
QGIS Developers Guide

Release 2.18

QGIS Project

April 08, 2019

Съдържание

1 QGIS Coding Standards 3
1.1 Класове . 3
1.2 Qt Designer . 5
1.3 C++ файлове . 5
1.4 Имена на променливите . 6
1.5 Enumerated Types . 6
1.6 Global Constants & Macros . 6
1.7 Qt Signals and Slots . 6
1.8 Редактиране . 7
1.9 API Compatibility . 7
1.10 Coding Style . 8
1.11 Credits for contributions . 9

2 GIT Access 11
2.1 Инсталация . 11
2.2 Accessing the Repository . 12
2.3 Check out a branch . 12
2.4 QGIS documentation sources . 12
2.5 QGIS уебсайт източници: . 13
2.6 GIT Documentation . 13
2.7 Development in branches . 13
2.8 Submitting Patches and Pull Requests . 14
2.9 Patch file naming . 15
2.10 Create your patch in the top level QGIS source dir . 15
2.11 Obtaining GIT Write Access . 16

3 Unit Testing 17
3.1 The QGIS testing framework - an overview . 17
3.2 Adding your unit test to CMakeLists.txt . 22
3.3 The ADD_QGIS_TEST macro explained . 22
3.4 Building your unit test . 23
3.5 Run your tests . 24

4 Getting up and running with QtCreator and QGIS 27
4.1 Installing QtCreator . 27
4.2 Setting up your project . 27
4.3 Setting up your build environment . 29
4.4 Setting your run environment . 31
4.5 Running and debugging . 33

5 HIG (Human Interface Guidelines) 35
5.1 Автори . 36

i

6 OGC Conformance Testing 37
6.1 Setup of WMS 1.3 and WMS 1.1.1 conformance tests . 37
6.2 Test project . 37
6.3 Running the WMS 1.3.0 test . 38
6.4 Running the WMS 1.1.1 test . 38

Index 39

ii

QGIS Developers Guide, Release 2.18

Welcome to the QGIS Development pages. Here you’ll find rules, tools and steps to easily and efficiently
contribute to QGIS code.

Съдържание 1

QGIS Developers Guide, Release 2.18

2 Съдържание

Глава 1

QGIS Coding Standards

� Класове
– Имена
– Членове
– Accessor Functions
– Функции
– Function Arguments
– Функията връща стойности

� Qt Designer
– Generated Classes
– Dialogs

� C++ файлове
– Имена
– Standard Header and License

� Имена на променливите
� Enumerated Types
� Global Constants & Macros
� Qt Signals and Slots
� Редактиране

– Tabs
– Indentation
– Braces

� API Compatibility
� Coding Style

– Where-ever Possible Generalize Code
– Prefer Having Constants First in Predicates
– Whitespace Can Be Your Friend
– Командите трябва да са на отделни редове
– Indent access modifiers
– Препоръчителни книги

� Credits for contributions

These standards should be followed by all QGIS developers.

1.1 Класове

1.1.1 Имена

Class in QGIS begin with Qgs and are formed using camel case.

Примери:

3

QGIS Developers Guide, Release 2.18

� QgsPoint

� QgsMapCanvas

� QgsRasterLayer

1.1.2 Членове

Class member names begin with a lower case m and are formed using mixed case.

� mMapCanvas

� mCurrentExtent

All class members should be private. Public class members are STRONGLY discouraged. Protected
members should be avoided when the member may need to be accessed from Python subclasses, since
protected members cannot be used from the Python bindings.

Mutable static class member names should begin with a lower case s, but constant static class member
names should be all caps:

� sRefCounter

� DEFAULT_QUEUE_SIZE

1.1.3 Accessor Functions

Class member values should be obtained through accesssor functions. The function should be named
without a get prefix. Accessor functions for the two private members above would be:

� mapCanvas()

� currentExtent()

Ensure that accessors are correctly marked with const. Where appropriate, this may require that cached
value type member variables are marked with mutable.

1.1.4 Функции

Function names begin with a lowercase letter and are formed using mixed case. The function name should
convey something about the purpose of the function.

� updateMapExtent()

� setUserOptions()

For consistency with the existing QGIS API and with the Qt API, abbreviations should be avoided. E.g.
setDestinationSize instead of setDestSize, setMaximumValue instead of setMaxVal.

Acronyms should also be camel cased for consistency. E.g. setXml instead of setXML.

1.1.5 Function Arguments

Function arguments should use descriptive names. Do not use single letter argments (e.g. setColor(
const QColor& color) instead of setColor(const QColor& c)).

Pay careful attention to when arguments should be passed by reference. Unless argument objects are small
and trivially copied (such as QPoint objects), they should be passed by const reference. For consistency
with the Qt API, even implicitly shared objects are passed by const reference (e.g. setTitle(const

QString& title) instead of setTitle(QString title).

