
PyQGIS developer cookbook
Release 2.6

QGIS Project

22 May 2015

Indice

1 Introduction 1
1.1 Python Console . 1
1.2 Python Plugins . 2
1.3 Python Applications . 2

2 Loading Layers 5
2.1 Vector Layers . 5
2.2 Raster Layers . 6
2.3 Map Layer Registry . 7

3 Using Raster Layers 9
3.1 Layer Details . 9
3.2 Drawing Style . 9
3.3 Refreshing Layers . 11
3.4 Query Values . 11

4 Using Vector Layers 13
4.1 Iterating over Vector Layer . 13
4.2 Modifying Vector Layers . 14
4.3 Modifying Vector Layers with an Editing Buffer . 15
4.4 Using Spatial Index . 16
4.5 Writing Vector Layers . 17
4.6 Memory Provider . 18
4.7 Appearance (Symbology) of Vector Layers . 19
4.8 Further Topics . 25

5 Geometry Handling 27
5.1 Geometry Construction . 27
5.2 Access to Geometry . 27
5.3 Geometry Predicates and Operations . 28

6 Projections Support 29
6.1 Coordinate reference systems . 29
6.2 Projections . 30

7 Using Map Canvas 31
7.1 Embedding Map Canvas . 31
7.2 Using Map Tools with Canvas . 32
7.3 Rubber Bands and Vertex Markers . 33
7.4 Writing Custom Map Tools . 34
7.5 Writing Custom Map Canvas Items . 35

8 Map Rendering and Printing 37

i

8.1 Simple Rendering . 37
8.2 Output using Map Composer . 38

9 Expressions, Filtering and Calculating Values 41
9.1 Parsing Expressions . 42
9.2 Evaluating Expressions . 42
9.3 Examples . 42

10 Reading And Storing Settings 45

11 Communicating with the user 47
11.1 Showing messages. The QgsMessageBar class . 47
11.2 Showing progress . 48
11.3 Logging . 49

12 Developing Python Plugins 51
12.1 Writing a plugin . 51
12.2 Plugin content . 52
12.3 Documentation . 56

13 IDE settings for writing and debugging plugins 57
13.1 A note on configuring your IDE on Windows . 57
13.2 Debugging using Eclipse and PyDev . 58
13.3 Debugging using PDB . 62

14 Using Plugin Layers 63
14.1 Subclassing QgsPluginLayer . 63

15 Compatibility with older QGIS versions 65
15.1 Plugin menu . 65

16 Releasing your plugin 67
16.1 Official python plugin repository . 67

17 Code Snippets 69
17.1 How to call a method by a key shortcut . 69
17.2 How to toggle Layers . 69
17.3 How to access attribute table of selected features . 69

18 Network analysis library 71
18.1 General information . 71
18.2 Building a graph . 71
18.3 Graph analysis . 73

Indice 79

ii

CAPITOLO 1

Introduction

This document is intended to work both as a tutorial and a reference guide. While it does not list all possible use
cases, it should give a good overview of the principal functionality.

Starting from 0.9 release, QGIS has optional scripting support using Python language. We’ve decided for Python
as it’s one of the most favourite languages for scripting. PyQGIS bindings depend on SIP and PyQt4. The reason
for using SIP instead of more widely used SWIG is that the whole QGIS code depends on Qt libraries. Python
bindings for Qt (PyQt) are done also using SIP and this allows seamless integration of PyQGIS with PyQt.

TODO: Getting PyQGIS to work (Manual compilation, Troubleshooting)

There are several ways how to use QGIS python bindings, they are covered in detail in the following sections:

• issue commands in Python console within QGIS

• create and use plugins in Python

• create custom applications based on QGIS API

There is a complete QGIS API reference that documents the classes from the QGIS libraries. Pythonic QGIS API
is nearly identical to the API in C++.

There are some resources about programming with PyQGIS on QGIS blog. See QGIS tutorial ported to Python for
some examples of simple 3rd party apps. A good resource when dealing with plugins is to download some plugins
from plugin repository and examine their code. Also, the python/plugins/ folder in your QGIS installation
contains some plugin that you can use to learn how to develop such plugin and how to perform some of the most
common tasks

1.1 Python Console

For scripting, it is possible to take advantage of integrated Python console. It can be opened from menu: Plugins
→ Python Console. The console opens as a non-modal utility window:

The screenshot above illustrates how to get the layer currently selected in the layer list, show its ID and optionally,
if it is a vector layer, show the feature count. For interaction with QGIS environment, there is a iface variable,
which is an instance of QgsInterface. This interface allows access to the map canvas, menus, toolbars and
other parts of the QGIS application.

For convenience of the user, the following statements are executed when the console is started (in future it will be
possible to set further initial commands)

from qgis.core import *
import qgis.utils

For those which use the console often, it may be useful to set a shortcut for triggering the console (within menu
Settings → Configure shortcuts...)

1

http://qgis.org/api/
http://blog.qgis.org/
http://blog.qgis.org/node/59.html
http://plugins.qgis.org/

PyQGIS developer cookbook, Release 2.6

Figura 1.1: QGIS Python console

1.2 Python Plugins

QGIS allows enhancement of its functionality using plugins. This was originally possible only with C++ language.
With the addition of Python support to QGIS, it is also possible to use plugins written in Python. The main
advantage over C++ plugins is its simplicity of distribution (no compiling for each platform needed) and easier
development.

Many plugins covering various functionality have been written since the introduction of Python support. The plu-
gin installer allows users to easily fetch, upgrade and remove Python plugins. See the Python Plugin Repositories
page for various sources of plugins.

Creating plugins in Python is simple, see Developing Python Plugins for detailed instructions.

1.3 Python Applications

Often when processing some GIS data, it is handy to create some scripts for automating the process instead of
doing the same task again and again. With PyQGIS, this is perfectly possible — import the qgis.core module,
initialize it and you are ready for the processing.

Or you may want to create an interactive application that uses some GIS functionality — measure some data,
export a map in PDF or any other functionality. The qgis.gui module additionally brings various GUI compo-
nents, most notably the map canvas widget that can be very easily incorporated into the application with support
for zooming, panning and/or any further custom map tools.

1.3.1 Using PyQGIS in custom application

Note: do not use qgis.py as a name for your test script — Python will not be able to import the bindings as the
script’s name will shadow them.

First of all you have to import qgis module, set QGIS path where to search for resources — database of projections,
providers etc. When you set prefix path with second argument set as True, QGIS will initialize all paths with
standard dir under the prefix directory. Calling initQgis() function is important to let QGIS search for the
available providers.

from qgis.core import *

2 Capitolo 1. Introduction

http://www.qgis.org/wiki/Python_Plugin_Repositories

PyQGIS developer cookbook, Release 2.6

supply path to where is your qgis installed
QgsApplication.setPrefixPath("/path/to/qgis/installation", True)

load providers
QgsApplication.initQgis()

Now you can work with QGIS API — load layers and do some processing or fire up a GUI with a map canvas.
The possibilities are endless :-)

When you are done with using QGIS library, call exitQgis() to make sure that everything is cleaned up (e.g.
clear map layer registry and delete layers):

QgsApplication.exitQgis()

1.3.2 Running Custom Applications

You will need to tell your system where to search for QGIS libraries and appropriate Python modules if they are
not in a well-known location — otherwise Python will complain:

>>> import qgis.core
ImportError: No module named qgis.core

This can be fixed by setting the PYTHONPATH environment variable. In the following commands, qgispath
should be replaced with your actual QGIS installation path:

• on Linux: export PYTHONPATH=/qgispath/share/qgis/python

• on Windows: set PYTHONPATH=c:\qgispath\python

The path to the PyQGIS modules is now known, however they depend on qgis_core and qgis_gui libraries
(the Python modules serve only as wrappers). Path to these libraries is typically unknown for the operating system,
so you get an import error again (the message might vary depending on the system):

>>> import qgis.core
ImportError: libqgis_core.so.1.5.0: cannot open shared object file: No such file or directory

Fix this by adding the directories where the QGIS libraries reside to search path of the dynamic linker:

• on Linux: export LD_LIBRARY_PATH=/qgispath/lib

• on Windows: set PATH=C:\qgispath;%PATH%

These commands can be put into a bootstrap script that will take care of the startup. When deploying custom
applications using PyQGIS, there are usually two possibilities:

• require user to install QGIS on his platform prior to installing your application. The application installer
should look for default locations of QGIS libraries and allow user to set the path if not found. This approach
has the advantage of being simpler, however it requires user to do more steps.

• package QGIS together with your application. Releasing the application may be more challenging and the
package will be larger, but the user will be saved from the burden of downloading and installing additional
pieces of software.

The two deployment models can be mixed - deploy standalone application on Windows and Mac OS X, for Linux
leave the installation of QGIS up to user and his package manager.

1.3. Python Applications 3

PyQGIS developer cookbook, Release 2.6

4 Capitolo 1. Introduction

CAPITOLO 2

Loading Layers

Let’s open some layers with data. QGIS recognizes vector and raster layers. Additionally, custom layer types are
available, but we are not going to discuss them here.

2.1 Vector Layers

To load a vector layer, specify layer’s data source identifier, name for the layer and provider’s name:

layer = QgsVectorLayer(data_source, layer_name, provider_name)
if not layer.isValid():
print "Layer failed to load!"

The data source identifier is a string and it is specific to each vector data provider. Layer’s name is used in the
layer list widget. It is important to check whether the layer has been loaded successfully. If it was not, an invalid
layer instance is returned.

The following list shows how to access various data sources using vector data providers:

• OGR library (shapefiles and many other file formats) — data source is the path to the file

vlayer = QgsVectorLayer("/path/to/shapefile/file.shp", "layer_name_you_like", "ogr")

• PostGIS database — data source is a string with all information needed to create a connection to PostgreSQL
database. QgsDataSourceURI class can generate this string for you. Note that QGIS has to be compiled
with Postgres support, otherwise this provider isn’t available.

uri = QgsDataSourceURI()
set host name, port, database name, username and password
uri.setConnection("localhost", "5432", "dbname", "johny", "xxx")
set database schema, table name, geometry column and optionally
subset (WHERE clause)
uri.setDataSource("public", "roads", "the_geom", "cityid = 2643")

vlayer = QgsVectorLayer(uri.uri(), "layer_name_you_like", "postgres")

• CSV or other delimited text files — to open a file with a semicolon as a delimiter, with field “x” for x-
coordinate and field “y” with y-coordinate you would use something like this

uri = "/some/path/file.csv?delimiter=%s&xField=%s&yField=%s" % (";", "x", "y")
vlayer = QgsVectorLayer(uri, "layer_name_you_like", "delimitedtext")

Note: from QGIS version 1.7 the provider string is structured as a URL, so the path must be prefixed with
file://. Also it allows WKT (well known text) formatted geometries as an alternative to “x” and “y” fields,
and allows the coordinate reference system to be specified. For example

uri = "file:///some/path/file.csv?delimiter=%s&crs=epsg:4723&wktField=%s" % (";", "shape")

5

PyQGIS developer cookbook, Release 2.6

• GPX files — the “gpx” data provider reads tracks, routes and waypoints from gpx files. To open a file, the
type (track/route/waypoint) needs to be specified as part of the url

uri = "path/to/gpx/file.gpx?type=track"
vlayer = QgsVectorLayer(uri, "layer_name_you_like", "gpx")

• SpatiaLite database — supported from QGIS v1.1. Similarly to PostGIS databases, QgsDataSourceURI
can be used for generation of data source identifier

uri = QgsDataSourceURI()
uri.setDatabase(’/home/martin/test-2.3.sqlite’)
schema = ’’
table = ’Towns’
geom_column = ’Geometry’
uri.setDataSource(schema, table, geom_column)

display_name = ’Towns’
vlayer = QgsVectorLayer(uri.uri(), display_name, ’spatialite’)

• MySQL WKB-based geometries, through OGR — data source is the connection string to the table

uri = "MySQL:dbname,host=localhost,port=3306,user=root,password=xxx|\
layername=my_table"

vlayer = QgsVectorLayer(uri, "my_table", "ogr")

• WFS connection:. the connection is defined with a URI and using the WFS provider

uri = "http://localhost:8080/geoserver/wfs?srsname=EPSG:23030&typename=union&version=1.0.0&request=GetFeature&service=WFS",
vlayer = QgsVectorLayer("my_wfs_layer", "WFS")

The uri can be created using the standard urllib library.

params = {
’service’: ’WFS’,
’version’: ’1.0.0’,
’request’: ’GetFeature’,
’typename’: ’union’,
’srsname’: "EPSG:23030"

}
uri = ’http://localhost:8080/geoserver/wfs?’ + urllib.unquote(urllib.urlencode(params))

2.2 Raster Layers

For accessing raster files, GDAL library is used. It supports a wide range of file formats. In case you have troubles
with opening some files, check whether your GDAL has support for the particular format (not all formats are
available by default). To load a raster from a file, specify its file name and base name

fileName = "/path/to/raster/file.tif"
fileInfo = QFileInfo(fileName)
baseName = fileInfo.baseName()
rlayer = QgsRasterLayer(fileName, baseName)
if not rlayer.isValid():
print "Layer failed to load!"

Raster layers can also be created from a WCS service.

layer_name = ’elevation’
uri = QgsDataSourceURI()
uri.setParam (’url’, ’http://localhost:8080/geoserver/wcs’)
uri.setParam ("identifier", layer_name)
rlayer = QgsRasterLayer(uri, ’my_wcs_layer’, ’wcs’)

6 Capitolo 2. Loading Layers

PyQGIS developer cookbook, Release 2.6

Alternatively you can load a raster layer from WMS server. However currently it’s not possible to access
GetCapabilities response from API — you have to know what layers you want

urlWithParams = ’url=http://wms.jpl.nasa.gov/wms.cgi&layers=global_mosaic&styles=pseudo&format=image/jpeg&crs=EPSG:4326’
rlayer = QgsRasterLayer(urlWithParams, ’some layer name’, ’wms’)
if not rlayer.isValid():
print "Layer failed to load!"

2.3 Map Layer Registry

If you would like to use the opened layers for rendering, do not forget to add them to map layer registry. The map
layer registry takes ownership of layers and they can be later accessed from any part of the application by their
unique ID. When the layer is removed from map layer registry, it gets deleted, too.

Adding a layer to the registry:

QgsMapLayerRegistry.instance().addMapLayer(layer)

Layers are destroyed automatically on exit, however if you want to delete the layer explicitly, use:

QgsMapLayerRegistry.instance().removeMapLayer(layer_id)

TODO: More about map layer registry?

2.3. Map Layer Registry 7

PyQGIS developer cookbook, Release 2.6

8 Capitolo 2. Loading Layers

CAPITOLO 3

Using Raster Layers

This sections lists various operations you can do with raster layers.

3.1 Layer Details

A raster layer consists of one or more raster bands - it is referred to as either single band or multi band raster. One
band represents a matrix of values. Usual color image (e.g. aerial photo) is a raster consisting of red, blue and
green band. Single band layers typically represent either continuous variables (e.g. elevation) or discrete variables
(e.g. land use). In some cases, a raster layer comes with a palette and raster values refer to colors stored in the
palette.

>>> rlayer.width(), rlayer.height()
(812, 301)
>>> rlayer.extent()
u’12.095833,48.552777 : 18.863888,51.056944’
>>> rlayer.rasterType()
2 # 0 = GrayOrUndefined (single band), 1 = Palette (single band), 2 = Multiband
>>> rlayer.bandCount()
3
>>> rlayer.metadata()
u’<p class="glossy">Driver:</p>...’
>>> rlayer.hasPyramids()
False

3.2 Drawing Style

When a raster layer is loaded, it gets a default drawing style based on its type. It can be altered either in raster
layer properties or programmatically. The following drawing styles exist:

In-
dex

Constant:
QgsRasterLater.X

Comment

1 SingleBandGray Single band image drawn as a range of gray colors
2 SingleBandPseudoColor Single band image drawn using a pseudocolor algorithm
3 PalettedColor “Palette” image drawn using color table
4 PalettedSingleBandGray “Palette” layer drawn in gray scale
5 PalettedSingleBandPseudo-

Color
“Palette” layer drawn using a pseudocolor algorithm

7 MultiBandSingleBandGray Layer containing 2 or more bands, but a single band drawn as a range
of gray colors

8 MultiBandSingle-
BandPseudoColor

Layer containing 2 or more bands, but a single band drawn using a
pseudocolor algorithm

9 MultiBandColor Layer containing 2 or more bands, mapped to RGB color space.

9

PyQGIS developer cookbook, Release 2.6

To query the current drawing style:

>>> rlayer.drawingStyle()
9

Single band raster layers can be drawn either in gray colors (low values = black, high values = white) or with a
pseudocolor algorithm that assigns colors for values from the single band. Single band rasters with a palette can
be additionally drawn using their palette. Multiband layers are typically drawn by mapping the bands to RGB
colors. Other possibility is to use just one band for gray or pseudocolor drawing.

