS from directly in the build directly, so we need to create a custom run
target to tell QtCreator to run QGIS from the install dir (in my case /usr/local/). To do that, return to the
projects configuration screen.

4.4. Setting your run environment 29

QGIS Developers Guide, Release 3.4

Now select the ‘Run Settings’ tab

qgis1.8.0

Build Settings | | Editor Setkings | Dependencies |

We need to update the default run settings from using the ‘qgis’ run configuration to using a custom one.

D Run Settings

Deployment: [Nadeployment ¢H Add *H Remove H Rename l

Mo Deploy Steps

Add Deploy Step -

Run configuration: [qgis 5 l [Add 'l [Remove l [Rename
Argumenkts: [l
Working directory: [fhomeftiml.inuxj] @
Debugger: Cis

[J QML Debugport: -E

Run Environment

Using Build Environment Details »

Do do that, click the ‘Add v’ combo button next to the Run configuration combo and choose ‘Custom Executable’
from the top of the list.

30 Chapter 4. Comecando a trabalhar com QtCreator e QGIS

QGIS Developers Guide, Release 3.4

i Custom Egecutable i

Now in the properties area set the following details:
Executavel: /usr/local/bin/qgis
Argumentos :
Working directory: $SHOME
Run in terminal: [no]
Debugger: C++ [yes]
Qml [no]

Then click the ‘Rename’ button and give your custom executable a meaningful name e.g. ‘Installed QGIS’

Run configuration: [InstalLed QGCIs =] [Add "] [Remove l [Rename
Executable: [fusrflocalfbinfqgis l
Arguments: [l
Working directory: [,Fhomeftimlinux l

[] Run in Terminal

Debugger: [C+s
[l QML Debug port: -E

4.5 Running and debugging

Now you are ready to run and debug QGIS. To set a break point, simply open a source file and click in the left
column.

O void QgsRasterlLayer: :populateHistogram(int theBandNo, int theBinCount, bocol the!

{
QgsRasterBandStats myRasterBandStats = bandStatistics(theBandMo) ;

mDataProvider-=populateHistogram(theBandNo, myRasterBandStats, theBinCount, ti
1995, f

Now launch QGIS under the debugger by clicking the icon with a bug on it in the bottom left of the window.

4.5. Running and debugging 31

QGIS Developers Guide, Release 3.4

32 Chapter 4. Comec¢ando a trabalhar com QtCreator e QGIS

CHAPTER B

Teste de unidade

* O framework de testes do QGIS - uma visdo geral
* Criar um teste de unidade
— Implementing a regression test
» Comparing images for rendering tests
* Adding your unit test to CMakeLists.txt
— The ADD_QGIS_TEST macro explained
* Construindo sua unidade teste
» Execute seus testes

— Debugging unit tests

— Have fun

Em novembro de 2007, passamos a exigir que todos 0s novos recursos que vao para a versao master passem a ser
acompanhado de um teste de unidade. Inicialmente nds limitamos este requisito ao qgis_core, € vamos estender
este requisito a outras partes da base de cédigo conforme as pessoas estdo familiarizados com os procedimentos
de teste de unidade explicado nas se¢des que se seguem.

5.1 O framework de testes do QGIS - uma visao geral

Unit testing is carried out using a combination of QTestLib (the Qt testing library) and CTest (a framework for
compiling and running tests as part of the CMake build process). Lets take an overview of the process before we
delve into the details:

1. There is some code you want to test, e.g. a class or function. Extreme programming advocates suggest that
the code should not even be written yet when you start building your tests, and then as you implement your
code you can immediately validate each new functional part you add with your test. In practice you will
probably need to write tests for pre-existing code in QGIS since we are starting with a testing framework
well after much application logic has already been implemented.

33

QGIS Developers Guide, Release 3.4

2. You create a unit test. This happens under <QGIS Source Dir>/tests/src/core in the case of
the core lib. The test is basically a client that creates an instance of a class and calls some methods on that
class. It will check the return from each method to make sure it matches the expected value. If any one of
the calls fails, the unit will fail.

3. You include QtTestLib macros in your test class. This macro is processed by the Qt meta object compiler
(moc) and expands your test class into a runnable application.

4. You add a section to the CMakeLists.txt in your tests directory that will build your test.

5. You ensure you have ENABLE_TESTING enabled in ccmake / cmakesetup. This will ensure your tests
actually get compiled when you type make.

6. You optionally add test data to <QGIS Source Dir>/tests/testdata if your test is data driven
(e.g. needs to load a shapefile). These test data should be as small as possible and wherever possible you
should use the existing datasets already there. Your tests should never modify this data in situ, but rather
make a temporary copy somewhere if needed.

7. You compile your sources and install. Do this using normal make && (sudo) make install pro-
cedure.

8. You run your tests. This is normally done simply by doing make test after the make install step,
though we will explain other approaches that offer more fine grained control over running tests.