4 Глава 1. QGIS Coding Standards

QGIS Developers Guide, Release 2.18

1.1.6 Функията връща стойности

Return small and trivially copied objects as values. Larger objects should be returned by const reference.
The one exception to this is implicitly shared objects, which are always returned by value.

� int maximumValue() const

� const LayerSet& layers() const

� QString title() const (QString is implicitly shared)

� QList< QgsMapLayer* > layers() const (QList is implicitly shared)

1.2 Qt Designer

1.2.1 Generated Classes

QGIS classes that are generated from Qt Designer (ui) files should have a Base suffix. This identifies the
class as a generated base class.

Примери:

� QgsPluginManagerBase

� QgsUserOptionsBase

1.2.2 Dialogs

All dialogs should implement tooltip help for all toolbar icons and other relevant widgets. Tooltips add
greatly to feature discoverability for both new and experienced users.

Ensure that the tab order for widgets is updated whenever the layout of a dialog changes.

1.3 C++ файлове

1.3.1 Имена

C++ implementation and header files should have a .cpp and .h extension respectively. Filename should
be all lowercase and, in the case of classes, match the class name.

Example: Class QgsFeatureAttribute source files are qgsfeatureattribute.cpp and
qgsfeatureattribute.h

Note: In case it is not clear from the statement above, for a filename to match a class name it implicitly
means that each class should be declared and implemented in its own file. This makes it much easier for
newcomers to identify where the code is relating to specific class.

1.3.2 Standard Header and License

Each source file should contain a header section patterned after the following example:

/***

qgsfield.cpp - Describes a field in a layer or table

Date : 01-Jan-2004

Copyright: (C) 2004 by Gary E.Sherman

Email: sherman at mrcc.com

1.2. Qt Designer 5

QGIS Developers Guide, Release 2.18

/***

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

***/

Note: There is a template for Qt Creator in git. To use it, copy it from
doc/qt_creator_license_template to a local location, adjust the mail address and - if required
- the name and configure QtCreator to use it: Tools → Options → C++ → File Naming.

1.4 Имена на променливите

Local variable names begin with a lower case letter and are formed using mixed case. Do not use prefixes
like my or the.

Примери:

� mapCanvas

� currentExtent

1.5 Enumerated Types

Enumerated types should be named in CamelCase with a leading capital e.g.:

enum UnitType

{

Meters,

Feet,

Degrees,

UnknownUnit

};

Do not use generic type names that will conflict with other types. e.g. use UnkownUnit rather than
Unknown

1.6 Global Constants & Macros

Global constants and macros should be written in upper case underscore separated e.g.:

const long GEOCRS_ID = 3344;

1.7 Qt Signals and Slots

All signal/slot connects should be made using the “new style” connects available in Qt5. Futher
information on this requirement is available in QEP #77.

Avoid use of Qt auto connect slots (i.e. those named void on_mSpinBox_valueChanged). Auto connect
slots are fragile and prone to breakage without warning if dialogs are refactored.

6 Глава 1. QGIS Coding Standards

https://github.com/qgis/QGIS-Enhancement-Proposals/issues/77

QGIS Developers Guide, Release 2.18

1.8 Редактиране

Any text editor/IDE can be used to edit QGIS code, providing the following requirements are met.

1.8.1 Tabs

Set your editor to emulate tabs with spaces. Tab spacing should be set to 2 spaces.

Note: In vim this is done with set expandtab ts=2

1.8.2 Indentation

Source code should be indented to improve readability. There is a scripts/prepare-commit.sh that
looks up the changed files and reindents them using astyle. This should be run before committing. You
can also use scripts/astyle.sh to indent individual files.

As newer versions of astyle indent differently than the version used to do a complete reindentation of the
source, the script uses an old astyle version, that we include in our repository (enable WITH_ASTYLE
in cmake to include it in the build).

1.8.3 Braces

Braces should start on the line following the expression:

if(foo == 1)

{

// do stuff

...

}

else

{

// do something else

...

}

1.9 API Compatibility

There is API documentation for C++.

We try to keep the API stable and backwards compatible. Cleanups to the API should be done in a
manner similar to the Qt sourcecode e.g.

class Foo

{

public:

/** This method will be deprecated, you are encouraged to use

* doSomethingBetter() rather.

* @deprecated doSomethingBetter()

*/

Q_DECL_DEPRECATED bool doSomething();

/** Does something a better way.

* @note added in 1.1

*/

bool doSomethingBetter();

1.8. Редактиране 7

http://qgis.org/api/

QGIS Developers Guide, Release 2.18

signals:

/** This signal will be deprecated, you are encouraged to

* connect to somethingHappenedBetter() rather.

* @deprecated use somethingHappenedBetter()

*/

ifndef Q_MOC_RUN

Q_DECL_DEPRECATED

endif

bool somethingHappened();

/** Something happened

* @note added in 1.1

*/

bool somethingHappenedBetter();

}

1.10 Coding Style

Here are described some programming hints and tips that will hopefully reduce errors, development time
and maintenance.