The following sections explain how to query and modify the layer drawing style. After doing the changes, you
might want to force update of map canvas, see Refreshing Layers.

TODO: contrast enhancements, transparency (no data), user defined min/max, band statistics

3.2.1 Single Band Rasters

They are rendered in gray colors by default. To change the drawing style to pseudocolor:

>>> rlayer.setDrawingStyle(QgsRasterLayer.SingleBandPseudoColor)
>>> rlayer.setColorShadingAlgorithm(QgsRasterLayer.PseudoColorShader)

The PseudoColorShader is a basic shader that highlights low values in blue and high values in red. Another,
FreakOutShader uses more fancy colors and according to the documentation, it will frighten your granny and
make your dogs howl.

There is also ColorRampShader which maps the colors as specified by its color map. It has three modes of
interpolation of values:

• linear (INTERPOLATED): resulting color is linearly interpolated from the color map entries above and
below the actual pixel value

• discrete (DISCRETE): color is used from the color map entry with equal or higher value

• exact (EXACT): color is not interpolated, only the pixels with value equal to color map entries are drawn

To set an interpolated color ramp shader ranging from green to yellow color (for pixel values from 0 to 255):

>>> rlayer.setColorShadingAlgorithm(QgsRasterLayer.ColorRampShader)
>>> lst = [QgsColorRampShader.ColorRampItem(0, QColor(0,255,0)), \

QgsColorRampShader.ColorRampItem(255, QColor(255,255,0))]
>>> fcn = rlayer.rasterShader().rasterShaderFunction()
>>> fcn.setColorRampType(QgsColorRampShader.INTERPOLATED)
>>> fcn.setColorRampItemList(lst)

To return back to default gray levels, use:

>>> rlayer.setDrawingStyle(QgsRasterLayer.SingleBandGray)

3.2.2 Multi Band Rasters

By default, QGIS maps the first three bands to red, green and blue values to create a color image (this is the
MultiBandColor drawing style. In some cases you might want to override these setting. The following code
interchanges red band (1) and green band (2):

>>> rlayer.setGreenBandName(rlayer.bandName(1))
>>> rlayer.setRedBandName(rlayer.bandName(2))

In case only one band is necessary for visualization of the raster, single band drawing can be chosen — either gray
levels or pseudocolor, see previous section:

10 Capitolo 3. Using Raster Layers

PyQGIS developer cookbook, Release 2.6

>>> rlayer.setDrawingStyle(QgsRasterLayer.MultiBandSingleBandPseudoColor)
>>> rlayer.setGrayBandName(rlayer.bandName(1))
>>> rlayer.setColorShadingAlgorithm(QgsRasterLayer.PseudoColorShader)
>>> # now set the shader

3.3 Refreshing Layers

If you do change layer symbology and would like ensure that the changes are immediately visible to the user, call
these methods:

if hasattr(layer, "setCacheImage"):
layer.setCacheImage(None)

layer.triggerRepaint()

The first call will ensure that the cached image of rendered layer is erased in case render caching is turned on.
This functionality is available from QGIS 1.4, in previous versions this function does not exist — to make sure
that the code works with all versions of QGIS, we first check whether the method exists.

The second call emits signal that will force any map canvas containing the layer to issue a refresh.

With WMS raster layers, these commands do not work. In this case, you have to do it explicitly:

layer.dataProvider().reloadData()
layer.triggerRepaint()

In case you have changed layer symbology (see sections about raster and vector layers on how to do that), you
might want to force QGIS to update the layer symbology in the layer list (legend) widget. This can be done as
follows (iface is an instance of QgisInterface):

iface.legendInterface().refreshLayerSymbology(layer)

3.4 Query Values

To do a query on value of bands of raster layer at some specified point:

ident = rlayer.dataProvider().identify(QgsPoint(15.30,40.98), \
QgsRaster.IdentifyFormatValue)

if ident.isValid():
print ident.results()

The results method in this case returns a dictionary, with band indices as keys, and band values as values.

{1: 17, 2: 220}

3.3. Refreshing Layers 11

PyQGIS developer cookbook, Release 2.6

12 Capitolo 3. Using Raster Layers

CAPITOLO 4

Using Vector Layers

This section summarizes various actions that can be done with vector layers.

4.1 Iterating over Vector Layer

Iterating over the features in a vector layer is one of the most common tasks. Below is an example of the simple
basic code to perform this task and showing some information about each feature. the layer variable is assumed
to have a QgsVectorLayer object

iter = layer.getFeatures()
for feature in iter:

retrieve every feature with its geometry and attributes
fetch geometry
geom = feature.geometry()
print "Feature ID %d: " % feature.id()

show some information about the feature
if geom.type() == QGis.Point:

x = geom.asPoint()
print "Point: " + str(x)

elif geom.type() == QGis.Line:
x = geom.asPolyline()
print "Line: %d points" % len(x)

elif geom.type() == QGis.Polygon:
x = geom.asPolygon()
numPts = 0
for ring in x:
numPts += len(ring)

print "Polygon: %d rings with %d points" % (len(x), numPts)
else:

print "Unknown"

fetch attributes
attrs = feature.attributes()

attrs is a list. It contains all the attribute values of this feature
print attrs

Attributes can be referred by index.

idx = layer.fieldNameIndex(’name’)
print feature.attributes()[idx]

13

PyQGIS developer cookbook, Release 2.6

4.1.1 Iterating over selected features

Convenience methods.

For the above cases, and in case you need to consider selection in a vector layer in case it exist, you can use the
features() method from the built-in Processing plugin, as follows:

import processing
features = processing.features(layer)
for feature in features:

do whatever you need with the feature

This will iterate over all the features in the layer, in case there is no selection, or over the selected features
otherwise.

if you only need selected features, you can use the :func: selectedFeatures method from vector layer:

selection = layer.selectedFeatures()
print len(selection)
for feature in selection:

do whatever you need with the feature

4.1.2 Iterating over a subset of features

If you want to iterate over a given subset of features in a layer, such as those within a given area, you have to add
a QgsFeatureRequest object to the getFeatures() call. Here’s an example

request=QgsFeatureRequest()
request.setFilterRect(areaOfInterest)
for f in layer.getFeatures(request):

...

The request can be used to define the data retrieved for each feature, so the iterator returns all features, but return
partial data for each of them.

Only return selected fields
request.setSubsetOfAttributes([0,2])
More user friendly version
request.setSubsetOfAttributes([’name’,’id’],layer.pendingFields())
Don’t return geometry objects
request.setFlags(QgsFeatureRequest.NoGeometry)

4.2 Modifying Vector Layers

Most vector data providers support editing of layer data. Sometimes they support just a subset of possible editing
actions. Use the capabilities() function to find out what set of functionality is supported

caps = layer.dataProvider().capabilities()

By using any of following methods for vector layer editing, the changes are directly committed to the underlying
data store (a file, database etc). In case you would like to do only temporary changes, skip to the next section that
explains how to do modifications with editing buffer.

4.2.1 Add Features

Create some QgsFeature instances and pass a list of them to provider’s addFeatures() method. It will
return two values: result (true/false) and list of added features (their ID is set by the data store)

14 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

if caps & QgsVectorDataProvider.AddFeatures:
feat = QgsFeature()
feat.addAttribute(0, ’hello’)
feat.setGeometry(QgsGeometry.fromPoint(QgsPoint(123, 456)))
(res, outFeats) = layer.dataProvider().addFeatures([feat])

4.2.2 Delete Features

To delete some features, just provide a list of their feature IDs

if caps & QgsVectorDataProvider.DeleteFeatures:
res = layer.dataProvider().deleteFeatures([5, 10])

4.2.3 Modify Features

It is possible to either change feature’s geometry or to change some attributes. The following example first changes
values of attributes with index 0 and 1, then it changes the feature’s geometry

fid = 100 # ID of the feature we will modify

if caps & QgsVectorDataProvider.ChangeAttributeValues:
attrs = { 0 : "hello", 1 : 123 }
layer.dataProvider().changeAttributeValues({ fid : attrs })

if caps & QgsVectorDataProvider.ChangeGeometries:
geom = QgsGeometry.fromPoint(QgsPoint(111,222))
layer.dataProvider().changeGeometryValues({ fid : geom })

4.2.4 Adding and Removing Fields

To add fields (attributes), you need to specify a list of field definitions. For deletion of fields just provide a list of
field indexes.

if caps & QgsVectorDataProvider.AddAttributes:
res = layer.dataProvider().addAttributes([QgsField("mytext", QVariant.String), QgsField("myint", QVariant.Int)])

if caps & QgsVectorDataProvider.DeleteAttributes:
res = layer.dataProvider().deleteAttributes([0])

After adding or removing fields in the data provider the layer’s fields need to be updated because the changes are
not automatically propagated.

layer.updateFields()

4.3 Modifying Vector Layers with an Editing Buffer

When editing vectors within QGIS application, you have to first start editing mode for a particular layer, then do
some modifications and finally commit (or rollback) the changes. All the changes you do are not written until
you commit them — they stay in layer’s in-memory editing buffer. It is possible to use this functionality also
programmatically — it is just another method for vector layer editing that complements the direct usage of data
providers. Use this option when providing some GUI tools for vector layer editing, since this will allow user to
decide whether to commit/rollback and allows the usage of undo/redo. When committing changes, all changes
from the editing buffer are saved to data provider.

To find out whether a layer is in editing mode, use isEditing() — the editing functions work only when the
editing mode is turned on. Usage of editing functions

4.3. Modifying Vector Layers with an Editing Buffer 15

PyQGIS developer cookbook, Release 2.6

add two features (QgsFeature instances)
layer.addFeatures([feat1,feat2])
delete a feature with specified ID
layer.deleteFeature(fid)

set new geometry (QgsGeometry instance) for a feature
layer.changeGeometry(fid, geometry)
update an attribute with given field index (int) to given value (QVariant)
layer.changeAttributeValue(fid, fieldIndex, value)

add new field
layer.addAttribute(QgsField("mytext", QVariant.String))
remove a field
layer.deleteAttribute(fieldIndex)

In order to make undo/redo work properly, the above mentioned calls have to be wrapped into undo commands.
(If you do not care about undo/redo and want to have the changes stored immediately, then you will have easier
work by editing with data provider.) How to use the undo functionality

layer.beginEditCommand("Feature triangulation")

... call layer’s editing methods ...

if problem_occurred:
layer.destroyEditCommand()
return

... more editing ...

layer.endEditCommand()

The beginEditCommand() will create an internal “active” command and will record subsequent changes
in vector layer. With the call to endEditCommand() the command is pushed onto the undo stack and
the user will be able to undo/redo it from GUI. In case something went wrong while doing the changes,
the destroyEditCommand() method will remove the command and rollback all changes done while this
command was active.

To start editing mode, there is startEditing() method, to stop editing there are commitChanges() and
rollback()— however normally you should not need these methods and leave this functionality to be triggered
by the user.

4.4 Using Spatial Index

Spatial indexes can dramatically improve the performance of your code if you need to do frequent queries to a
vector layer. Imagine, for instance, that you are writing an interpolation algorithm, and that for a given location you
need to know the 10 closest points from a points layer, in order to use those point for calculating the interpolated
value. Without a spatial index, the only way for QGIS to find those 10 points is to compute the distance from each
and every point to the specified location and then compare those distances. This can be a very time consuming
task, especially if it needs to be repeated for several locations. If a spatial index exists for the layer, the operation
is much more effective.

Think of a layer without a spatial index as a telephone book in which telephone numbers are not ordered or
indexed. The only way to find the telephone number of a given person is to read from the beginning until you find
it.

Spatial indexes are not created by default for a QGIS vector layer, but you can create them easily. This is what
you have to do.

1. create spatial index — the following code creates an empty index

16 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

index = QgsSpatialIndex()

2. add features to index — index takes QgsFeature object and adds it to the internal data structure. You can
create the object manually or use one from previous call to provider’s nextFeature()

index.insertFeature(feat)

3. once spatial index is filled with some values, you can do some queries

returns array of feature IDs of five nearest features
nearest = index.nearestNeighbor(QgsPoint(25.4, 12.7), 5)

returns array of IDs of features which intersect the rectangle
intersect = index.intersects(QgsRectangle(22.5, 15.3, 23.1, 17.2))

4.5 Writing Vector Layers

You can write vector layer files using QgsVectorFileWriter class. It supports any other kind of vector file
that OGR supports (shapefiles, GeoJSON, KML and others).

There are two possibilities how to export a vector layer:

• from an instance of QgsVectorLayer

error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_shapes.shp", "CP1250", None, "ESRI Shapefile")

if error == QgsVectorFileWriter.NoError:
print "success!"

error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_json.json", "utf-8", None, "GeoJSON")
if error == QgsVectorFileWriter.NoError:
print "success again!"

The third parameter specifies output text encoding. Only some drivers need this for correct operation -
shapefiles are one of those — however in case you are not using international characters you do not have
to care much about the encoding. The fourth parameter that we left as None may specify destination CRS
— if a valid instance of QgsCoordinateReferenceSystem is passed, the layer is transformed to that
CRS.

For valid driver names please consult the supported formats by OGR — you should pass the value in
the “Code” column as the driver name. Optionally you can set whether to export only selected features,
pass further driver-specific options for creation or tell the writer not to create attributes — look into the
documentation for full syntax.

• directly from features

define fields for feature attributes. A list of QgsField objects is needed
fields = [QgsField("first", QVariant.Int),

QgsField("second", QVariant.String)]

create an instance of vector file writer, which will create the vector file.
Arguments:
1. path to new file (will fail if exists already)
2. encoding of the attributes
3. field map
4. geometry type - from WKBTYPE enum
5. layer’s spatial reference (instance of
QgsCoordinateReferenceSystem) - optional
6. driver name for the output file
writer = QgsVectorFileWriter("my_shapes.shp", "CP1250", fields, QGis.WKBPoint, None, "ESRI Shapefile")

if writer.hasError() != QgsVectorFileWriter.NoError:

4.5. Writing Vector Layers 17

http://www.gdal.org/ogr/ogr_formats.html

PyQGIS developer cookbook, Release 2.6

print "Error when creating shapefile: ", writer.hasError()

add a feature
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
fet.setAttributes([1, "text"])
writer.addFeature(fet)

delete the writer to flush features to disk (optional)
del writer

4.6 Memory Provider

Memory provider is intended to be used mainly by plugin or 3rd party app developers. It does not store data on
disk, allowing developers to use it as a fast backend for some temporary layers.

The provider supports string, int and double fields.

The memory provider also supports spatial indexing, which is enabled by calling the provider’s
createSpatialIndex() function. Once the spatial index is created you will be able to iterate over fea-
tures within smaller regions faster (since it’s not necessary to traverse all the features, only those in specified
rectangle).

A memory provider is created by passing "memory" as the provider string to the QgsVectorLayer
constructor.

The constructor also takes a URI defining the geometry type of the layer, one of: "Point", "LineString",
"Polygon", "MultiPoint", "MultiLineString", or "MultiPolygon".

The URI can also specify the coordinate reference system, fields, and indexing of the memory provider in the URI.
The syntax is:

crs=definition Specifies the coordinate reference system, where definition may be any of the forms accepted by
QgsCoordinateReferenceSystem.createFromString()

index=yes Specifies that the provider will use a spatial index

field=name:type(length,precision) Specifies an attribute of the layer. The attribute has a name, and optionally a
type (integer, double, or string), length, and precision. There may be multiple field definitions.