Right with that overview in mind, we will delve into a bit of detail. We’ve already done much of the configuration
for you in CMake and other places in the source tree so all you need to do are the easy bits - writing unit tests!

5.2 Criar um teste de unidade

Creating a unit test is easy - typically you will do this by just creating a single . cpp file (not .h file is used)
and implement all your test methods as public methods that return void. We’ll use a simple test class for
QgsRasterLayer throughout the section that follows to illustrate. By convention we will name our test with
the same name as the class they are testing but prefixed with “Test’. So our test implementation goes in a file called
testggsrasterlayer. cpp and the class itself will be TestQgsRasterLayer. First we add our standard
copyright banner:

/***
testqggsvectorfilewriter.cpp
Date : Friday, Jan 27, 2015
Copyright: (C) 2015 by Tim Sutton
Email: tim@kartoza.com
R e b b b b b b b b b b b b i b b b b b b b g b g b b b b b b o g b b i
*
* This program is free software; you can redistribute it and/or modify
* 1t under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.

*************************i‘***********i‘***********i‘***********i‘*************/

Next we start our includes needed for the tests we plan to run. There is one special include all tests should have:

#include <QtTest/QtTest>

Beyond that you just continue implementing your class as per normal, pulling in whatever headers you may need:

//0t includes. ..
#include <QObject>
#include <QString>
#include <QObject>
#include <QApplication>

34 Chapter 5. Teste de unidade

QGIS Developers Guide, Release 3.4

#include <QFileInfo>
#include <QDir>

//qgis includes. ..

#include <ggsrasterlayer.h>
#include <ggsrasterbandstats.h>
#include <ggsapplication.h>

Since we are combining both class declaration and implementation in a single file the class declaration comes next.
We start with our doxygen documentation. Every test case should be properly documented. We use the doxygen
ingroup directive so that all the UnitTests appear as a module in the generated Doxygen documentation. After that
comes a short description of the unit test and the class must inherit from QObject and include the Q_OBJECT
macro.

/++ \ingroup UnitTests
* This 1is a unit test for the QgsRasterLayer class.

*/

class TestQgsRasterLayer: public QObject

{
Q_OBJECT

All our test methods are implemented as private slots. The QtTest framework will sequentially call each private
slot method in the test class. There are four ‘special’ methods which if implemented will be called at the start of
the unit test (initTestCase), at the end of the unit test (cleanupTestCase). Before each test method is
called, the init () method will be called and after each test method is called the cleanup () method is called.
These methods are handy in that they allow you to allocate and cleanup resources prior to running each test, and
the test unit as a whole.

private slots:
// will be called before the first testfunction 1s executed.
void initTestCase () ;
// will be called after the last testfunction was executed.
void cleanupTestCase () {};
// will be called before each testfunction is executed.
void init () {};
// will be called after every testfunction.
void cleanup();

Then come your test methods, all of which should take no parameters and should return void. The methods will
be called in order of declaration. We are implementing two methods here which illustrate two types of testing.

In the first case we want to generally test if the various parts of the class are working, We can use a functional
testing approach. Once again, extreme programmers would advocate writing these tests before implementing the
class. Then as you work your way through your class implementation you iteratively run your unit tests. More
and more test functions should complete successfully as your class implementation work progresses, and when
the whole unit test passes, your new class is done and is now complete with a repeatable way to validate it.

Typically your unit tests would only cover the public API of your class, and normally you do not need to write
tests for accessors and mutators. If it should happen that an accessor or mutator is not working as expected you
would normally implement a regression test to check for this.

//
// Functional Testing
//

/++ Check 1f a raster is valid. =/
void isValid();

// more functional tests here

5.2. Criar um teste de unidade 35

QGIS Developers Guide, Release 3.4

5.2.1 Implementing a regression test
Next we implement our regression tests. Regression tests should be implemented to replicate the conditions of a
particular bug. For example:

1. We received a report by email that the cell count by rasters was off by 1, throwing off all the statistics for
the raster bands.

We opened a bug report (ticket #832)
We created a regression test that replicated the bug using a small test dataset (a 10x10 raster).

We ran the test, verifying that it did indeed fail (the cell count was 99 instead of 100).

A

Then we went to fix the bug and reran the unit test and the regression test passed. We committed the
regression test along with the bug fix. Now if anybody breakes this in the source code again in the future,
we can immediately identify that the code has regressed.

Better yet, before committing any changes in the future, running our tests will ensure our changes don’t
have unexpected side effects - like breaking existing functionality.

There is one more benefit to regression tests - they can save you time. If you ever fixed a bug that involved making
changes to the source, and then running the application and performing a series of convoluted steps to replicate
the issue, it will be immediately apparent that simply implementing your regression test before fixing the bug will
let you automate the testing for bug resolution in an efficient manner.