The following example of a URI incorporates all these options

"Point?crs=epsg:4326&field=id:integer&field=name:string(20)&index=yes"

The following example code illustrates creating and populating a memory provider

create layer
vl = QgsVectorLayer("Point", "temporary_points", "memory")
pr = vl.dataProvider()

add fields
pr.addAttributes([QgsField("name", QVariant.String),

QgsField("age", QVariant.Int),
QgsField("size", QVariant.Double)])

add a feature
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
fet.setAttributes(["Johny", 2, 0.3])
pr.addFeatures([fet])

update layer’s extent when new features have been added

18 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

because change of extent in provider is not propagated to the layer
vl.updateExtents()

Finally, let’s check whether everything went well

show some stats
print "fields:", len(pr.fields())
print "features:", pr.featureCount()
e = layer.extent()
print "extent:", e.xMin(),e.yMin(),e.xMax(),e.yMax()

iterate over features
f = QgsFeature()
features = vl.getFeatures()
for f in features:
print "F:",f.id(), f.attributes(), f.geometry().asPoint()

4.7 Appearance (Symbology) of Vector Layers

When a vector layer is being rendered, the appearance of the data is given by renderer and symbols associated
with the layer. Symbols are classes which take care of drawing of visual representation of features, while renderers
determine what symbol will be used for a particular feature.

The renderer for a given layer can obtained as shown below:

renderer = layer.rendererV2()

And with that reference, let us explore it a bit

print "Type:", rendererV2.type()

There are several known renderer types available in QGIS core library:

Type Class Description
singleSymbol QgsSingleSymbolRendererV2 Renders all features with the same symbol
catego-
rizedSymbol

QgsCategorizedSymbolRendererV2Renders features using a different symbol for each
category

graduatedSym-
bol

QgsGraduatedSymbolRendererV2Renders features using a different symbol for each
range of values

There might be also some custom renderer types, so never make an assumption there are just these types. You can
query QgsRendererV2Registry singleton to find out currently available renderers.

It is possible to obtain a dump of a renderer contents in text form — can be useful for debugging

print rendererV2.dump()

4.7.1 Single Symbol Renderer

You can get the symbol used for rendering by calling symbol() method and change it with setSymbol()
method (note for C++ devs: the renderer takes ownership of the symbol.)

4.7.2 Categorized Symbol Renderer

You can query and set attribute name which is used for classification: use classAttribute() and
setClassAttribute() methods.

To get a list of categories

4.7. Appearance (Symbology) of Vector Layers 19

PyQGIS developer cookbook, Release 2.6

for cat in rendererV2.categories():
print "%s: %s :: %s" % (cat.value().toString(), cat.label(), str(cat.symbol()))

Where value() is the value used for discrimination between categories, label() is a text used for category
description and symbol() method returns assigned symbol.

The renderer usually stores also original symbol and color ramp which were used for the classification:
sourceColorRamp() and sourceSymbol() methods.

4.7.3 Graduated Symbol Renderer

This renderer is very similar to the categorized symbol renderer described above, but instead of one attribute value
per class it works with ranges of values and thus can be used only with numerical attributes.

To find out more about ranges used in the renderer

for ran in rendererV2.ranges():
print "%f - %f: %s %s" % (

ran.lowerValue(),
ran.upperValue(),
ran.label(),
str(ran.symbol())

)

you can again use classAttribute() to find out classification attribute name, sourceSymbol() and
sourceColorRamp() methods. Additionally there is mode() method which determines how the ranges were
created: using equal intervals, quantiles or some other method.

If you wish to create your own graduated symbol renderer you can do so as illustrated in the example snippet
below (which creates a simple two class arrangement)

from qgis.core import *

myVectorLayer = QgsVectorLayer(myVectorPath, myName, ’ogr’)
myTargetField = ’target_field’
myRangeList = []
myOpacity = 1
Make our first symbol and range...
myMin = 0.0
myMax = 50.0
myLabel = ’Group 1’
myColour = QtGui.QColor(’#ffee00’)
mySymbol1 = QgsSymbolV2.defaultSymbol(myVectorLayer.geometryType())
mySymbol1.setColor(myColour)
mySymbol1.setAlpha(myOpacity)
myRange1 = QgsRendererRangeV2(myMin, myMax, mySymbol1, myLabel)
myRangeList.append(myRange1)
#now make another symbol and range...
myMin = 50.1
myMax = 100
myLabel = ’Group 2’
myColour = QtGui.QColor(’#00eeff’)
mySymbol2 = QgsSymbolV2.defaultSymbol(

myVectorLayer.geometryType())
mySymbol2.setColor(myColour)
mySymbol2.setAlpha(myOpacity)
myRange2 = QgsRendererRangeV2(myMin, myMax, mySymbol2 myLabel)
myRangeList.append(myRange2)
myRenderer = QgsGraduatedSymbolRendererV2(’’, myRangeList)
myRenderer.setMode(QgsGraduatedSymbolRendererV2.EqualInterval)
myRenderer.setClassAttribute(myTargetField)

20 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

myVectorLayer.setRendererV2(myRenderer)
QgsMapLayerRegistry.instance().addMapLayer(myVectorLayer)

4.7.4 Working with Symbols

For representation of symbols, there is QgsSymbolV2 base class with three derived classes:

• QgsMarkerSymbolV2 — for point features

• QgsLineSymbolV2 — for line features

• QgsFillSymbolV2 — for polygon features

Every symbol consists of one or more symbol layers (classes derived from QgsSymbolLayerV2). The
symbol layers do the actual rendering, the symbol class itself serves only as a container for the symbol layers.

Having an instance of a symbol (e.g. from a renderer), it is possible to explore it: type() method says whether
it is a marker, line or fill symbol. There is a dump() method which returns a brief description of the symbol. To
get a list of symbol layers

for i in xrange(symbol.symbolLayerCount()):
lyr = symbol.symbolLayer(i)
print "%d: %s" % (i, lyr.layerType())

To find out symbol’s color use color() method and setColor() to change its color. With marker symbols
additionally you can query for the symbol size and rotation with size() and angle()methods, for line symbols
there is width() method returning line width.

Size and width are in millimeters by default, angles are in degrees.

Working with Symbol Layers

As said before, symbol layers (subclasses of QgsSymbolLayerV2) determine the appearance of the features.
There are several basic symbol layer classes for general use. It is possible to implement new symbol layer types
and thus arbitrarily customize how features will be rendered. The layerType() method uniquely identifies
the symbol layer class — the basic and default ones are SimpleMarker, SimpleLine and SimpleFill symbol layers
types.

You can get a complete list of the types of symbol layers you can create for a given symbol layer class like this

from qgis.core import QgsSymbolLayerV2Registry
myRegistry = QgsSymbolLayerV2Registry.instance()
myMetadata = myRegistry.symbolLayerMetadata("SimpleFill")
for item in myRegistry.symbolLayersForType(QgsSymbolV2.Marker):
print item

Output

EllipseMarker
FontMarker
SimpleMarker
SvgMarker
VectorField

QgsSymbolLayerV2Registry class manages a database of all available symbol layer types.

To access symbol layer data, use its properties() method that returns a key-value dictionary of properties
which determine the appearance. Each symbol layer type has a specific set of properties that it uses. Additionally,
there are generic methods color(), size(), angle(), width() with their setter counterparts. Of course
size and angle is available only for marker symbol layers and width for line symbol layers.

4.7. Appearance (Symbology) of Vector Layers 21

PyQGIS developer cookbook, Release 2.6

Creating Custom Symbol Layer Types

Imagine you would like to customize the way how the data gets rendered. You can create your own symbol layer
class that will draw the features exactly as you wish. Here is an example of a marker that draws red circles with
specified radius

class FooSymbolLayer(QgsMarkerSymbolLayerV2):

def __init__(self, radius=4.0):
QgsMarkerSymbolLayerV2.__init__(self)
self.radius = radius
self.color = QColor(255,0,0)

def layerType(self):
return "FooMarker"

def properties(self):
return { "radius" : str(self.radius) }

def startRender(self, context):
pass

def stopRender(self, context):
pass

def renderPoint(self, point, context):
Rendering depends on whether the symbol is selected (Qgis >= 1.5)
color = context.selectionColor() if context.selected() else self.color
p = context.renderContext().painter()
p.setPen(color)
p.drawEllipse(point, self.radius, self.radius)

def clone(self):
return FooSymbolLayer(self.radius)

The layerType() method determines the name of the symbol layer, it has to be unique among all symbol
layers. Properties are used for persistence of attributes. clone() method must return a copy of the symbol
layer with all attributes being exactly the same. Finally there are rendering methods: startRender() is called
before rendering first feature, stopRender() when rendering is done. And renderPoint() method which
does the rendering. The coordinates of the point(s) are already transformed to the output coordinates.

For polylines and polygons the only difference would be in the rendering method: you would use
renderPolyline() which receives a list of lines, resp. renderPolygon() which receives list of points on
outer ring as a first parameter and a list of inner rings (or None) as a second parameter.

Usually it is convenient to add a GUI for setting attributes of the symbol layer type to allow users to customize the
appearance: in case of our example above we can let user set circle radius. The following code implements such
widget

class FooSymbolLayerWidget(QgsSymbolLayerV2Widget):
def __init__(self, parent=None):
QgsSymbolLayerV2Widget.__init__(self, parent)

self.layer = None

setup a simple UI
self.label = QLabel("Radius:")
self.spinRadius = QDoubleSpinBox()
self.hbox = QHBoxLayout()
self.hbox.addWidget(self.label)
self.hbox.addWidget(self.spinRadius)
self.setLayout(self.hbox)
self.connect(self.spinRadius, SIGNAL("valueChanged(double)"), \

22 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

self.radiusChanged)

def setSymbolLayer(self, layer):
if layer.layerType() != "FooMarker":

return
self.layer = layer
self.spinRadius.setValue(layer.radius)

def symbolLayer(self):
return self.layer

def radiusChanged(self, value):
self.layer.radius = value
self.emit(SIGNAL("changed()"))

This widget can be embedded into the symbol properties dialog. When the symbol layer type is selected in symbol
properties dialog, it creates an instance of the symbol layer and an instance of the symbol layer widget. Then it
calls setSymbolLayer() method to assign the symbol layer to the widget. In that method the widget should
update the UI to reflect the attributes of the symbol layer. symbolLayer() function is used to retrieve the
symbol layer again by the properties dialog to use it for the symbol.

On every change of attributes, the widget should emit changed() signal to let the properties dialog update the
symbol preview.

Now we are missing only the final glue: to make QGIS aware of these new classes. This is done by adding the
symbol layer to registry. It is possible to use the symbol layer also without adding it to the registry, but some
functionality will not work: e.g. loading of project files with the custom symbol layers or inability to edit the
layer’s attributes in GUI.

We will have to create metadata for the symbol layer

class FooSymbolLayerMetadata(QgsSymbolLayerV2AbstractMetadata):

def __init__(self):
QgsSymbolLayerV2AbstractMetadata.__init__(self, "FooMarker", QgsSymbolV2.Marker)

def createSymbolLayer(self, props):
radius = float(props[QString("radius")]) if QString("radius") in props else 4.0
return FooSymbolLayer(radius)

def createSymbolLayerWidget(self):
return FooSymbolLayerWidget()

QgsSymbolLayerV2Registry.instance().addSymbolLayerType(FooSymbolLayerMetadata())

You should pass layer type (the same as returned by the layer) and symbol type (marker/line/fill) to the con-
structor of parent class. createSymbolLayer() takes care of creating an instance of symbol layer with
attributes specified in the props dictionary. (Beware, the keys are QString instances, not “str” objects). And there
is createSymbolLayerWidget() method which returns settings widget for this symbol layer type.

The last step is to add this symbol layer to the registry — and we are done.

4.7.5 Creating Custom Renderers

It might be useful to create a new renderer implementation if you would like to customize the rules how to select
symbols for rendering of features. Some use cases where you would want to do it: symbol is determined from a
combination of fields, size of symbols changes depending on current scale etc.

The following code shows a simple custom renderer that creates two marker symbols and chooses randomly one
of them for every feature

4.7. Appearance (Symbology) of Vector Layers 23

PyQGIS developer cookbook, Release 2.6

import random

class RandomRenderer(QgsFeatureRendererV2):
def __init__(self, syms=None):
QgsFeatureRendererV2.__init__(self, "RandomRenderer")
self.syms = syms if syms else [QgsSymbolV2.defaultSymbol(QGis.Point), QgsSymbolV2.defaultSymbol(QGis.Point)]

def symbolForFeature(self, feature):
return random.choice(self.syms)

def startRender(self, context, vlayer):
for s in self.syms:

s.startRender(context)

def stopRender(self, context):
for s in self.syms:

s.stopRender(context)

def usedAttributes(self):
return []

def clone(self):
return RandomRenderer(self.syms)

The constructor of parent QgsFeatureRendererV2 class needs renderer name (has to be unique among ren-
derers). symbolForFeature() method is the one that decides what symbol will be used for a particular
feature. startRender() and stopRender() take care of initialization/finalization of symbol rendering.
usedAttributes() method can return a list of field names that renderer expects to be present. Finally
clone() function should return a copy of the renderer.

Like with symbol layers, it is possible to attach a GUI for configuration of the renderer. It has to be derived from
QgsRendererV2Widget. The following sample code creates a button that allows user to set symbol of the
first symbol

class RandomRendererWidget(QgsRendererV2Widget):
def __init__(self, layer, style, renderer):
QgsRendererV2Widget.__init__(self, layer, style)
if renderer is None or renderer.type() != "RandomRenderer":

self.r = RandomRenderer()
else:
self.r = renderer

setup UI
self.btn1 = QgsColorButtonV2("Color 1")
self.btn1.setColor(self.r.syms[0].color())
self.vbox = QVBoxLayout()
self.vbox.addWidget(self.btn1)
self.setLayout(self.vbox)
self.connect(self.btn1, SIGNAL("clicked()"), self.setColor1)

def setColor1(self):
color = QColorDialog.getColor(self.r.syms[0].color(), self)
if not color.isValid(): return
self.r.syms[0].setColor(color);
self.btn1.setColor(self.r.syms[0].color())

def renderer(self):
return self.r

The constructor receives instances of the active layer (QgsVectorLayer), the global style (QgsStyleV2) and
current renderer. If there is no renderer or the renderer has different type, it will be replaced with our new renderer,
otherwise we will use the current renderer (which has already the type we need). The widget contents should be
updated to show current state of the renderer. When the renderer dialog is accepted, widget’s renderer()
method is called to get the current renderer — it will be assigned to the layer.

24 Capitolo 4. Using Vector Layers

PyQGIS developer cookbook, Release 2.6

The last missing bit is the renderer metadata and registration in registry, otherwise loading of layers with the
renderer will not work and user will not be able to select it from the list of renderers. Let us finish our
RandomRenderer example

class RandomRendererMetadata(QgsRendererV2AbstractMetadata):
def __init__(self):
QgsRendererV2AbstractMetadata.__init__(self, "RandomRenderer", "Random renderer")

def createRenderer(self, element):
return RandomRenderer()

def createRendererWidget(self, layer, style, renderer):
return RandomRendererWidget(layer, style, renderer)

QgsRendererV2Registry.instance().addRenderer(RandomRendererMetadata())

Similarly as with symbol layers, abstract metadata constructor awaits renderer name, name visible for users and
optionally name of renderer’s icon. createRenderer() method passes QDomElement instance that can be
used to restore renderer’s state from DOM tree. createRendererWidget()method creates the configuration
widget. It does not have to be present or can return None if the renderer does not come with GUI.

To associate an icon with the renderer you can assign it in QgsRendererV2AbstractMetadata construc-
tor as a third (optional) argument — the base class constructor in the RandomRendererMetadata __init__()
function becomes

QgsRendererV2AbstractMetadata.__init__(self,
"RandomRenderer",
"Random renderer",
QIcon(QPixmap("RandomRendererIcon.png", "png")))

The icon can be associated also at any later time using setIcon() method of the metadata class. The icon can
be loaded from a file (as shown above) or can be loaded from a Qt resource (PyQt4 includes .qrc compiler for
Python).