To implement your regression test, you should follow the naming convention of regression<TicketID> for your
test functions. If no ticket exists for the regression, you should create one first. Using this approach allows the
person running a failed regression test easily go and find out more information.

//

// Regression Testing

//

/*+ This 1s our second test case...to check 1f a raster

* reports 1its dimensions properly. It 1is a regression test
* for ticket #832 which was fixed with change r7650.
*/

void regression832();

// more regression tests go here

Finally in your test class declaration you can declare privately any data members and helper methods your unit test
may need. In our case we will declare a QgsRasterLayer =« which can be used by any of our test methods.
The raster layer will be created in the initTestCase () function which is run before any other tests, and then
destroyed using cleanupTestCase () which is run after all tests. By declaring helper methods (which may
be called by various test functions) privately, you can ensure that they won’t be automatically run by the QTest
executable that is created when we compile our test.

private:
// Here we have any data structures that may need to
// be used in many test cases.
QgsRasterLayer * mplayer;
}i

That ends our class declaration. The implementation is simply inlined in the same file lower down. First our init
and cleanup functions:

void TestQgsRasterLayer::initTestCase ()

{
// init QGIS's paths — true means that all path will be inited from prefix
QString ggisPath = QCoreApplication::applicationDirPath ();
QOgsApplication::setPrefixPath (ggisPath, TRUE);

#ifdef Q OS_LINUX

36 Chapter 5. Teste de unidade

https://issues.qgis.org/issues/832

QGIS Developers Guide, Release 3.4

QgsApplication::setPkgbataPath(ggisPath + "/../share/qgis");
#endif
//create some objects that will be used in all tests...

std::cout << "PrefixPATH: " << QgsApplication::prefixPath().toLocal8Bit () .data()
<< std::endl;

std::cout << "PluginPATH: " << QgsApplication::pluginPath () .toLocal8Bit ().data()
—<< std::endl;

std::cout << "PkgData PATH: " << QgsApplication::pkgDataPath().toLocal8Bit ().
—data () << std::endl;

std::cout << "User DB PATH: " << QgsApplication::qgisUserDbFilePath().

—~toLocal8Bit () .data () << std::endl;

//create a raster layer that will be used in all tests...

QString myFileName (TEST_DATA_DIR); //defined in CmakelLists.txt
myFileName = myFileName + QDir::separator () + "tenbytenraster.asc";
QFileInfo myRasterFileInfo (myFileName);

mplLayer = new QgsRasterlLayer (myRasterFileInfo.filePath(),
myRasterFileInfo.completeBaseName ());

void TestQgsRasterlLayer::cleanupTestCase ()

{
delete mplayer;

The above init function illustrates a couple of interesting things.

1. We needed to manually set the QGIS application data path so that resources such as srs . db can be found
properly.

2. Secondly, this is a data driven test so we needed to provide a way to generically locate the
tenbytenraster.asc file. This was achieved by using the compiler define TEST_DATA_PATH. The
define is created in the CMakeLists.txt configuration file under <QGIS Source Root>/tests/
CMakeLists.txt and is available to all QGIS unit tests. If you need test data for your test, commit it
under <QGIS Source Root>/tests/testdata. You should only commit very small datasets here.
If your test needs to modify the test data, it should make a copy of it first.

Qt also provides some other interesting mechanisms for data driven testing, so if you are interested to know more
on the topic, consult the Qt documentation.

Next lets look at our functional test. The 1sValid () test simply checks the raster layer was correctly loaded in
the initTestCase. QVERIFY is a Qt macro that you can use to evaluate a test condition. There are a few other use
macros Qt provide for use in your tests including:

* QCOMPARE (actual, expected)

e QEXPECT_FAIL (datalndex, comment, mode)
QFAIL (message)

QFETCH (type, name)

QSKIP (description, mode)

QTEST (actual, testElement)
QTEST_APPLESS_MAIN (TestClass)
QTEST_MAIN (TestClass)
QTEST_NOOP_MAIN ()

QVERIFY?2 (condition, message)
QVERIFY (condition)

QWARN (message)

5.2. Criar um teste de unidade 37

QGIS Developers Guide, Release 3.4

Some of these macros are useful only when using the Qt framework for data driven testing (see the Qt docs for
more detail).

void TestQgsRasterLayer::isValid()

{
QVERIFY (mpLayer—>isValid());

Normally your functional tests would cover all the range of functionality of your classes public API where feasible.
With our functional tests out the way, we can look at our regression test example.

Since the issue in bug #832 is a misreported cell count, writing our test is simply a matter of using QVERIFY to
check that the cell count meets the expected value:

void TestQgsRasterLayer::regression832()
{
QVERIFY (mpLayer->getRasterXDim() == 10);
QVERIFY (mpLayer->getRaster¥YDim() == 10);
// regression check for ticket #832
// note getRasterBandStats call is base 1
QVERIFY (mpLayer->getRasterBandStats(l).elementCountInt == 100);

With all the unit test functions implemented, there’s one final thing we need to add to our test class:

QTEST_MAIN (TestQgsRasterLayer)
#include "testqgsrasterlayer.moc"

The purpose of these two lines is to signal to Qt’s moc that this is a QtTest (it will generate a main method that
in turn calls each test function. The last line is the include for the MOC generated sources. You should replace
testggsrasterlayer with the name of your class in lower case.

5.3 Comparing images for rendering tests

Rendering images on different environments can produce subtle differences due to platform-specific implementa-
tions (e.g. different font rendering and antialiasing algorithms), to the fonts available on the system and for other
obscure reasons.

When a rendering test runs on Travis and fails, look for the dash link at the very bottom of the Travis log. This
link will take you to a cdash page where you can see the rendered vs expected images, along with a “difference”
image which highlights in red any pixels which did not match the reference image.

The QGIS unit test system has support for adding “mask” images, which are used to indicate when a rendered
image may differ from the reference image. A mask image is an image (with the same name as the reference
image, but including a _mask.png suffix), and should be the same dimensions as the reference image. In a mask
image the pixel values indicate how much that individual pixel can differ from the reference image, so a black
pixel indicates that the pixel in the rendered image must exactly match the same pixel in the reference image. A
pixel with RGB 2, 2, 2 means that the rendered image can vary by up to 2 in its RGB values from the reference
image, and a fully white pixel (255, 255, 255) means that the pixel is effectively ignored when comparing the
expected and rendered images.

A utility script to generate mask images is available as scripts/generate_test_mask_image.py.
This script is used by passing it the path of a reference image (e.g. tests/testdata/control_images/
annotations/expected_annotation_fillstyle/expected_annotation_fillstyle.
png) and the path to your rendered image.

E.g.

scripts/generate_test_mask_image.py tests/testdata/control_images/annotations/
—expected_annotation_fillstyle/expected_annotation_fillstyle.png /tmp/path_to_
—rendered_image.png

38 Chapter 5. Teste de unidade

QGIS Developers Guide, Release 3.4

You can shortcut the path to the reference image by passing a partial part of the test name instead, e.g.

scripts/generate_test_mask_image.py annotation_fillstyle /tmp/path_to_rendered_
—image.png

(This shortcut only works if a single matching reference image is found. If multiple matches are found you will
need to provide the full path to the reference image.)

The script also accepts http urls for the rendered image, so you can directly copy a rendered image url from the
cdash results page and pass it to the script.

Be careful when generating mask images - you should always view the generated mask image and review any
white areas in the image. Since these pixels are ignored, make sure that these white images do not cover any
important portions of the reference image — otherwise your unit test will be meaningless!

Similarly, you can manually “white out” portions of the mask if you deliberately want to exclude them from the
test. This can be useful e.g. for tests which mix symbol and text rendering (such as legend tests), where the
unit test is not designed to test the rendered text and you don’t want the test to be subject to cross-platform text
rendering differences.

To compare images in QGIS unit tests you should use the class QgsMultiRenderChecker or one of its
subclasses.

To improve tests robustness here are few tips:
1. Disable antialiasing if you can, as this minimizes cross-platform rendering differences.

2. Make sure your reference images are “chunky”... i.e. don’t have 1 px wide lines or other fine features, and
use large, bold fonts (14 points or more is recommended).

3. Sometimes tests generate slightly different sized images (e.g. legend rendering tests, where the image size is
dependent on font rendering size - which is subject to cross-platform differences). To account for this, use
QgsMultiRenderChecker: :setSizeTolerance () and specify the maximum number of pixels
that the rendered image width and height differ from the reference image.

4. Don’t use transparent backgrounds in reference images (CDash does not support them). Instead, use
QgsMultiRenderChecker: :drawBackground () to draw a checkboard pattern for the reference
image background.

5. When fonts are required, use the font specified in QgsFontUtils: :standardTestFontFamily ()
(“QGIS Vera Sans”).

5.4 Adding your unit test to CMakeLists.txt

Adding your unit test to the build system is simply a matter of editing the CMakeLists. txt in the test directory,
cloning one of the existing test blocks, and then replacing your test class name into it. For example:

QgsRasterLayer test
ADD_QGIS_TEST (rasterlayertest testggsrasterlayer.cpp)

5.4.1 The ADD_QGIS_TEST macro explained

We’ll run through these lines briefly to explain what they do, but if you are not interested, just do the step explained
in the above section.