4.8 Further Topics

TODO: creating/modifying symbols working with style (QgsStyleV2) working with color ramps
(QgsVectorColorRampV2) rule-based renderer (see this blogpost) exploring symbol layer and renderer
registries

4.8. Further Topics 25

http://qt.nokia.com/doc/4.5/resources.html
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins

PyQGIS developer cookbook, Release 2.6

26 Capitolo 4. Using Vector Layers

CAPITOLO 5

Geometry Handling

Points, linestrings and polygons that represent a spatial feature are commonly referred to as geometries. In
QGIS they are represented with the QgsGeometry class. All possible geometry types are nicely shown in
JTS discussion page.

Sometimes one geometry is actually a collection of simple (single-part) geometries. Such a geometry is called
a multi-part geometry. If it contains just one type of simple geometry, we call it multi-point, multi-linestring or
multi-polygon. For example, a country consisting of multiple islands can be represented as a multi-polygon.

The coordinates of geometries can be in any coordinate reference system (CRS). When fetching features from a
layer, associated geometries will have coordinates in CRS of the layer.

5.1 Geometry Construction

There are several options for creating a geometry:

• from coordinates

gPnt = QgsGeometry.fromPoint(QgsPoint(1,1))
gLine = QgsGeometry.fromPolyline([QgsPoint(1,1), QgsPoint(2,2)])
gPolygon = QgsGeometry.fromPolygon([[QgsPoint(1,1), QgsPoint(2,2), QgsPoint(2,1)]])

Coordinates are given using QgsPoint class.

Polyline (Linestring) is represented by a list of points. Polygon is represented by a list of linear rings (i.e.
closed linestrings). First ring is outer ring (boundary), optional subsequent rings are holes in the polygon.

Multi-part geometries go one level further: multi-point is a list of points, multi-linestring is a list of
linestrings and multi-polygon is a list of polygons.

• from well-known text (WKT)

gem = QgsGeometry.fromWkt("POINT (3 4)")

• from well-known binary (WKB)

g = QgsGeometry()
g.setWkbAndOwnership(wkb, len(wkb))

5.2 Access to Geometry

First, you should find out geometry type, wkbType() method is the one to use — it returns a value from
QGis.WkbType enumeration

27

http://www.vividsolutions.com/jts/discussion.htm#spatialDataModel

PyQGIS developer cookbook, Release 2.6

>>> gPnt.wkbType() == QGis.WKBPoint
True
>>> gLine.wkbType() == QGis.WKBLineString
True
>>> gPolygon.wkbType() == QGis.WKBPolygon
True
>>> gPolygon.wkbType() == QGis.WKBMultiPolygon
False

As an alternative, one can use type() method which returns a value from QGis.GeometryType enumeration.
There is also a helper function isMultipart() to find out whether a geometry is multipart or not.

To extract information from geometry there are accessor functions for every vector type. How to use accessors

>>> gPnt.asPoint()
(1,1)
>>> gLine.asPolyline()
[(1,1), (2,2)]
>>> gPolygon.asPolygon()
[[(1,1), (2,2), (2,1), (1,1)]]

Note: the tuples (x,y) are not real tuples, they are QgsPoint objects, the values are accessible with x() and y()
methods.

For multipart geometries there are similar accessor functions: asMultiPoint(), asMultiPolyline(),
asMultiPolygon().

5.3 Geometry Predicates and Operations

QGIS uses GEOS library for advanced geometry operations such as geometry predicates (contains(),
intersects(), ...) and set operations (union(), difference(), ...). It can also compute geometric
properties of geometries, such as area (in the case of polygons) or lengths (for polygons and lines)

Here you have a small example that combines iterating over the features in a given layer and performing some
geometric computations based on their geometries.

we assume that ’layer’ is a polygon layer
features = layer.getFeatures()
for f in features:
geom = f.geometry()
print "Area:", geom.area()
print "Perimeter:", geom.length()

Areas and perimeters don’t take CRS into account when computed using these methods from the QgsGeometry
class. For a more powerful area and distance calculation, the QgsDistanceArea class can be used. If projec-
tions are turned off, calculations will be planar, otherwise they’ll be done on the ellipsoid. When an ellipsoid is
not set explicitly, WGS84 parameters are used for calculations.

d = QgsDistanceArea()
d.setProjectionsEnabled(True)

print "distance in meters: ", d.measureLine(QgsPoint(10,10),QgsPoint(11,11))

You can find many example of algorithms that are included in QGIS and use these methods to analyze and
transform vector data. Here are some links to the code of a few of them.

Additional information can be found in followinf sources:

• Geometry transformation: Reproject algorithm

• Distance and area using the QgsDistanceArea class: Distance matrix algorithm

• Multi-part to single-part algorithm

28 Capitolo 5. Geometry Handling

https://raw.github.com/qgis/Quantum-GIS/release-2_0/python/plugins/processing/algs/ftools/ReprojectLayer.py
https://raw.github.com/qgis/Quantum-GIS/release-2_0/python/plugins/processing/algs/ftools/PointDistance.py
https://raw.github.com/qgis/Quantum-GIS/release-2_0/python/plugins/processing/algs/ftools/MultipartToSingleparts.py

CAPITOLO 6

Projections Support

6.1 Coordinate reference systems

Coordinate reference systems (CRS) are encapsulated by QgsCoordinateReferenceSystem class.
Instances of this class can be created by several different ways:

• specify CRS by its ID

PostGIS SRID 4326 is allocated for WGS84
crs = QgsCoordinateReferenceSystem(4326, QgsCoordinateReferenceSystem.PostgisCrsId)

QGIS uses three different IDs for every reference system:

– PostgisCrsId — IDs used within PostGIS databases.

– InternalCrsId — IDs internally used in QGIS database.

– EpsgCrsId — IDs assigned by the EPSG organization

If not specified otherwise in second parameter, PostGIS SRID is used by default.

• specify CRS by its well-known text (WKT)

wkt = ’GEOGCS["WGS84", DATUM["WGS84", SPHEROID["WGS84", 6378137.0, 298.257223563]],’
PRIMEM["Greenwich", 0.0], UNIT["degree",0.017453292519943295],’
AXIS["Longitude",EAST], AXIS["Latitude",NORTH]]’

crs = QgsCoordinateReferenceSystem(wkt)

• create invalid CRS and then use one of the create*() functions to initialize it. In following example we
use Proj4 string to initialize the projection

crs = QgsCoordinateReferenceSystem()
crs.createFromProj4("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")

It’s wise to check whether creation (i.e. lookup in the database) of the CRS has been successful: isValid()
must return True.

Note that for initialization of spatial reference systems QGIS needs to look up appropriate values in its internal
database srs.db. Thus in case you create an independent application you need to set paths correctly with
QgsApplication.setPrefixPath() otherwise it will fail to find the database. If you are running the
commands from QGIS python console or developing a plugin you do not care: everything is already set up for
you.

Accessing spatial reference system information

print "QGIS CRS ID:", crs.srsid()
print "PostGIS SRID:", crs.srid()
print "EPSG ID:", crs.epsg()
print "Description:", crs.description()
print "Projection Acronym:", crs.projectionAcronym()

29

PyQGIS developer cookbook, Release 2.6

print "Ellipsoid Acronym:", crs.ellipsoidAcronym()
print "Proj4 String:", crs.proj4String()
check whether it’s geographic or projected coordinate system
print "Is geographic:", crs.geographicFlag()
check type of map units in this CRS (values defined in QGis::units enum)
print "Map units:", crs.mapUnits()

6.2 Projections

You can do transformation between different spatial reference systems by using QgsCoordinateTransform
class. The easiest way to use it is to create source and destination CRS and construct
QgsCoordinateTransform instance with them. Then just repeatedly call transform() function
to do the transformation. By default it does forward transformation, but it is capable to do also inverse
transformation

crsSrc = QgsCoordinateReferenceSystem(4326) # WGS 84
crsDest = QgsCoordinateReferenceSystem(32633) # WGS 84 / UTM zone 33N
xform = QgsCoordinateTransform(crsSrc, crsDest)

forward transformation: src -> dest
pt1 = xform.transform(QgsPoint(18,5))
print "Transformed point:", pt1

inverse transformation: dest -> src
pt2 = xform.transform(pt1, QgsCoordinateTransform.ReverseTransform)
print "Transformed back:", pt2

30 Capitolo 6. Projections Support

CAPITOLO 7

Using Map Canvas

The Map canvas widget is probably the most important widget within QGIS because it shows the map composed
from overlaid map layers and allows interaction with the map and layers. The canvas shows always a part of the
map defined by the current canvas extent. The interaction is done through the use of map tools: there are tools for
panning, zooming, identifying layers, measuring, vector editing and others. Similar to other graphics programs,
there is always one tool active and the user can switch between the available tools.

Map canvas is implemented as QgsMapCanvas class in qgis.gui module. The implementation is based
on the Qt Graphics View framework. This framework generally provides a surface and a view where custom
graphics items are placed and user can interact with them. We will assume that you are familiar enough with Qt
to understand the concepts of the graphics scene, view and items. If not, please make sure to read the overview of
the framework.

Whenever the map has been panned, zoomed in/out (or some other action triggers a refresh), the map is rendered
again within the current extent. The layers are rendered to an image (using QgsMapRenderer class) and that
image is then displayed in the canvas. The graphics item (in terms of the Qt graphics view framework) responsible
for showing the map is QgsMapCanvasMap class. This class also controls refreshing of the rendered map.
Besides this item which acts as a background, there may be more map canvas items. Typical map canvas items
are rubber bands (used for measuring, vector editing etc.) or vertex markers. The canvas items are usually used
to give some visual feedback for map tools, for example, when creating a new polygon, the map tool creates a
rubber band canvas item that shows the current shape of the polygon. All map canvas items are subclasses of
QgsMapCanvasItem which adds some more functionality to the basic QGraphicsItem objects.

To summarize, the map canvas architecture consists of three concepts:

• map canvas — for viewing of the map

• map canvas items — additional items that can be displayed in map canvas

• map tools — for interaction with map canvas

7.1 Embedding Map Canvas

Map canvas is a widget like any other Qt widget, so using it is as simple as creating and showing it

canvas = QgsMapCanvas()
canvas.show()

This produces a standalone window with map canvas. It can be also embedded into an existing widget or win-
dow. When using .ui files and Qt Designer, place a QWidget on the form and promote it to a new class: set
QgsMapCanvas as class name and set qgis.gui as header file. The pyuic4 utility will take care of it. This
is a very convenient way of embedding the canvas. The other possibility is to manually write the code to construct
map canvas and other widgets (as children of a main window or dialog) and create a layout.

By default, map canvas has black background and does not use anti-aliasing. To set white background and enable
anti-aliasing for smooth rendering

31

http://qt-project.org/doc/qt-4.8/graphicsview.html
http://qt-project.org/doc/qt-4.8/graphicsview.html

PyQGIS developer cookbook, Release 2.6

canvas.setCanvasColor(Qt.white)
canvas.enableAntiAliasing(True)

(In case you are wondering, Qt comes from PyQt4.QtCore module and Qt.white is one of the predefined
QColor instances.)

Now it is time to add some map layers. We will first open a layer and add it to the map layer registry. Then we
will set the canvas extent and set the list of layers for canvas

layer = QgsVectorLayer(path, name, provider)
if not layer.isValid():
raise IOError, "Failed to open the layer"

add layer to the registry
QgsMapLayerRegistry.instance().addMapLayer(layer)

set extent to the extent of our layer
canvas.setExtent(layer.extent())

set the map canvas layer set
canvas.setLayerSet([QgsMapCanvasLayer(layer)])

After executing these commands, the canvas should show the layer you have loaded.

7.2 Using Map Tools with Canvas

The following example constructs a window that contains a map canvas and basic map tools for map panning
and zooming. Actions are created for activation of each tool: panning is done with QgsMapToolPan, zooming
in/out with a pair of QgsMapToolZoom instances. The actions are set as checkable and later assigned to the
tools to allow automatic handling of checked/unchecked state of the actions – when a map tool gets activated, its
action is marked as selected and the action of the previous map tool is deselected. The map tools are activated
using setMapTool() method.

from qgis.gui import *
from PyQt4.QtGui import QAction, QMainWindow
from PyQt4.QtCore import SIGNAL, Qt, QString

class MyWnd(QMainWindow):
def __init__(self, layer):
QMainWindow.__init__(self)

self.canvas = QgsMapCanvas()
self.canvas.setCanvasColor(Qt.white)

self.canvas.setExtent(layer.extent())
self.canvas.setLayerSet([QgsMapCanvasLayer(layer)])

self.setCentralWidget(self.canvas)

actionZoomIn = QAction(QString("Zoom in"), self)
actionZoomOut = QAction(QString("Zoom out"), self)
actionPan = QAction(QString("Pan"), self)

actionZoomIn.setCheckable(True)
actionZoomOut.setCheckable(True)
actionPan.setCheckable(True)

self.connect(actionZoomIn, SIGNAL("triggered()"), self.zoomIn)
self.connect(actionZoomOut, SIGNAL("triggered()"), self.zoomOut)
self.connect(actionPan, SIGNAL("triggered()"), self.pan)

32 Capitolo 7. Using Map Canvas

PyQGIS developer cookbook, Release 2.6

self.toolbar = self.addToolBar("Canvas actions")
self.toolbar.addAction(actionZoomIn)
self.toolbar.addAction(actionZoomOut)
self.toolbar.addAction(actionPan)

create the map tools
self.toolPan = QgsMapToolPan(self.canvas)
self.toolPan.setAction(actionPan)
self.toolZoomIn = QgsMapToolZoom(self.canvas, False) # false = in
self.toolZoomIn.setAction(actionZoomIn)
self.toolZoomOut = QgsMapToolZoom(self.canvas, True) # true = out
self.toolZoomOut.setAction(actionZoomOut)

self.pan()

def zoomIn(self):
self.canvas.setMapTool(self.toolZoomIn)

def zoomOut(self):
self.canvas.setMapTool(self.toolZoomOut)

def pan(self):
self.canvas.setMapTool(self.toolPan)

You can put the above code to a file, e.g. mywnd.py and try it out in Python console within QGIS. This code will
put the currently selected layer into newly created canvas

import mywnd
w = mywnd.MyWnd(qgis.utils.iface.activeLayer())
w.show()

Just make sure that the mywnd.py file is located within Python search path (sys.path). If it isn’t, you can
simply add it: sys.path.insert(0, ’/my/path’)— otherwise the import statement will fail, not finding
the module.

7.3 Rubber Bands and Vertex Markers

To show some additional data on top of the map in canvas, use map canvas items. It is possible to create cus-
tom canvas item classes (covered below), however there are two useful canvas item classes for convenience:
QgsRubberBand for drawing polylines or polygons, and QgsVertexMarker for drawing points. They both
work with map coordinates, so the shape is moved/scaled automatically when the canvas is being panned or
zoomed.

To show a polyline

r = QgsRubberBand(canvas, False) # False = not a polygon
points = [QgsPoint(-1,-1), QgsPoint(0,1), QgsPoint(1,-1)]
r.setToGeometry(QgsGeometry.fromPolyline(points), None)

To show a polygon

r = QgsRubberBand(canvas, True) # True = a polygon
points = [[QgsPoint(-1,-1), QgsPoint(0,1), QgsPoint(1,-1)]]
r.setToGeometry(QgsGeometry.fromPolygon(points), None)

Note that points for polygon is not a plain list: in fact, it is a list of rings containing linear rings of the polygon:
first ring is the outer border, further (optional) rings correspond to holes in the polygon.

Rubber bands allow some customization, namely to change their color and line width

r.setColor(QColor(0,0,255))
r.setWidth(3)

7.3. Rubber Bands and Vertex Markers 33

PyQGIS developer cookbook, Release 2.6

The canvas items are bound to the canvas scene. To temporarily hide them (and show again, use the hide() and
show() combo. To completely remove the item, you have to remove it from the scene of the canvas

canvas.scene().removeItem(r)

(in C++ it’s possible to just delete the item, however in Python del r would just delete the reference and the
object will still exist as it is owned by the canvas)

Rubber band can be also used for drawing points, however QgsVertexMarker class is better suited for this
(QgsRubberBand would only draw a rectangle around the desired point). How to use the vertex marker

m = QgsVertexMarker(canvas)
m.setCenter(QgsPoint(0,0))

This will draw a red cross on position [0,0]. It is possible to customize the icon type, size, color and pen width

m.setColor(QColor(0,255,0))
m.setIconSize(5)
m.setIconType(QgsVertexMarker.ICON_BOX) # or ICON_CROSS, ICON_X
m.setPenWidth(3)

For temporary hiding of vertex markers and removing them from canvas, the same applies as for the rubber bands.

7.4 Writing Custom Map Tools

You can write your custom tools, to implement a custom behaviour to actions performed by users on the canvas.

Map tools should inherit from the QgsMapTool class or any derived class, and selected as active tools in the
canvas using the setMapTool() method as we have already seen.

Here is an example of a map tool that allows to define a rectangular extent by clicking and dragging on the canvas.
When the rectangle is defined, it prints its boundary coordinates in the console. It uses the rubber band elements
described before to show the selected rectangle as it is being defined.

class RectangleMapTool(QgsMapToolEmitPoint):
def __init__(self, canvas):

self.canvas = canvas
QgsMapToolEmitPoint.__init__(self, self.canvas)
self.rubberBand = QgsRubberBand(self.canvas, QGis.Polygon)
self.rubberBand.setColor(Qt.red)
self.rubberBand.setWidth(1)
self.reset()

def reset(self):
self.startPoint = self.endPoint = None
self.isEmittingPoint = False
self.rubberBand.reset(QGis.Polygon)

def canvasPressEvent(self, e):
self.startPoint = self.toMapCoordinates(e.pos())
self.endPoint = self.startPoint
self.isEmittingPoint = True
self.showRect(self.startPoint, self.endPoint)

def canvasReleaseEvent(self, e):
self.isEmittingPoint = False
r = self.rectangle()
if r is not None:
print "Rectangle:", r.xMin(), r.yMin(), r.xMax(), r.yMax()

def canvasMoveEvent(self, e):
if not self.isEmittingPoint:
return

34 Capitolo 7. Using Map Canvas

PyQGIS developer cookbook, Release 2.6

self.endPoint = self.toMapCoordinates(e.pos())
self.showRect(self.startPoint, self.endPoint)

def showRect(self, startPoint, endPoint):
self.rubberBand.reset(QGis.Polygon)
if startPoint.x() == endPoint.x() or startPoint.y() == endPoint.y():

return

point1 = QgsPoint(startPoint.x(), startPoint.y())
point2 = QgsPoint(startPoint.x(), endPoint.y())
point3 = QgsPoint(endPoint.x(), endPoint.y())
point4 = QgsPoint(endPoint.x(), startPoint.y())

self.rubberBand.addPoint(point1, False)
self.rubberBand.addPoint(point2, False)
self.rubberBand.addPoint(point3, False)
self.rubberBand.addPoint(point4, True) # true to update canvas
self.rubberBand.show()

def rectangle(self):
if self.startPoint is None or self.endPoint is None:

return None
elif self.startPoint.x() == self.endPoint.x() or self.startPoint.y() == self.endPoint.y():

return None

return QgsRectangle(self.startPoint, self.endPoint)

def deactivate(self):
QgsMapTool.deactivate(self)
self.emit(SIGNAL("deactivated()"))

7.5 Writing Custom Map Canvas Items

TODO: how to create a map canvas item

7.5. Writing Custom Map Canvas Items 35

PyQGIS developer cookbook, Release 2.6

36 Capitolo 7. Using Map Canvas

CAPITOLO 8

Map Rendering and Printing

There are generally two approaches when input data should be rendered as a map: either do it quick way using
QgsMapRenderer or produce more fine-tuned output by composing the map with QgsComposition class
and friends.

8.1 Simple Rendering

Render some layers using QgsMapRenderer — create destination paint device (QImage, QPainter etc.), set
up layer set, extent, output size and do the rendering

create image
img = QImage(QSize(800,600), QImage.Format_ARGB32_Premultiplied)

set image’s background color
color = QColor(255,255,255)
img.fill(color.rgb())

create painter
p = QPainter()
p.begin(img)
p.setRenderHint(QPainter.Antialiasing)

render = QgsMapRenderer()

set layer set
lst = [layer.getLayerID()] # add ID of every layer
render.setLayerSet(lst)

set extent
rect = QgsRect(render.fullExtent())
rect.scale(1.1)
render.setExtent(rect)

set output size
render.setOutputSize(img.size(), img.logicalDpiX())

do the rendering
render.render(p)

p.end()

save image
img.save("render.png","png")

37

PyQGIS developer cookbook, Release 2.6

8.2 Output using Map Composer

Map composer is a very handy tool if you would like to do a more sophisticated output than the simple rendering
shown above. Using the composer it is possible to create complex map layouts consisting of map views, labels,
legend, tables and other elements that are usually present on paper maps. The layouts can be then exported to
PDF, raster images or directly printed on a printer.

The composer consists of a bunch of classes. They all belong to the core library. QGIS application has a convenient
GUI for placement of the elements, though it is not available in the GUI library. If you are not familiar with Qt
Graphics View framework, then you are encouraged to check the documentation now, because the composer is
based on it.

The central class of the composer is QgsComposition which is derived from QGraphicsScene. Let us
create one

mapRenderer = iface.mapCanvas().mapRenderer()
c = QgsComposition(mapRenderer)
c.setPlotStyle(QgsComposition.Print)

Note that the composition takes an instance of QgsMapRenderer. In the code we expect we are running within
QGIS application and thus use the map renderer from map canvas. The composition uses various parameters from
the map renderer, most importantly the default set of map layers and the current extent. When using composer in
a standalone application, you can create your own map renderer instance the same way as shown in the section
above and pass it to the composition.

It is possible to add various elements (map, label, ...) to the composition — these elements have to be descendants
of QgsComposerItem class. Currently supported items are:

• map — this item tells the libraries where to put the map itself. Here we create a map and stretch it over the
whole paper size

x, y = 0, 0
w, h = c.paperWidth(), c.paperHeight()
composerMap = QgsComposerMap(c, x,y,w,h)
c.addItem(composerMap)

• label — allows displaying labels. It is possible to modify its font, color, alignment and margin

composerLabel = QgsComposerLabel(c)
composerLabel.setText("Hello world")
composerLabel.adjustSizeToText()
c.addItem(composerLabel)

• legend

legend = QgsComposerLegend(c)
legend.model().setLayerSet(mapRenderer.layerSet())
c.addItem(legend)

• scale bar

item = QgsComposerScaleBar(c)
item.setStyle(’Numeric’) # optionally modify the style
item.setComposerMap(composerMap)
item.applyDefaultSize()
c.addItem(item)

• arrow

• picture

• shape

• table

38 Capitolo 8. Map Rendering and Printing

http://doc.qt.nokia.com/stable/graphicsview.html
http://doc.qt.nokia.com/stable/graphicsview.html

PyQGIS developer cookbook, Release 2.6

By default the newly created composer items have zero position (top left corner of the page) and zero size. The
position and size are always measured in millimeters

set label 1cm from the top and 2cm from the left of the page
composerLabel.setItemPosition(20,10)
set both label’s position and size (width 10cm, height 3cm)
composerLabel.setItemPosition(20,10, 100, 30)

A frame is drawn around each item by default. How to remove the frame

composerLabel.setFrame(False)

Besides creating the composer items by hand, QGIS has support for composer templates which are essentially
compositions with all their items saved to a .qpt file (with XML syntax). Unfortunately this functionality is not
yet available in the API.

Once the composition is ready (the composer items have been created and added to the composition), we can
proceed to produce a raster and/or vector output.

The default output settings for composition are page size A4 and resolution 300 DPI. You can change them if
necessary. The paper size is specified in millimeters

c.setPaperSize(width, height)
c.setPrintResolution(dpi)

8.2.1 Output to a raster image

The following code fragment shows how to render a composition to a raster image

dpi = c.printResolution()
dpmm = dpi / 25.4
width = int(dpmm * c.paperWidth())
height = int(dpmm * c.paperHeight())

create output image and initialize it
image = QImage(QSize(width, height), QImage.Format_ARGB32)
image.setDotsPerMeterX(dpmm * 1000)
image.setDotsPerMeterY(dpmm * 1000)
image.fill(0)

render the composition
imagePainter = QPainter(image)
sourceArea = QRectF(0, 0, c.paperWidth(), c.paperHeight())
targetArea = QRectF(0, 0, width, height)
c.render(imagePainter, targetArea, sourceArea)
imagePainter.end()

image.save("out.png", "png")

8.2.2 Output to PDF

The following code fragment renders a composition to a PDF file

printer = QPrinter()
printer.setOutputFormat(QPrinter.PdfFormat)
printer.setOutputFileName("out.pdf")
printer.setPaperSize(QSizeF(c.paperWidth(), c.paperHeight()), QPrinter.Millimeter)
printer.setFullPage(True)
printer.setColorMode(QPrinter.Color)
printer.setResolution(c.printResolution())

pdfPainter = QPainter(printer)

8.2. Output using Map Composer 39

PyQGIS developer cookbook, Release 2.6

paperRectMM = printer.pageRect(QPrinter.Millimeter)
paperRectPixel = printer.pageRect(QPrinter.DevicePixel)
c.render(pdfPainter, paperRectPixel, paperRectMM)
pdfPainter.end()

40 Capitolo 8. Map Rendering and Printing

CAPITOLO 9

Expressions, Filtering and Calculating Values

QGIS has some support for parsing of SQL-like expressions. Only a small subset of SQL syntax is supported.
The expressions can be evaluated either as boolean predicates (returning True or False) or as functions (returning
a scalar value).

Three basic types are supported:

• number — both whole numbers and decimal numbers, e.g. 123, 3.14

• string — they have to be enclosed in single quotes: ’hello world’

• column reference — when evaluating, the reference is substituted with the actual value of the field. The
names are not escaped.

The following operations are available:

• arithmetic operators: +, -, *, /, ^

• parentheses: for enforcing the operator precedence: (1 + 1) * 3

• unary plus and minus: -12, +5

• mathematical functions: sqrt, sin, cos, tan, asin, acos, atan

• geometry functions: $area, $length

• conversion functions: to int, to real, to string

And the following predicates are supported:

• comparison: =, !=, >, >=, <, <=

• pattern matching: LIKE (using % and _), ~ (regular expressions)

• logical predicates: AND, OR, NOT

• NULL value checking: IS NULL, IS NOT NULL

Examples of predicates:

• 1 + 2 = 3

• sin(angle) > 0

• ’Hello’ LIKE ’He%’

• (x > 10 AND y > 10) OR z = 0

Examples of scalar expressions:

• 2 ^ 10

• sqrt(val)

• $length + 1

41

PyQGIS developer cookbook, Release 2.6

9.1 Parsing Expressions

>>> exp = QgsExpression(’1 + 1 = 2’)
>>> exp.hasParserError()
False
>>> exp = QgsExpression(’1 + 1 = ’)
>>> exp.hasParserError()
True
>>> exp.parserErrorString()
PyQt4.QtCore.QString(u’syntax error, unexpected $end’)

9.2 Evaluating Expressions

9.2.1 Basic Expressions

>>> exp = QgsExpression(’1 + 1 = 2’)
>>> value = exp.evaluate()
>>> value
1

9.2.2 Expressions with features

The following example will evaluate the given expression against a feature. “Column” is the name of the field in
the layer.

>>> exp = QgsExpression(’Column = 99’)
>>> value = exp.evaluate(feature, layer.pendingFields())
>>> bool(value)
True

You can also use QgsExpression.prepare() if you need check more than one feature. Using
QgsExpression.prepare() will increase the speed that evaluate takes to run.

>>> exp = QgsExpression(’Column = 99’)
>>> exp.prepare(layer.pendingFields())
>>> value = exp.evaluate(feature)
>>> bool(value)
True

9.2.3 Handling errors

exp = QgsExpression("1 + 1 = 2 ")
if exp.hasParserError():

raise Expection(exp.parserErrorString())

value = exp.evaluate()
if exp.hasEvalError():

raise ValueError(exp.evalErrorString())

print value

9.3 Examples

The following example can be used to filter a layer and return any feature that matches a predicate.

42 Capitolo 9. Expressions, Filtering and Calculating Values

PyQGIS developer cookbook, Release 2.6

def where(layer, exp):
print "Where"
exp = QgsExpression(exp)
if exp.hasParserError():
raise Expection(exp.parserErrorString())

exp.prepare(layer.pendingFields())
for feature in layer.getFeatures():
value = exp.evaluate(feature)
if exp.hasEvalError():

raise ValueError(exp.evalErrorString())
if bool(value):

yield feature

layer = qgis.utils.iface.activeLayer()
for f in where(layer, ’Test > 1.0’):
print f + " Matches expression"

9.3. Examples 43

PyQGIS developer cookbook, Release 2.6

44 Capitolo 9. Expressions, Filtering and Calculating Values

CAPITOLO 10

Reading And Storing Settings

Many times it is useful for a plugin to save some variables so that the user does not have to enter or select them
again next time the plugin is run.

These variables can be saved a retrieved with help of Qt and QGIS API. For each variable, you should pick a key
that will be used to access the variable — for user’s favourite color you could use key “favourite_color” or any
other meaningful string. It is recommended to give some structure to naming of keys.

We can make difference between several types of settings:

• global settings — they are bound to the user at particular machine. QGIS itself stores a lot of global settings,
for example, main window size or default snapping tolerance. This functionality is provided directly by Qt
framework by the means of QSettings class. By default, this class stores settings in system’s “native” way
of storing settings, that is — registry (on Windows), .plist file (on Mac OS X) or .ini file (on Unix). The
QSettings documentation is comprehensive, so we will provide just a simple example

def store():
s = QSettings()
s.setValue("myplugin/mytext", "hello world")
s.setValue("myplugin/myint", 10)
s.setValue("myplugin/myreal", 3.14)

def read():
s = QSettings()
mytext = s.value("myplugin/mytext", "default text")
myint = s.value("myplugin/myint", 123)
myreal = s.value("myplugin/myreal", 2.71)

The second parameter of the value() method is optional and specifies the default value if there is no
previous value set for the passed setting name.

• project settings — vary between different projects and therefore they are connected with a project file.
Map canvas background color or destination coordinate reference system (CRS) are examples — white
background and WGS84 might be suitable for one project, while yellow background and UTM projection
are better for another one. An example of usage follows

proj = QgsProject.instance()

store values
proj.writeEntry("myplugin", "mytext", "hello world")
proj.writeEntry("myplugin", "myint", 10)
proj.writeEntry("myplugin", "mydouble", 0.01)
proj.writeEntry("myplugin", "mybool", True)

read values
mytext = proj.readEntry("myplugin", "mytext", "default text")[0]
myint = proj.readNumEntry("myplugin", "myint", 123)[0]

45

http://doc.qt.nokia.com/stable/qsettings.html

PyQGIS developer cookbook, Release 2.6

As you can see, the writeEntry()method is used for all data types, but several methods exist for reading
the setting value back, and the corresponding one has to be selected for each data type.

• map layer settings — these settings are related to a particular instance of a map layer with a project. They
are not connected with underlying data source of a layer, so if you create two map layer instances of one
shapefile, they will not share the settings. The settings are stored in project file, so if the user opens the
project again, the layer-related settings will be there again. This functionality has been added in QGIS v1.4.
The API is similar to QSettings — it takes and returns QVariant instances

save a value
layer.setCustomProperty("mytext", "hello world")

read the value again
mytext = layer.customProperty("mytext", "default text")

46 Capitolo 10. Reading And Storing Settings

CAPITOLO 11

Communicating with the user

This section shows some methods and elements that should be used to communicate with the user, in order to keep
consistency in the User Interface.

11.1 Showing messages. The QgsMessageBar class

Using message boxes can be a bad idea from a user experience point of view. For showing a small info line or a
warning/error messages, the QGIS message bar is usually a better option.

Using the reference to the QGIS interface object, you can show a message in the message bar with the following
code

iface.messageBar().pushMessage("Error", "I’m sorry Dave, I’m afraid I can’t do that", level=QgsMessageBar.CRITICAL)

Figura 11.1: QGIS Message bar

You can set a duration to show it for a limited time

iface.messageBar().pushMessage("Error", ""Ooops, the plugin is not working as it should", level=QgsMessageBar.CRITICAL, duration=3)

Figura 11.2: QGIS Message bar with timer

The examples above show an error bar, but the level parameter can be used to creating warning messages or
info messages, using the QgsMessageBar.WARNING and QgsMessageBar.INFO constants respectively.