MACRO (ADD_QGIS_TEST testname testsrc)

SET (gqgis_S{testname)_SRCS testsrc util SRCS})

SET (ggis_¢&{testname |_MOC_CPPS testsrc})

QT4_WRAP_CPP (ggis_&{testname /_MOC_SRCS ggis_${testname}_|
ADD_CUSTOM_TARGET (ggis_${testname Jmoc ALL DEPENDS 10C_SRC)

ADD_EXECUTABLE (ggis_&{testname ggis_S{testname}_

5.4. Adding your unit test to CMakeLists.txt 39

QGIS Developers Guide, Release 3.4

ADD_DEPENDENCIES (ggis_${testname} ggis_&{testname /moc)
TARGET_LINK_LIBRARIES (gqgis_s{testname OT_LIBRARIES} ggis_core)
SET_TARGET_PROPERTIES (gqgis_<s{testname

PROPERTIES

skip the full RPATH for the build tree

SKIP_BUILD_RPATHTRUE

when building, use the install RPATH already

(so it doesn't need to relink when installing)

BUILD_WITH_INSTALL_RPATH TRUE

the RPATH to be used when installing

INSTALL_RPATH S$/QGIS LIB DIR

add the automatically determined parts of the RPATH

which point to directories outside the build tree to the install RPATH
INSTALL_RPATH USE_LINK_PATH true)

IF (APPLE)

For Mac OS X, the executable must be at the root of the bundle's executable_
—folder

INSTALL (TARGETS ggis_${testname} RUNTIME DESTINATION CMAKE_INSTALL_PREFIX})
ADD_TEST (ggis_${testname CMAKE_INSTALL_PREFIX}/ggis_S{testname})

ELSE (APPLE)

INSTALL (TARGETS ggis_${testname} RUNTIME DESTINATION CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST (ggis_${testname CMAKE_INSTALL_PREFIX}/bin/ggis_${testname})

ENDIF (APPLE)

ENDMACRO (ADD_QGIS_TEST)

Let’s look a little more in detail at the individual lines. First we define the list of sources for our test. Since we
have only one source file (following the methodology described above where class declaration and definition are
in the same file) its a simple statement:

SET (gqgis_5{testname /_SRCS testsrc util_SRCS})

Since our test class needs to be run through the Qt meta object compiler (moc) we need to provide a couple of
lines to make that happen too:

SET (gqgis_<S{testname /_MOC_CPPS testsrc})
QT4_WRAP_CPP (ggis_¢{testname]_MOC_SRCS qgis_S${testname}_MOC_CPPS})
ADD_CUSTOM_TARGET (gqgis_&{testname /moc ALL DEPENDS ggis_S{testname }_MOC

SRCS })

Next we tell cmake that it must make an executable from the test class. Remember in the previous section on the
last line of the class implementation we included the moc outputs directly into our test class, so that will give it
(among other things) a main method so the class can be compiled as an executable:

ADD_EXECUTABLE (ggis_s{testname ggis_S{testname}_SRCS})
ADD_DEPENDENCIES (ggis_¢${testname} qgis_o&{testname /moc)

Next we need to specify any library dependencies. At the moment, classes have been implemented with a catch-all
QT_LIBRARIES dependency, but we will be working to replace that with the specific Qt libraries that each class
needs only. Of course you also need to link to the relevant qgis libraries as required by your unit test.

TARGET_LINK_LIBRARIES (qgis_s{testname OT LIBRARIES)} ggis_core)

Next we tell cmake to install the tests to the same place as the qgis binaries itself. This is something we plan to
remove in the future so that the tests can run directly from inside the source tree.

SET_TARGET_PROPERTIES (qgis_S/{testname

PROPERTIES

skip the full RPATH for the build tree
SKIP_BUILD_RPATHTRUE

when building, use the install RPATH already
(so it doesn't need to relink when installing)
BUILD_WITH_INSTALL_RPATH TRUE

the RPATH to be used when installing

40 Chapter 5. Teste de unidade

QGIS Developers Guide, Release 3.4

INSTALL_RPATH QGIS_LIB_DIR

add the automatically determined parts of the RPATH

which point to directories outside the build tree to the install RPATH
INSTALL_RPATH_USE_LINK_PATH true)

IF (APPLE)

For Mac OS X, the executable must be at the root of the bundle's executable,,
—folder

INSTALL (TARGETS ggis_${testname} RUNTIME DESTINATION CMAKE_INSTALL_PREFIX})
ADD_TEST (gqgis_<s{testname CMAKE_INSTALL_PREFIX}/ggis_S{testname})

ELSE (APPLE)

INSTALL (TARGETS ggis_${testname} RUNTIME DESTINATION CMAKE_INSTALL_PREFIX}/bin)
ADD_TEST (gqgis_o{testname CMAKE_INSTALL_PREFIX}/bin/ggis_S{testname})

ENDIF (APPLE)

Finally the above uses ADD_TEST to register the test with cmake / ctest. Here is where the best magic happens
- we register the class with ctest. If you recall in the overview we gave in the beginning of this section, we are
using both QtTest and CTest together. To recap, QtTest adds a main method to your test unit and handles calling
your test methods within the class. It also provides some macros like QVERIFY that you can use as to test for
failure of the tests using conditions. The output from a QtTest unit test is an executable which you can run from
the command line. However when you have a suite of tests and you want to run each executable in turn, and better
yet integrate running tests into the build process, the CTest is what we use.