Widgets can be added to the message bar, like for instance a button to show more info

def showError():
pass

widget = iface.messageBar().createMessage("Missing Layers", "Show Me")
button = QPushButton(widget)

47

PyQGIS developer cookbook, Release 2.6

Figura 11.3: QGIS Message bar (info)

button.setText("Show Me")
button.pressed.connect(showError)
widget.layout().addWidget(button)
iface.messageBar().pushWidget(widget, QgsMessageBar.WARNING)

Figura 11.4: QGIS Message bar with a button

You can even use a message bar in your own dialog so you don’t have to show a message box, or if it doesn’t make
sense to show it in the main QGIS window

class MyDialog(QDialog):
def __init__(self):

QDialog.__init__(self)
self.bar = QgsMessageBar()
self.bar.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed)
self.setLayout(QGridLayout())
self.layout().setContentsMargins(0,0,0,0)
self.buttonbox = QDialogButtonBox(QDialogButtonBox.Ok)
self.buttonbox.accepted.connect(self.run)
self.layout().addWidget(self.buttonbox , 0,0,2,1)
self.layout().addWidget(self.bar, 0,0,1,1)

def run(self):
self.bar.pushMessage("Hello", "World", level=QgsMessageBar.INFO)

11.2 Showing progress

Progress bars can also be put in the QGIS message bar, since, as we have seen, it accepts widgets. Here is an
example that you can try in the console.

import time
from PyQt4.QtGui import QProgressBar
from PyQt4.QtCore import *
progressMessageBar = iface.messageBar().createMessage("Doing something boring...")
progress = QProgressBar()
progress.setMaximum(10)
progress.setAlignment(Qt.AlignLeft|Qt.AlignVCenter)
progressMessageBar.layout().addWidget(progress)
iface.messageBar().pushWidget(progressMessageBar, iface.messageBar().INFO)
for i in range(10):

time.sleep(1)

48 Capitolo 11. Communicating with the user

PyQGIS developer cookbook, Release 2.6

Figura 11.5: QGIS Message bar in custom dialog

progress.setValue(i + 1)
iface.messageBar().clearWidgets()

Also, you can use the built-in status bar to report progress, as in the next example

count = layers.featureCount()
for i, feature in enumerate(features):

#do something time-consuming here
...
percent = i / float(count) * 100
iface.mainWindow().statusBar().showMessage("Processed {} %".format(int(percent)))

iface.mainWindow().statusBar().clearMessage()

11.3 Logging

You can use the QGIS logging system to log all the information that you want to save about the execution of your
code.

QgsMessageLog.logMessage("Your plugin code has been executed correctly", QgsMessageLog.INFO)
QgsMessageLog.logMessage("Your plugin code might have some problems", QgsMessageLog.WARNING)
QgsMessageLog.logMessage("Your plugin code has crashed!", QgsMessageLog.CRITICAL)

11.3. Logging 49

PyQGIS developer cookbook, Release 2.6

50 Capitolo 11. Communicating with the user

CAPITOLO 12

Developing Python Plugins

It is possible to create plugins in Python programming language. In comparison with classical plugins written in
C++ these should be easier to write, understand, maintain and distribute due the dynamic nature of the Python
language.

Python plugins are listed together with C++ plugins in QGIS plugin manager. They are searched for in these paths:

• UNIX/Mac: ~/.qgis/python/plugins and (qgis_prefix)/share/qgis/python/plugins

• Windows: ~/.qgis/python/plugins and (qgis_prefix)/python/plugins

Home directory (denoted by above ~) on Windows is usually something like C:\Documents and
Settings\(user) (on Windows XP or earlier) or C:\Users\(user). Since Quantum GIS is using Python
2.7, subdirectories of these paths have to contain an __init__.py file to be considered Python packages that can be
imported as plugins.

Steps:

1. Idea: Have an idea about what you want to do with your new QGIS plugin. Why do you do it? What
problem do you want to solve? Is there already another plugin for that problem?

2. Create files: Create the files described next. A starting point (__init__.py). Fill in the Plugin metadata
(metadata.txt) A main python plugin body (mainplugin.py). A form in QT-Designer (form.ui),
with its resources.qrc.

3. Write code: Write the code inside the mainplugin.py

4. Test: Close and re-open QGIS and import your plugin again. Check if everything is OK.

5. Publish: Publish your plugin in QGIS repository or make your own repository as an “arsenal” of personal
“GIS weapons”.

12.1 Writing a plugin

Since the introduction of Python plugins in QGIS, a number of plugins have appeared - on Plugin Repositories
wiki page you can find some of them, you can use their source to learn more about programming with PyQGIS
or find out whether you are not duplicating development effort. The QGIS team also maintains an Official python
plugin repository. Ready to create a plugin but no idea what to do? Python Plugin Ideas wiki page lists wishes
from the community!

12.1.1 Plugin files

Here’s the directory structure of our example plugin

PYTHON_PLUGINS_PATH/
MyPlugin/
__init__.py --> *required*

51

http://www.qgis.org/wiki/Python_Plugin_Repositories
http://www.qgis.org/wiki/Python_Plugin_Repositories
http://www.qgis.org/wiki/Python_Plugin_Ideas

PyQGIS developer cookbook, Release 2.6

mainPlugin.py --> *required*
metadata.txt --> *required*
resources.qrc --> *likely useful*
resources.py --> *compiled version, likely useful*
form.ui --> *likely useful*
form.py --> *compiled version, likely useful*

What is the meaning of the files:

• __init__.py = The starting point of the plugin. It has to have the classFactory() method and may
have any other initialisation code.

• mainPlugin.py = The main working code of the plugin. Contains all the information about the actions
of the plugin and the main code.

• resources.qrc = The .xml document created by Qt Designer. Contains relative paths to resources of
the forms.

• resources.py = The translation of the .qrc file described above to Python.

• form.ui = The GUI created by Qt Designer.

• form.py = The translation of the form.ui described above to Python.

• metadata.txt = Required for QGIS >= 1.8.0. Containts general info, version, name and some oth-
er metadata used by plugins website and plugin infrastructure. Since QGIS 2.0 the metadata from
__init__.py are not accepted anymore and the metadata.txt is required.

Here is an online automated way of creating the basic files (skeleton) of a typical QGIS Python plugin.

Also there is a QGIS plugin called Plugin Builder that creates plugin template from QGIS and doesn’t require
internet connection. This is the recommended option, as it produces 2.0 compatible sources.

Avvertimento: If you plan to upload the plugin to the Official python plugin repository you must check that
your plugin follows some additional rules, required for plugin Validation

12.2 Plugin content

Here you can find information and examples about what to add in each of the files in the file structure described
above.

12.2.1 Plugin metadata

First, plugin manager needs to retrieve some basic information about the plugin such as its name, description etc.
File metadata.txt is the right place to put this information.

Importante: All metadata must be in UTF-8 encoding.

52 Capitolo 12. Developing Python Plugins

http://www.dimitrisk.gr/qgis/creator/
http://geoapt.net/pluginbuilder/

PyQGIS developer cookbook, Release 2.6

Metadata name Re-
quired

Notes

name True a short string containing the name of the plugin
qgisMinimumVer-
sion

True dotted notation of minimum QGIS version

qgisMaxi-
mumVersion

False dotted notation of maximum QGIS version

description True short text which describes the plugin, no HTML allowed
about False longer text which describes the plugin in details, no HTML allowed
version True short string with the version dotted notation
author True author name
email True email of the author, will not be shown on the web site
changelog False string, can be multiline, no HTML allowed
experimental False boolean flag, True or False
deprecated False boolean flag, True or False, applies to the whole plugin and not just to the

uploaded version
tags False comma separated list, spaces are allowed inside individual tags
homepage False a valid URL pointing to the homepage of your plugin
repository False a valid URL for the source code repository
tracker False a valid URL for tickets and bug reports
icon False a file name or a relative path (relative to the base folder of the plugin’s

compressed package)
category False one of Raster, Vector, Database and Web

By default, plugins are placed in the Plugins menu (we will see in the next section how to add a menu entry for
your plugin) but they can also be placed the into Raster, Vector, Database and Web menus.

A corresponding “category” metadata entry exists to specify that, so the plugin can be classified accordingly. This
metadata entry is used as tip for users and tells them where (in which menu) the plugin can be found. Allowed
values for “category” are: Vector, Raster, Database or Web. For example, if your plugin will be available from
Raster menu, add this to metadata.txt

category=Raster

Nota: If qgisMaximumVersion is empty, it will be automatically set to the major version plus .99 when uploaded
to the Official python plugin repository.

An example for this metadata.txt

; the next section is mandatory

[general]
name=HelloWorld
email=me@example.com
author=Just Me
qgisMinimumVersion=2.0
description=This is an example plugin for greeting the world.

Multiline is allowed:
lines starting with spaces belong to the same
field, in this case to the "description" field.
HTML formatting is not allowed.

about=This paragraph can contain a detailed description
of the plugin. Multiline is allowed, HTML is not.

version=version 1.2
; end of mandatory metadata

; start of optional metadata
category=Raster
changelog=The changelog lists the plugin versions

and their changes as in the example below:
1.0 - First stable release

12.2. Plugin content 53

PyQGIS developer cookbook, Release 2.6

0.9 - All features implemented
0.8 - First testing release

; Tags are in comma separated value format, spaces are allowed within the
; tag name.
; Tags should be in English language. Please also check for existing tags and
; synonyms before creating a new one.
tags=wkt,raster,hello world

; these metadata can be empty, they will eventually become mandatory.
homepage=http://www.itopen.it
tracker=http://bugs.itopen.it
repository=http://www.itopen.it/repo
icon=icon.png

; experimental flag (applies to the single version)
experimental=True

; deprecated flag (applies to the whole plugin and not only to the uploaded version)
deprecated=False

; if empty, it will be automatically set to major version + .99
qgisMaximumVersion=2.0

12.2.2 __init__.py

This file is required by Python’s import system. Also, Quantum GIS requires that this file contains a
classFactory() function, which is called when the plugin gets loaded to QGIS. It receives reference to
instance of QgisInterface and must return instance of your plugin’s class from the mainplugin.py — in
our case it’s called TestPlugin (see below). This is how __init__.py should look like

def classFactory(iface):
from mainPlugin import TestPlugin
return TestPlugin(iface)

any other initialisation needed

12.2.3 mainPlugin.py

This is where the magic happens and this is how magic looks like: (e.g. mainPlugin.py)

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *

initialize Qt resources from file resources.py
import resources

class TestPlugin:

def __init__(self, iface):
save reference to the QGIS interface
self.iface = iface

def initGui(self):
create action that will start plugin configuration
self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setObjectName("testAction")
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")

54 Capitolo 12. Developing Python Plugins

PyQGIS developer cookbook, Release 2.6

QObject.connect(self.action, SIGNAL("triggered()"), self.run)

add toolbar button and menu item
self.iface.addToolBarIcon(self.action)
self.iface.addPluginToMenu("&Test plugins", self.action)

connect to signal renderComplete which is emitted when canvas
rendering is done
QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def unload(self):
remove the plugin menu item and icon
self.iface.removePluginMenu("&Test plugins",self.action)
self.iface.removeToolBarIcon(self.action)

disconnect form signal of the canvas
QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def run(self):
create and show a configuration dialog or something similar
print "TestPlugin: run called!"

def renderTest(self, painter):
use painter for drawing to map canvas
print "TestPlugin: renderTest called!"

The only plugin functions that must exist in the main plugin source file (e.g. mainPlugin.py) are:

• __init__ –> which gives access to Quantum GIS’ interface

• initGui() –> called when the plugin is loaded

• unload() –> called when the plugin is unloaded

You can see that in the above example, the addPluginToMenu() is used. This will add the corresponding
menu action to the Plugins menu. Alternative methods exist to add the action to a different menu. Here is a list of
those methods:

• addPluginToRasterMenu()

• addPluginToVectorMenu()

• addPluginToDatabaseMenu()

• addPluginToWebMenu()

All of them have the same syntax as the addPluginToMenu() method.

Adding your plugin menu to one of those predefined method is recommended to keep consistency in how plugin
entries are organized. However, you can add your custom menu group directly to the menu bar, as the next example
demonstrates:

def initGui(self):
self.menu = QMenu(self.iface.mainWindow())
self.menu.setObjectName("testMenu")
self.menu.setTitle("MyMenu")

self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setObjectName("testAction")
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")
QObject.connect(self.action, SIGNAL("triggered()"), self.run)
self.menu.addAction(self.action)

menuBar = self.iface.mainWindow().menuBar()
menuBar.insertMenu(self.iface.firstRightStandardMenu().menuAction(), self.menu)

12.2. Plugin content 55

PyQGIS developer cookbook, Release 2.6

def unload(self):
self.menu.deleteLater()

Don’t forget to set QAction and QMenu objectName to a name specific to your plugin so that it can be customized.

12.2.4 Resource File

You can see that in initGui() we’ve used an icon from the resource file (called resources.qrc in our case)

<RCC>
<qresource prefix="/plugins/testplug" >

<file>icon.png</file>
</qresource>

</RCC>

It is good to use a prefix that will not collide with other plugins or any parts of QGIS, otherwise you might get
resources you did not want. Now you just need to generate a Python file that will contain the resources. It’s done
with pyrcc4 command

pyrcc4 -o resources.py resources.qrc

And that’s all... nothing complicated :)

If you’ve done everything correctly you should be able to find and load your plugin in the plugin manager and see
a message in console when toolbar icon or appropriate menu item is selected.

When working on a real plugin it’s wise to write the plugin in another (working) directory and create a makefile
which will generate UI + resource files and install the plugin to your QGIS installation.

12.3 Documentation

The documentation for the plugin can be written as HTML help files. The qgis.utils module provides a
function, showPluginHelp() which will open the help file browser, in the same way as other QGIS help.

The showPluginHelp‘() function looks for help files in the same directory as the calling module. It will
look for, in turn, index-ll_cc.html, index-ll.html, index-en.html, index-en_us.html and
index.html, displaying whichever it finds first. Here ll_cc is the QGIS locale. This allows multiple
translations of the documentation to be included with the plugin.

The showPluginHelp() function can also take parameters packageName, which identifies a specific plugin
for which the help will be displayed, filename, which can replace “index” in the names of files being searched,
and section, which is the name of an html anchor tag in the document on which the browser will be positioned.

56 Capitolo 12. Developing Python Plugins

CAPITOLO 13

IDE settings for writing and debugging plugins

Although each programmer has his preferred IDE/Text editor, here are some recommendations for setting up
popular IDE’s for writing and debugging QGIS Python plugins.

13.1 A note on configuring your IDE on Windows

On Linux there is no additional configuration needed to develop plug-ins. But on Windows you need to make sure
you that you have the same environment settings and use the same libraries and interpreter as QGIS. The fastest
way to do this, is to modify the startup batch file of QGIS.

If you used the OSGeo4W Installer, you can find this under the bin folder of your OSGoeW install. Look for
something like C:\OSGeo4W\bin\qgis-unstable.bat.

For using Pyscripter IDE, here’s what you have to do:

• Make a copy of qgis-unstable.bat and rename it pyscripter.bat.

• Open it in an editor. And remove the last line, the one that starts QGIS.

• Add a line that points to the your Pyscripter executable and add the commandline argument that sets the
version of Python to be used (2.7 in the case of QGIS 2.0)

• Also add the argument that points to the folder where Pyscripter can find the Python dll used by QGIS, you
can find this under the bin folder of your OSGeoW install

@echo off
SET OSGEO4W_ROOT=C:\OSGeo4W
call "%OSGEO4W_ROOT%"\bin\o4w_env.bat
call "%OSGEO4W_ROOT%"\bin\gdal16.bat
@echo off
path %PATH%;%GISBASE%\bin
Start C:\pyscripter\pyscripter.exe --python25 --pythondllpath=C:\OSGeo4W\bin

Now when you double click this batch file it will start Pyscripter, with the correct path.