5.5 Construindo sua unidade teste

To build the unit test you need only to make sure that ENABLE_ TESTS=t rue in the cmake configuration. There
are two ways to do this:

1. Run ccmake .. (or cmakesetup .. under windows) and interactively set the ENABLE_TESTS flag
to ON.

2. Add a command line flag to cmake e.g. cmake -DENABLE_TESTS=true ..

Other than that, just build QGIS as per normal and the tests should build too.

5.6 Execute seus testes

A maneira mais simples de executar os testes € como parte do seu processo de criagdo normal:

’make && make install && make test

The make test command will invoke CTest which will run each test that was registered using the ADD_TEST
CMake directive described above. Typical output from make test will look like this:

Running tests...

Start processing tests

Test project /Users/tim/dev/cpp/gqgis/build

13 Testing ggis_applicationtestx*x+Exception: Other
23 Testing qggis_filewritertest ##*% Passed

33 Testing qgis_rasterlayertest+x*x Passed

0 tests passed, 3 tests failed out of 3

The following tests FAILED:

1- ggis_applicationtest (OTHER _FAULT)
Errors while running CTest

make: x*%x [test] Error 8

5.5. Construindo sua unidade teste 41

QGIS Developers Guide, Release 3.4

If a test fails, you can use the ctest command to examine more closely why it failed. Use the —R option to specify
a regex for which tests you want to run and -V to get verbose output:

$ ctest -R appl -V

Start processing tests

Test project /Users/tim/dev/cpp/qgis/build

Constructing a list of tests

Done constructing a list of tests

Changing directory into /Users/tim/dev/cpp/ggis/build/tests/src/core

13 Testing ggis_applicationtest

Test command: /Users/tim/dev/cpp/qgis/build/tests/src/core/qgis_applicationtest
*xxxxxx*x*% Start testing of TestQgsApplication **sxxxxxx*

Config: Using QTest library 4.3.0, Qt 4.3.0

PASS : TestQgsApplication::initTestCase ()

PrefixPATH: /Users/tim/dev/cpp/ggis/build/tests/src/core/../

PluginPATH: /Users/tim/dev/cpp/ggis/build/tests/src/core/..//1lib/qgis
PkgData PATH: /Users/tim/dev/cpp/ggis/build/tests/src/core/..//share/qggis
User DB PATH: /Users/tim/.ggis/qgis.db

PASS : TestQgsApplication::getPaths()

PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../

PluginPATH: /Users/tim/dev/cpp/ggis/build/tests/src/core/..//1lib/qgis
PkgData PATH: /Users/tim/dev/cpp/ggis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db

QODEBUG : TestQgsApplication::checkTheme () Checking if a theme icon exists:
QDEBUG : TestQgsApplication::checkTheme ()
/Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis/themes/default//
—mIconProjectionDisabled.png

FAIL!: TestQgsApplication::checkTheme () '!myPixmap.isNull()' returned FALSE. ()
Loc: [/Users/tim/dev/cpp/qgis/tests/src/core/testggsapplication.cpp (59)]
PASS : TestQgsApplication::cleanupTestCase ()

Totals: 3 passed, 1 failed, 0 skipped

*xxxxxxx% Finished testing of TestQgsApplication #xxxxx**x*

—— Process completed

**x+xFailed

0 tests passed, 1 tests failed out of 1
The following tests FAILED:

1- ggis_applicationtest (Failed)
Errors while running CTest

5.6.1 Debugging unit tests

For C++ unit tests, QtCreator automatically adds run targets, so you can start them in the debugger.

It’s also possible to start Python unit tests from QtCreator with GDB. For this, you need to go to Projects and
choose Run under Build & Run. Then add a new Run configuration with the executable /usr/bin/
python3 and the Command line arguments set to the path of the unit test python file, e.g. /home/user/dev/
qgis/QGIS/tests/src/python/test_ggsattributeformeditorwidget.py.

Now also change the Run Environment and add 3 new variables:

Variable Value

PYTHONPATH [build]/output/python/: [build]/output/python/plugins:[source]/tests/src/python
QGIS_PREFIX_PATH | [build]/output

LD_LIBRARY_PATH | [build]/output/lib

42 Chapter 5. Teste de unidade

QGIS Developers Guide, Release 3.4

Replace [build] with your build directory and [source] with your source directory.

5.6.2 Have fun

Well that concludes this section on writing unit tests in QGIS. We hope you will get into the habit of writing
test to test new functionality and to check for regressions. Some aspects of the test system (in particular the
CMakeLists.txt parts) are still being worked on so that the testing framework works in a truly platform
independent way.

5.6. Execute seus testes 43

QGIS Developers Guide, Release 3.4

44 Chapter 5. Teste de unidade

CHAPTER O

Teste de Processamento de Algoritmos

* Teste de algoritmos
- Como
— Parameters and results
+ Trivial type parameters
* Layer type parameters
+ File type parameters
* Results
- Basic vector files
- Vector with tolerance
- Raster files
- Files
- Directories

— Algorithm Context

— Running tests locally

6.1 Teste de algoritmos

Nota: A versdo original destas instrucdes estd disponivel em: https://github.com/qgis/QGIS/blob/release-3_4/
python/plugins/processing/tests'README.md

QGIS fornece varios algoritmos sob a estrutura de processamento. Vocé pode estender esta lista com seus préprios
algoritmos e, como qualquer novo recurso, € necessdrio adicionar testes.

Para testar algoritmos, vocé pode adicionar entradas em testdata/qggis_algorithm_tests.yaml ou
testdata/gdal_algorithm_ tests.yaml como apropriado.

45

https://github.com/qgis/QGIS/blob/release-3_4/python/plugins/processing/tests/README.md
https://github.com/qgis/QGIS/blob/release-3_4/python/plugins/processing/tests/README.md

QGIS Developers Guide, Release 3.4

Este arquivo esta estruturado com yaml syntax.

Um teste basico aparece sob a chave de nivel superior “tests” e tem a seguinte aparéncia:

- name: centroid
algorithm: ggis:polygoncentroids
params:
- type: vector
name: polys.gml
results:
OUTPUT_LAYER:
type: vector
name: expected/polys_centroid.gml

6.1.1 Como

Para adicionar um novo teste siga estas etapas:

1. Execute algorithm se vocé deseja testar no QGIS a partir do processing toolbox. Se o resultado for uma
camada vetorial prefira o GML, com seu XSD, como saida pelo suporte de tipos de geometria mista e
boa legibilidade. Redirecione a saida para python/plugins/processing/tests/testdata/
expected. Para as camadas de entrada prefira usar o que ja existe na pasta testdata. Se vocé precisar
de dados extras, coloque-o em testdata/custom.

2. When you have run the algorithm, go to Processing — History and find the algorithm which you have just
run.

3. Right click the algorithm and click Create Test. A new window will open with a text definition.

4. Open the file python/plugins/processing/tests/testdata/algorithm_tests.yaml,
copy the text definition there.

The first string from the command goes to the key algorithm, the subsequent ones to params and the last
one(s) to results.

The above translates to

- name: densify
algorithm: ggis:densifygeometriesgivenaninterval
params:
- type: vector
name: polys.gml
- 2 # Interval
results:
OUTPUT:
type: vector
name: expected/polys_densify.gml

It is also possible to create tests for Processing scripts. Scripts should be placed in the scripts subdirectory in
the test data directory python/plugins/processing/tests/testdata/. The script file name should
match the script algorithm name.

6.1.2 Parameters and results

Trivial type parameters

Parameters and results are specified as lists or dictionaries:

params:
INTERVAL: 5
INTERPOLATE: True
NAME: A processing test

46 Chapter 6. Teste de Processamento de Algoritmos

http://www.yaml.org/start.html

QGIS Developers Guide, Release 3.4

or

params:
-2
- string

— another param

Layer type parameters

You will often need to specify layers as parameters. To specify a layer you will need to specify:
* the type, ie vector or raster
* aname, with a relative path like expected/polys_centroid.gml

This is what it looks like in action:

params:
PAR: 2
STR: string
LAYER:
type: vector
name: polys.gml
OTHER: another param

File type parameters

If you need an external file for the algorithm test, you need to specify the ‘file’ type and the (relative) path to the
file in its ‘name’:

params:
PAR: 2
STR: string
EXTFILE:
type: file
name: custom/grass7/extfile.txt
OTHER: another param

Results

Results are specified very similarly.

Basic vector files

It couldn’t be more trivial

OUTPUT:
name: expected/qggis_intersection.gml
type: vector

Add the expected GML and XSD files in the folder.

6.1. Teste de algoritmos 47

QGIS Developers Guide, Release 3.4

Vector with tolerance

Sometimes different platforms create slightly different results which are still acceptable. In this case (but only
then) you may also use additional properties to define how a layer is compared.

To deal with a certain tolerance for output values you can specify a compare property for an output. The compare
property can contain sub-properties for fields. This contains information about how precisely a certain field
is compared (precision) or a field can even entirely be skip” “ed. There is a special field
name " '__all__ which will apply a certain tolerance to all fields. There is another property geometry
which also accepts a precision which is applied to each vertex.

OUTPUT:
type: vector
name: expected/abcd.gml
compare:
fields:
all :
precision: 5 # compare to a precision of .00001 on all fields
A: skip # skip field A
geometry:
precision: 5 # compare coordinates with a precision of 5 digits

Raster files

Raster files are compared with a hash checksum. This is calculated when you create a test from the processing
history.