More popular that Pyscripter, Eclipse is a common choice among developers. In the following sections, we will be
explaining how to configure it for developing and testing plugins. To prepare your environment for using Eclipse
in Windows, you should also create a batch file and use it to start Eclipse.

To create that batch file, follow these steps.

• Locate the folder where file:qgis_core.dll resides in. Normally this is C:OSGeo4Wappsqgisbin,
but if you compiled your own QGIS application this is in your build folder in
output/bin/RelWithDebInfo

• Locate your eclipse.exe executable.

• Create the following script and use this to start eclipse when developing QGIS plugins.

57

http://code.google.com/p/pyscripter

PyQGIS developer cookbook, Release 2.6

call "C:\OSGeo4W\bin\o4w_env.bat"
set PATH=%PATH%;C:\path\to\your\qgis_core.dll\parent\folder
C:\path\to\your\eclipse.exe

13.2 Debugging using Eclipse and PyDev

13.2.1 Installation

To use Eclipse, make sure you have installed the following

• Eclipse

• Aptana Eclipse Plugin or PyDev

• QGIS 2.0

13.2.2 Preparing QGIS

There is some preparation to be done on QGIS itself. Two plugins are of interest: Remote Debug and Plugin
reloader.

• Go to Plugins → Fetch python plugins

• Search for Remote Debug (at the moment it’s still experimental, so enable experimental plugins under the
Options tab in case it does not show up). Install it.

• Search for Plugin reloader and install it as well. This will let you reload a plugin instead of having to close
and restart QGIS to have the plugin reloaded.

13.2.3 Setting up Eclipse

In Eclipse, create a new project. You can select General Project and link your real sources later on, so it does not
really matter where you place this project.

Now right click your new project and choose New → Folder.

Click [Advanced] and choose Link to alternate location (Linked Folder). In case you already have sources you
want to debug, choose these, in case you don’t, create a folder as it was already explained

Now in the view Project Explorer, your source tree pops up and you can start working with the code. You already
have syntax highlighting and all the other powerful IDE tools available.

13.2.4 Configuring the debugger

To get the debugger working, switch to the Debug perspective in Eclipse (Window → Open Perspective → Other
→ Debug).

Now start the PyDev debug server by choosing PyDev → Start Debug Server.

Eclipse is now waiting for a connection from QGIS to its debug server and when QGIS connects to the debug
server it will allow it to control the python scripts. That’s exactly what we installed the Remote Debug plugin for.
So start QGIS in case you did not already and click the bug symbol .

Now you can set a breakpoint and as soon as the code hits it, execution will stop and you can inspect the current
state of your plugin. (The breakpoint is the green dot in the image below, set one by double clicking in the white
space left to the line you want the breakpoint to be set)

A very interesting thing you can make use of now is the debug console. Make sure that the execution is currently
stopped at a break point, before you proceed.

58 Capitolo 13. IDE settings for writing and debugging plugins

PyQGIS developer cookbook, Release 2.6

Figura 13.1: Eclipse project

13.2. Debugging using Eclipse and PyDev 59

PyQGIS developer cookbook, Release 2.6

Figura 13.2: Breakpoint

Open the Console view (Window → Show view). It will show the Debug Server console which is not very inter-
esting. But there is a button [Open Console] which lets you change to a more interesting PyDev Debug Console.
Click the arrow next to the [Open Console] button and choose PyDev Console. A window opens up to ask you
which console you want to start. Choose PyDev Debug Console. In case its greyed out and tells you to Start the
debugger and select the valid frame, make sure that you’ve got the remote debugger attached and are currently on
a breakpoint.

Figura 13.3: PyDev Debug Console

You have now an interactive console which let’s you test any commands from within the current context. You can
manipulate variables or make API calls or whatever you like.

A little bit annoying is, that every time you enter a command, the console switches back to the Debug Server. To
stop this behavior, you can click the Pin Console button when on the Debug Server page and it should remember
this decision at least for the current debug session.

13.2.5 Making eclipse understand the API

A very handy feature is to have Eclipse actually know about the QGIS API. This enables it to check your code for
typos. But not only this, it also enables Eclipse to help you with autocompletion from the imports to API calls.

To do this, Eclipse parses the QGIS library files and gets all the information out there. The only thing you have to
do is to tell Eclipse where to find the libraries.

Click Window → Preferences → PyDev → Interpreter → Python.

You will see your configured python interpreter in the upper part of the window (at the moment python2.7 for
QGIS) and some tabs in the lower part. The interesting tabs for us are Libraries and Forced Builtins.

First open the Libraries tab. Add a New Folder and choose the python folder of your QGIS installation. If
you do not know where this folder is (it’s not the plugins folder) open QGIS, start a python console and sim-
ply enter qgis and press Enter. It will show you which QGIS module it uses and its path. Strip the trailing
/qgis/__init__.pyc from this path and you’ve got the path you are looking for.

You should also add your plugins folder here (on Linux it is ~/.qgis/python/plugins).

60 Capitolo 13. IDE settings for writing and debugging plugins

PyQGIS developer cookbook, Release 2.6

Figura 13.4: PyDev Debug Console

13.2. Debugging using Eclipse and PyDev 61

PyQGIS developer cookbook, Release 2.6

Next jump to the Forced Builtins tab, click on New... and enter qgis. This will make Eclipse parse the QGIS
API. You probably also want eclipse to know about the PyQt4 API. Therefore also add PyQt4 as forced builtin.
That should probably already be present in your libraries tab.

Click OK and you’re done.

Note: every time the QGIS API changes (e.g. if you’re compiling QGIS master and the SIP file changed), you
should go back to this page and simply click Apply. This will let Eclipse parse all the libraries again.

For another possible setting of Eclipse to work with QGIS Python plugins, check this link

13.3 Debugging using PDB

If you do not use an IDE such as Eclipse, you can debug using PDB, following these steps.

First add this code in the spot where you would like to debug

Use pdb for debugging
import pdb
These lines allow you to set a breakpoint in the app
pyqtRemoveInputHook()
pdb.set_trace()

Then run QGIS from the command line.

On Linux do:

$./Qgis

On Mac OS X do:

$ /Applications/Qgis.app/Contents/MacOS/Qgis

And when the application hits your breakpoint you can type in the console!

TODO: Add testing information

62 Capitolo 13. IDE settings for writing and debugging plugins

http://linfiniti.com/2011/12/remote-debugging-qgis-python-plugins-with-pydev

CAPITOLO 14

Using Plugin Layers

If your plugin uses its own methods to render a map layer, writing your own layer type based on QgsPluginLayer
might be the best way to implement that.

TODO: Check correctness and elaborate on good use cases for QgsPluginLayer, ...

14.1 Subclassing QgsPluginLayer

Below is an example of a minimal QgsPluginLayer implementation. It is an excerpt of the Watermark example
plugin:

class WatermarkPluginLayer(QgsPluginLayer):

LAYER_TYPE="watermark"

def __init__(self):
QgsPluginLayer.__init__(self, WatermarkPluginLayer.LAYER_TYPE, "Watermark plugin layer")
self.setValid(True)

def draw(self, rendererContext):
image = QImage("myimage.png")
painter = rendererContext.painter()
painter.save()
painter.drawImage(10, 10, image)
painter.restore()
return True

Methods for reading and writing specific information to the project file can also be added

def readXml(self, node):
pass

def writeXml(self, node, doc):
pass

When loading a project containing such a layer, a factory class is needed

class WatermarkPluginLayerType(QgsPluginLayerType):

def __init__(self):
QgsPluginLayerType.__init__(self, WatermarkPluginLayer.LAYER_TYPE)

def createLayer(self):
return WatermarkPluginLayer()

You can also add code for displaying custom information in the layer properties

63

http://github.com/sourcepole/qgis-watermark-plugin
http://github.com/sourcepole/qgis-watermark-plugin

PyQGIS developer cookbook, Release 2.6

def showLayerProperties(self, layer):
pass

64 Capitolo 14. Using Plugin Layers

CAPITOLO 15

Compatibility with older QGIS versions

15.1 Plugin menu

If you place your plugin menu entries into one of the new menus (Raster, Vector, Database or Web), you should
modify the code of the initGui() and unload() functions. Since these new menus are available only in
QGIS 2.0, the first step is to check that the running QGIS version has all necessary functions. If the new menus
are available, we will place our plugin under this menu, otherwise we will use the old Plugins menu. Here is an
example for Raster menu

def initGui(self):
create action that will start plugin configuration
self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")
QObject.connect(self.action, SIGNAL("triggered()"), self.run)

check if Raster menu available
if hasattr(self.iface, "addPluginToRasterMenu"):
Raster menu and toolbar available
self.iface.addRasterToolBarIcon(self.action)
self.iface.addPluginToRasterMenu("&Test plugins", self.action)

else:
there is no Raster menu, place plugin under Plugins menu as usual
self.iface.addToolBarIcon(self.action)
self.iface.addPluginToMenu("&Test plugins", self.action)

connect to signal renderComplete which is emitted when canvas rendering is done
QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def unload(self):
check if Raster menu available and remove our buttons from appropriate
menu and toolbar
if hasattr(self.iface, "addPluginToRasterMenu"):
self.iface.removePluginRasterMenu("&Test plugins",self.action)
self.iface.removeRasterToolBarIcon(self.action)

else:
self.iface.removePluginMenu("&Test plugins",self.action)
self.iface.removeToolBarIcon(self.action)

disconnect from signal of the canvas
QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

65

PyQGIS developer cookbook, Release 2.6

66 Capitolo 15. Compatibility with older QGIS versions

CAPITOLO 16

Releasing your plugin

Once your plugin is ready and you think the plugin could be helpful for some people, do not hesitate to upload it
to Official python plugin repository. On that page you can find also packaging guidelines about how to prepare
the plugin to work well with the plugin installer. Or in case you would like to set up your own plugin repository,
create a simple XML file that will list the plugins and their metadata, for examples see other plugin repositories.

16.1 Official python plugin repository

You can find the official python plugin repository at http://plugins.qgis.org/.

In order to use the official repository you must obtain an OSGEO ID from the OSGEO web portal.

Once you have uploaded your plugin it will be approved by a staff member and you will be notified.

TODO: Insert a link to the governance document

16.1.1 Permissions

These rules have been implemented in the official plugin repository:

• every registered user can add a new plugin

• staff users can approve or disapprove all plugin versions

• users which have the special permission plugins.can_approve get the versions they upload automatically
approved

• users which have the special permission plugins.can_approve can approve versions uploaded by others as
long as they are in the list of the plugin owners

• a particular plugin can be deleted and edited only by staff users and plugin owners

• if a user without plugins.can_approve permission uploads a new version, the plugin version is automatically
unapproved.

16.1.2 Trust management

Staff members can grant trust to selected plugin creators setting plugins.can_approve permission through the
front-end application.

The plugin details view offers direct links to grant trust to the plugin creator or the plugin owners.

67

http://www.qgis.org/wiki/Python_Plugin_Repositories
http://plugins.qgis.org/
http://www.osgeo.org/osgeo_userid/

PyQGIS developer cookbook, Release 2.6

16.1.3 Validation

Plugin’s metadata are automatically imported and validated from the compressed package when the plugin is
uploaded.

Here are some validation rules that you should aware of when you want to upload a plugin on the official
repository:

1. the name of the main folder containing your plugin must contain only contains ASCII characters (A-Z and
a-z), digits and the characters underscore (_) and minus (-), also it cannot start with a digit

2. metadata.txt is required

3. all required metadata listed in metadata table must be present

4. the version metadata field must be unique

16.1.4 Plugin structure

Following the validation rules the compressed (.zip) package of your plugin must have a specific structure to
validate as a functional plugin. As the plugin will be unzipped inside the users plugins folder it must have it’s
own directory inside the .zip file to not interfere with other plugins. Mandatory files are: metadata.txt
and __init__.py. But it would be nice to have a README and of course an icon to represent the plugin
(resources.qrc). Following is an example of how a plugin.zip should look like.

plugin.zip
pluginfolder/
|-- i18n
| |-- translation_file_de.ts
|-- img
| |-- icon.png
| ‘-- iconsource.svg
|-- __init__.py
|-- Makefile
|-- metadata.txt
|-- more_code.py
|-- main_code.py
|-- README
|-- resources.qrc
|-- resources_rc.py
‘-- ui_Qt_user_interface_file.ui

68 Capitolo 16. Releasing your plugin

CAPITOLO 17

Code Snippets

This section features code snippets to facilitate plugin development.

17.1 How to call a method by a key shortcut

In the plug-in add to the initGui()

self.keyAction = QAction("Test Plugin", self.iface.mainWindow())
self.iface.registerMainWindowAction(self.keyAction, "F7") # action1 triggered by F7 key
self.iface.addPluginToMenu("&Test plugins", self.keyAction)
QObject.connect(self.keyAction, SIGNAL("triggered()"),self.keyActionF7)

To unload() add

self.iface.unregisterMainWindowAction(self.keyAction)

The method that is called when F7 is pressed

def keyActionF7(self):
QMessageBox.information(self.iface.mainWindow(),"Ok", "You pressed F7")

17.2 How to toggle Layers

Since QGIS 2.4 there is new layer tree API that allows direct access to the layer tree in the legend. Here is an
example how to toggle visibility of the active layer

root = QgsProject.instance().layerTreeRoot()
node = root.findLayer(iface.activeLayer().id())
new_state = Qt.Checked if node.isVisible()==Qt.Unchecked else Qt.Unchecked
node.setVisible(new_state)

17.3 How to access attribute table of selected features

def changeValue(self, value):
layer = self.iface.activeLayer()
if(layer):
nF = layer.selectedFeatureCount()
if (nF > 0):
layer.startEditing()
ob = layer.selectedFeaturesIds()
b = QVariant(value)
if (nF > 1):

69

PyQGIS developer cookbook, Release 2.6

for i in ob:
layer.changeAttributeValue(int(i),1,b) # 1 being the second column

else:
layer.changeAttributeValue(int(ob[0]),1,b) # 1 being the second column

layer.commitChanges()
else:

QMessageBox.critical(self.iface.mainWindow(),"Error", "Please select at least one feature from current layer")
else:
QMessageBox.critical(self.iface.mainWindow(),"Error","Please select a layer")

The method requires one parameter (the new value for the attribute field of the selected feature(s)) and can be
called by

self.changeValue(50)

70 Capitolo 17. Code Snippets

CAPITOLO 18

Network analysis library

Starting from revision ee19294562 (QGIS >= 1.8) the new network analysis library was added to the QGIS core
analysis library. The library:

• creates mathematical graph from geographical data (polyline vector layers)

• implements basic methods from graph theory (currently only Dijkstra’s algorithm)

The network analysis library was created by exporting basic functions from the RoadGraph core plugin and now
you can use it’s methods in plugins or directly from the Python console.

18.1 General information

Briefly, a typical use case can be described as:

1. create graph from geodata (usually polyline vector layer)

2. run graph analysis

3. use analysis results (for example, visualize them)

18.2 Building a graph

The first thing you need to do — is to prepare input data, that is to convert a vector layer into a graph. All further
actions will use this graph, not the layer.

As a source we can use any polyline vector layer. Nodes of the polylines become graph vertexes, and segments of
the polylines are graph edges. If several nodes have the same coordinates then they are the same graph vertex. So
two lines that have a common node become connected to each other.

Additionally, during graph creation it is possible to “fix” (“tie”) to the input vector layer any number of additional
points. For each additional point a match will be found — the closest graph vertex or closest graph edge. In the
latter case the edge will be split and a new vertex added.

Vector layer attributes and length of an edge can be used as the properties of an edge.

Converting from a vector layer to the graph is done using the Builder programming pattern. A graph is constructed
using a so-called Director. There is only one Director for now: QgsLineVectorLayerDirector. The director sets
the basic settings that will be used to construct a graph from a line vector layer, used by the builder to create the
graph. Currently, as in the case with the director, only one builder exists: QgsGraphBuilder, that creates QgsGraph
objects. You may want to implement your own builders that will build a graphs compatible with such libraries as
BGL or NetworkX.