OUTPUT:
type: rasterhash
hash: f1fedeb6782£9389cf43590d4c85ada9155ab6lfef6dc285aaeb54d6

Files

You can compare the content of an output file to an expected result reference file

OUTPUT_HTML_FILE:
name: expected/basic_statistics_string.html
type: file

Or you can use one or more regular expressions that will be matched against the file content

OUTPUT:
name: layer_info.html
type: regex
rules:
- 'Extent: \(-1.000000, -3.000000\) - \(11.000000, 5.000000\)"
- 'Geometry: Line String'
- 'Feature Count: 6'

Directories

You can compare the content of an output directory with an expected result reference directory

OUTPUT_DIR:
name: expected/tiles_xyz/test_1
type: directory

48 Chapter 6. Teste de Processamento de Algoritmos

https://docs.python.org/3/library/re.html#re.search

QGIS Developers Guide, Release 3.4

6.1.3 Algorithm Context
There are a few more definitions that can modify the context of the algorithm - these can be specified at the top
level of test:

* project - will load a specified QGIS project file before running the algorithm. If not specified, the
algorithm will run with an empty project

* project_crs - overrides the default project CRS - e.g. EPSG:27700

* ellipsoid - overrides the default project ellipsoid used for measurements, e.g. GRS80

6.1.4 Running tests locally

ctest -V -R ProcessingQgisAlgorithmsTest

or one of the following values listed in the CMakelists.txt

6.1. Teste de algoritmos 49

https://github.com/qgis/QGIS/blob/release-3_4/python/plugins/processing/tests/CMakeLists.txt

QGIS Developers Guide, Release 3.4

50 Chapter 6. Teste de Processamento de Algoritmos

CHAPTER /

OGC Conformance Testing

o Setup of WMS 1.3 and WMS 1.1.1 conformance tests
* Projeto teste

e Executando o teste WMS 1.3.0

e Executando o teste WMS 1.1.1

The Open Geospatial Consortium (OGC) provides tests which can be run free of charge to make sure a server is
compliant with a certain specification. This chapter provides a quick tutorial to setup the WMS tests on an Ubuntu
system. A detailed documentation can be found at the OGC website.

7.1 Setup of WMS 1.3 and WMS 1.1.1 conformance tests

sudo apt install openjdk-8-jdk maven

cd ~/src

git clone https://github.com/opengeospatial/teamengine.git

cd teamengine

mvn install

mkdir ~/TE_BASE

export TFE_BASE=~/TE_BASE

unzip -o ./teamengine-console/target/teamengine-console-4.11-SNAPSHOT-base.zip -d
—STE_BASE

mkdir ~/te-install

unzip -o ./teamengine-console/target/teamengine-console-4.11-SNAPSHOT-bin.zip -d ~/
—te-install

Baixe e instale o teste WMS 1.3.0

cd ~/src

git clone https://github.com/opengeospatial/ets-wmsl3.git
cd ets-wmsl3

mvn install

Baixe e instale o teste WMS 1.1.1

51

https://www.opengeospatial.org/compliance

QGIS Developers Guide, Release 3.4

cd ~/src

git clone https://github.com/opengeospatial/ets-wmsll.git
cd ets-wmsll

mvn install

7.2 Projeto teste

Para os testes WMS, os dados podem ser baixados e carregados em um projeto QGIS:

wget https://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/data-wms-1.3.
0. le
unzip data-wms-1.3.0.zip

Then create a QGIS project according to the description in https://cite.opengeospatial.org/teamengine/about/wms/
1.3.0/site/. To run the tests, we need to provide the GetCapabilities URL of the service later.

7.3 Executando o teste WMS 1.3.0

export PATH=/usr/lib/jvm/java-8-openjdk-amd64/bin:SPATH

export TE_BASE=SHOME/TE_BASE

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amdé4

cd ~/te-install

./bin/unix/test.sh —-source=5HOME/src/ets-wmsl3/src/main/scripts/ctl/main.xml

7.4 Executando o teste WMS 1.1.1

export PATH=/usr/lib/jvm/java-8-openjdk-amd64/bin:SPATH

export TE_BASE=SHOME/TE_BASE

export ETS SRC=SHOME/ets-resources

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amdé64d

cd ~/te-install

./bin/unix/test.sh —-source=$HOME/src/ets-wmsll/src/main/scripts/ctl/wms.xml

52 Chapter 7. OGC Conformance Testing

https://github.com/qgis/QGIS/blob/release-3_4/tests/testdata/qgis_server/ets-wms13/project.qgs
https://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/
https://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/

	Padrão de codificação do QGIS
	HIG (Human Interface Guidelines)
	Acesso GIT
	Começando a trabalhar com QtCreator e QGIS
	Teste de unidade
	Teste de Processamento de Algoritmos
	OGC Conformance Testing