To calculate edge properties the programming pattern strategy is used. For now only QgsDistanceArcProperter
strategy is available, that takes into account the length of the route. You can implement your own strategy that
will use all necessary parameters. For example, RoadGraph plugin uses a strategy that computes travel time using
edge length and speed value from attributes.

71

https://github.com/qgis/Quantum-GIS/commit/ee19294562b00c6ce957945f14c1727210cffdf7
http://en.wikipedia.org/wiki/Builder_pattern
http://qgis.org/api/classQgsLineVectorLayerDirector.html
http://qgis.org/api/classQgsGraphBuilder.html
http://qgis.org/api/classQgsGraph.html
http://www.boost.org/doc/libs/1_48_0/libs/graph/doc/index.html
http://networkx.lanl.gov/
http://en.wikipedia.org/wiki/Strategy_pattern
http://qgis.org/api/classQgsDistanceArcProperter.html

PyQGIS developer cookbook, Release 2.6

It’s time to dive into the process.

First of all, to use this library we should import the networkanalysis module

from qgis.networkanalysis import *

Then some examples for creating a director

don’t use information about road direction from layer attributes,
all roads are treated as two-way
director = QgsLineVectorLayerDirector(vLayer, -1, ’’, ’’, ’’, 3)

use field with index 5 as source of information about road direction.
one-way roads with direct direction have attribute value "yes",
one-way roads with reverse direction have the value "1", and accordingly
bidirectional roads have "no". By default roads are treated as two-way.
This scheme can be used with OpenStreetMap data
director = QgsLineVectorLayerDirector(vLayer, 5, ’yes’, ’1’, ’no’, 3)

To construct a director we should pass a vector layer, that will be used as the source for the graph structure and
information about allowed movement on each road segment (one-way or bidirectional movement, direct or reverse
direction). The call looks like this

director = QgsLineVectorLayerDirector(vl, directionFieldId,
directDirectionValue,
reverseDirectionValue,
bothDirectionValue,
defaultDirection)

And here is full list of what these parameters mean:

• vl — vector layer used to build the graph

• directionFieldId — index of the attribute table field, where information about roads direction is
stored. If -1, then don’t use this info at all. An integer.

• directDirectionValue — field value for roads with direct direction (moving from first line point to
last one). A string.

• reverseDirectionValue — field value for roads with reverse direction (moving from last line point
to first one). A string.

• bothDirectionValue — field value for bidirectional roads (for such roads we can move from first
point to last and from last to first). A string.

• defaultDirection — default road direction. This value will be used for those roads where field
directionFieldId is not set or has some value different from any of the three values specified above.
An integer. 1 indicates direct direction, 2 indicates reverse direction, and 3 indicates both directions.

It is necessary then to create a strategy for calculating edge properties

properter = QgsDistanceArcProperter()

And tell the director about this strategy

director.addProperter(properter)

Now we can use the builder, which will create the graph. The QgsGraphBuilder class constructor takes several
arguments:

• crs — coordinate reference system to use. Mandatory argument.

• otfEnabled — use “on the fly” reprojection or no. By default const:True (use OTF).

• topologyTolerance — topological tolerance. Default value is 0.

• ellipsoidID — ellipsoid to use. By default “WGS84”.

72 Capitolo 18. Network analysis library

PyQGIS developer cookbook, Release 2.6

only CRS is set, all other values are defaults
builder = QgsGraphBuilder(myCRS)

Also we can define several points, which will be used in the analysis. For example

startPoint = QgsPoint(82.7112, 55.1672)
endPoint = QgsPoint(83.1879, 54.7079)

Now all is in place so we can build the graph and “tie” these points to it

tiedPoints = director.makeGraph(builder, [startPoint, endPoint])

Building the graph can take some time (which depends on the number of features in a layer and layer size).
tiedPoints is a list with coordinates of “tied” points. When the build operation is finished we can get the
graph and use it for the analysis

graph = builder.graph()

With the next code we can get the vertex indexes of our points

startId = graph.findVertex(tiedPoints[0])
endId = graph.findVertex(tiedPoints[1])

18.3 Graph analysis

Networks analysis is used to find answers to two questions: which vertexes are connected and how to find a
shortest path. To solve these problems the network analysis library provides Dijkstra’s algorithm.

Dijkstra’s algorithm finds the shortest route from one of the vertexes of the graph to all the others and the values
of the optimization parameters. The results can be represented as a shortest path tree.

The shortest path tree is a directed weighted graph (or more precisely — tree) with the following properties:

• only one vertex has no incoming edges — the root of the tree

• all other vertexes have only one incoming edge

• if vertex B is reachable from vertex A, then the path from A to B is the single available path and it is optimal
(shortest) on this graph

To get the shortest path tree use the methods shortestTree() and dijkstra() of QgsGraphAnalyzer class.
It is recommended to use method dijkstra() because it works faster and uses memory more efficiently.

The shortestTree() method is useful when you want to walk around the shortest path tree. It always creates
a new graph object (QgsGraph) and accepts three variables:

• source — input graph

• startVertexIdx — index of the point on the tree (the root of the tree)

• criterionNum — number of edge property to use (started from 0).

tree = QgsGraphAnalyzer.shortestTree(graph, startId, 0)

The dijkstra() method has the same arguments, but returns two arrays. In the first array element i contains
index of the incoming edge or -1 if there are no incoming edges. In the second array element i contains distance
from the root of the tree to vertex i or DOUBLE_MAX if vertex i is unreachable from the root.

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, startId, 0)

Here is some very simple code to display the shortest path tree using the graph created with the
shortestTree() method (select linestring layer in TOC and replace coordinates with your own). Warn-
ing: use this code only as an example, it creates a lots of QgsRubberBand objects and may be slow on large
data-sets.

18.3. Graph analysis 73

http://qgis.org/api/classQgsGraphAnalyzer.html
http://qgis.org/api/classQgsRubberBand.html

PyQGIS developer cookbook, Release 2.6

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.743804, 0.22954)
tiedPoint = director.makeGraph(builder, [pStart])
pStart = tiedPoint[0]

graph = builder.graph()

idStart = graph.findVertex(pStart)

tree = QgsGraphAnalyzer.shortestTree(graph, idStart, 0)

i = 0;
while (i < tree.arcCount()):

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor (Qt.red)
rb.addPoint (tree.vertex(tree.arc(i).inVertex()).point())
rb.addPoint (tree.vertex(tree.arc(i).outVertex()).point())
i = i + 1

Same thing but using dijkstra() method:

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-1.37144, 0.543836)
tiedPoint = director.makeGraph(builder, [pStart])
pStart = tiedPoint[0]

graph = builder.graph()

idStart = graph.findVertex(pStart)

(tree, costs) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

for edgeId in tree:
if edgeId == -1:
continue

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor (Qt.red)

74 Capitolo 18. Network analysis library

PyQGIS developer cookbook, Release 2.6

rb.addPoint (graph.vertex(graph.arc(edgeId).inVertex()).point())
rb.addPoint (graph.vertex(graph.arc(edgeId).outVertex()).point())

18.3.1 Finding shortest paths

To find the optimal path between two points the following approach is used. Both points (start A and end B) are
“tied” to the graph when it is built. Then using the methods shortestTree() or dijkstra() we build the
shortest path tree with root in the start point A. In the same tree we also find the end point B and start to walk
through the tree from point B to point A. The Whole algorithm can be written as

assign = B
while != A

add point to path
get incoming edge for point
look for point , that is start point of this edge
assign =

add point to path

At this point we have the path, in the form of the inverted list of vertexes (vertexes are listed in reversed order
from end point to start point) that will be visited during traveling by this path.

Here is the sample code for QGIS Python Console (you will need to select linestring layer in TOC and replace
coordinates in the code with yours) that uses method shortestTree()

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.835953, 0.15679)
pStop = QgsPoint(-1.1027, 0.699986)

tiedPoints = director.makeGraph(builder, [pStart, pStop])
graph = builder.graph()

tStart = tiedPoints[0]
tStop = tiedPoints[1]

idStart = graph.findVertex(tStart)
tree = QgsGraphAnalyzer.shortestTree(graph, idStart, 0)

idStart = tree.findVertex(tStart)
idStop = tree.findVertex(tStop)

if idStop == -1:
print "Path not found"

else:
p = []
while (idStart != idStop):
l = tree.vertex(idStop).inArc()
if len(l) == 0:

break
e = tree.arc(l[0])

18.3. Graph analysis 75

PyQGIS developer cookbook, Release 2.6

p.insert(0, tree.vertex(e.inVertex()).point())
idStop = e.outVertex()

p.insert(0, tStart)
rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor(Qt.red)

for pnt in p:
rb.addPoint(pnt)

And here is the same sample but using dikstra() method

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.835953, 0.15679)
pStop = QgsPoint(-1.1027, 0.699986)

tiedPoints = director.makeGraph(builder, [pStart, pStop])
graph = builder.graph()

tStart = tiedPoints[0]
tStop = tiedPoints[1]

idStart = graph.findVertex(tStart)
idStop = graph.findVertex(tStop)

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

if tree[idStop] == -1:
print "Path not found"

else:
p = []
curPos = idStop
while curPos != idStart:
p.append(graph.vertex(graph.arc(tree[curPos]).inVertex()).point())
curPos = graph.arc(tree[curPos]).outVertex();

p.append(tStart)

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor(Qt.red)

for pnt in p:
rb.addPoint(pnt)

18.3.2 Areas of availability

The area of availability for vertex A is the subset of graph vertexes that are accessible from vertex A and the cost
of the paths from A to these vertexes are not greater that some value.

76 Capitolo 18. Network analysis library

PyQGIS developer cookbook, Release 2.6

More clearly this can be shown with the following example: “There is a fire station. Which parts of city can a
fire truck reach in 5 minutes? 10 minutes? 15 minutes?”. Answers to these questions are fire station’s areas of
availability.

To find the areas of availability we can use method dijkstra() of the QgsGraphAnalyzer class. It is
enough to compare the elements of the cost array with a predefined value. If cost[i] is less than or equal to a
predefined value, then vertex i is inside the area of availability, otherwise it is outside.

A more difficult problem is to get the borders of the area of availability. The bottom border is the set of vertexes
that are still accessible, and the top border is the set of vertexes that are not accessible. In fact this is simple: it
is the availability border based on the edges of the shortest path tree for which the source vertex of the edge is
accessible and the target vertex of the edge is not.

Here is an example

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(65.5462, 57.1509)
delta = qgis.utils.iface.mapCanvas().getCoordinateTransform().mapUnitsPerPixel() * 1

rb = QgsRubberBand(qgis.utils.iface.mapCanvas(), True)
rb.setColor(Qt.green)
rb.addPoint(QgsPoint(pStart.x() - delta, pStart.y() - delta))
rb.addPoint(QgsPoint(pStart.x() + delta, pStart.y() - delta))
rb.addPoint(QgsPoint(pStart.x() + delta, pStart.y() + delta))
rb.addPoint(QgsPoint(pStart.x() - delta, pStart.y() + delta))

tiedPoints = director.makeGraph(builder, [pStart])
graph = builder.graph()
tStart = tiedPoints[0]

idStart = graph.findVertex(tStart)

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

upperBound = []
r = 2000.0
i = 0
while i < len(cost):

if cost[i] > r and tree[i] != -1:
outVertexId = graph.arc(tree [i]).outVertex()
if cost[outVertexId] < r:

upperBound.append(i)
i = i + 1

for i in upperBound:
centerPoint = graph.vertex(i).point()
rb = QgsRubberBand(qgis.utils.iface.mapCanvas(), True)
rb.setColor(Qt.red)
rb.addPoint(QgsPoint(centerPoint.x() - delta, centerPoint.y() - delta))
rb.addPoint(QgsPoint(centerPoint.x() + delta, centerPoint.y() - delta))

18.3. Graph analysis 77

PyQGIS developer cookbook, Release 2.6

rb.addPoint(QgsPoint(centerPoint.x() + delta, centerPoint.y() + delta))
rb.addPoint(QgsPoint(centerPoint.x() - delta, centerPoint.y() + delta))

78 Capitolo 18. Network analysis library

Indice

API, 1

calculating values, 40
categorized symbology renderer, 19
console

Python, 1
coordinate reference systems, 29
custom

renderers, 23
custom applications

Python, 2
running, 3

delimited text layers
loading, 5

expressions, 40
evaluating, 42
parsing, 41

features
vector layers iterating, 13

filtering, 40

geometry
access to, 27
construction, 27
handling, 25
predicates and operations, 28

GPX files
loading, 5

graduated symbol renderer, 20

iterating
features, vector layers, 13

loading
delimited text layers, 5
GPX files, 5
MySQL geometries, 6
OGR layers, 5
PostGIS layers, 5
raster layers, 6
SpatiaLite layers, 6
vector layers, 5
WMS raster, 6

map canvas, 30
architecture, 31
embedding, 31
map tools, 32
rubber bands, 33
vertex markers, 33
writing custom canvas items, 35
writing custom map tools, 34

map layer registry, 7
adding a layer, 7

map printing, 35
map rendering, 35

simple, 37
memory provider, 18
metadata, 54
metadata.txt, 54
MySQL geometries

loading, 6

OGR layers
loading, 5

output
PDF, 39
raster image, 39
using Map Composer, 37

plugin layers, 62
subclassing QgsPluginLayer, 63

plugins, 67
access attributes of selected features, 69
call method with shortcut, 69
code snippets, 56
developing, 49
documentation, 56
implementing help, 56
metadata.txt, 52, 54
official python plugin repository, 67
releasing, 62
resource file, 56
testing, 62
toggle layers, 69
writing, 51
writing code, 52

PostGIS layers
loading, 5

79

PyQGIS developer cookbook, Release 2.6

projections, 30
Python

console, 1
custom applications, 2
developing plugins, 49
plugins, 1

querying
raster layers, 11

raster layers
details, 9
drawing style, 9
loading, 6
querying, 11
refreshing, 11
using, 7

rasters
multi band, 10
single band, 10

refreshing
raster layers, 11

renderers
custom, 23

resources.qrc, 56
running

custom applications, 3

settings
global, 45
map layer, 46
project, 45
reading, 43
storing, 43

single symbol renderer, 19
spatial index

using, 16
SpatiaLite layers

loading, 6
symbol layers

creating custom types, 21
working with, 21

symbology
categorized symbol renderer, 19
graduated symbol renderer, 20
old, 25
single symbol renderer, 19

symbols
working with, 21

vector layers
editing, 14
iterating features, 13
loading, 5
symbology, 19
writing, 17

WMS raster
loading, 6

80 Indice

	Introduction
	Python Console
	Python Plugins
	Python Applications

	Loading Layers
	Vector Layers
	Raster Layers
	Map Layer Registry

	Using Raster Layers
	Layer Details
	Drawing Style
	Refreshing Layers
	Query Values

	Using Vector Layers
	Iterating over Vector Layer
	Modifying Vector Layers
	Modifying Vector Layers with an Editing Buffer
	Using Spatial Index
	Writing Vector Layers
	Memory Provider
	Appearance (Symbology) of Vector Layers
	Further Topics

	Geometry Handling
	Geometry Construction
	Access to Geometry
	Geometry Predicates and Operations

	Projections Support
	Coordinate reference systems
	Projections

	Using Map Canvas
	Embedding Map Canvas
	Using Map Tools with Canvas
	Rubber Bands and Vertex Markers
	Writing Custom Map Tools
	Writing Custom Map Canvas Items

	Map Rendering and Printing
	Simple Rendering
	Output using Map Composer

	Expressions, Filtering and Calculating Values
	Parsing Expressions
	Evaluating Expressions
	Examples

	Reading And Storing Settings
	Communicating with the user
	Showing messages. The QgsMessageBar class
	Showing progress
	Logging

	Developing Python Plugins
	Writing a plugin
	Plugin content
	Documentation

	IDE settings for writing and debugging plugins
	A note on configuring your IDE on Windows
	Debugging using Eclipse and PyDev
	Debugging using PDB

	Using Plugin Layers
	Subclassing QgsPluginLayer

	Compatibility with older QGIS versions
	Plugin menu

	Releasing your plugin
	Official python plugin repository

	Code Snippets
	How to call a method by a key shortcut
	How to toggle Layers
	How to access attribute table of selected features

	Network analysis library
	General information
	Building a graph
	Graph analysis

	Indice