1.10.1 Where-ever Possible Generalize Code

If you are cut-n-pasting code, or otherwise writing the same thing more than once, consider consolidating
the code into a single function.

Това ще:

� allow changes to be made in one location instead of in multiple places

� help prevent code bloat

� make it more difficult for multiple copies to evolve differences over time, thus making it harder to
understand and maintain for others

1.10.2 Prefer Having Constants First in Predicates

Prefer to put constants first in predicates.

0 == value instead of value == 0

This will help prevent programmers from accidentally using = when they meant to use ==, which can
introduce very subtle logic bugs. The compiler will generate an error if you accidentally use = instead of
== for comparisons since constants inherently cannot be assigned values.

1.10.3 Whitespace Can Be Your Friend

Adding spaces between operators, statements, and functions makes it easier for humans to parse code.

Which is easier to read, this:

if (!a&&b)

or this:

if (! a && b)

Note: scripts/prepare-commit.sh will take care of this.

8 Глава 1. QGIS Coding Standards

QGIS Developers Guide, Release 2.18

1.10.4 Командите трябва да са на отделни редове

When reading code it’s easy to miss commands, if they are not at the beginning of the line. When quickly
reading through code, it’s common to skip lines if they don’t look like what you are looking for in the
first few characters. It’s also common to expect a command after a conditional like if.

Consider:

if (foo) bar();

baz(); bar();

It’s very easy to miss part of what the flow of control. Instead use

if (foo)

bar();

baz();

bar();

1.10.5 Indent access modifiers

Access modifiers structure a class into sections of public API, protected API and private API. Access
modifiers themselves group the code into this structure. Indent the access modifier and declarations.

class QgsStructure

{

public:

/**

* Constructor

*/

explicit QgsStructure();

}

1.10.6 Препоръчителни книги

� Effective Modern C++, Scott Meyers

� More Effective C++, Scott Meyers

� Effective STL, Scott Meyers

� Design Patterns, GoF

Препоръчително е също да прочетете тази статия от Qt Quarterly относно ‘Дизайн за Qt стилове
(APIs) <https://doc.qt.io/archives/qq/qq13-apis.html>‘

1.11 Credits for contributions

Contributors of new functions are encouraged to let people know about their contribution by:

� adding a note to the changelog for the first version where the code has been incorporated, of the
type:

This feature was funded by: Olmiomland http://olmiomland.ol

This feature was developed by: Chuck Norris http://chucknorris.kr

� writing an article about the new feature on a blog, and add it to the QGIS planet
http://plugins.qgis.org/planet/

� Добавате тяхното име в:

1.11. Credits for contributions 9

http://shop.oreilly.com/product/0636920033707.do
http://www.informit.com/store/more-effective-c-plus-plus-35-new-ways-to-improve-your-9780201633719
http://www.informit.com/store/effective-stl-50-specific-ways-to-improve-your-use-9780201749625
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://doc.qt.io/archives/qq/qq13-apis.html
http://plugins.qgis.org/planet/

QGIS Developers Guide, Release 2.18

– https://github.com/qgis/QGIS/blob/master/doc/CONTRIBUTORS

– https://github.com/qgis/QGIS/blob/master/doc/AUTHORS

– https://github.com/qgis/QGIS/blob/master/doc/contributors.json

10 Глава 1. QGIS Coding Standards

https://github.com/qgis/QGIS/blob/master/doc/CONTRIBUTORS
https://github.com/qgis/QGIS/blob/master/doc/AUTHORS
https://github.com/qgis/QGIS/blob/master/doc/contributors.json

Глава 2

GIT Access

� Инсталация
– Инсталиране git за GNU/Linux
– Инсталиране git за Windows
– Инсталиране git за OSX

� Accessing the Repository
� Check out a branch
� QGIS documentation sources
� QGIS уебсайт източници:
� GIT Documentation
� Development in branches

– Purpose
– Процедура
– Documentation on wiki
– Testing before merging back to master

� Submitting Patches and Pull Requests
– Pull Requests

* Best practice for creating a pull request
* Special labels to notify documentors
* For merging a pull request

� Patch file naming
� Create your patch in the top level QGIS source dir

– Getting your patch noticed
– Due Diligence

� Obtaining GIT Write Access

This section describes how to get started using the QGIS GIT repository. Before you can do this, you
need to first have a git client installed on your system.

2.1 Инсталация

2.1.1 Инсталиране git за GNU/Linux

Debian based distro users can do:

sudo apt-get install git

2.1.2 Инсталиране git за Windows

Windows users can obtain msys git or use git distributed with cygwin.

11

http://code.google.com/p/msysgit/
http://cygwin.com

QGIS Developers Guide, Release 2.18

2.1.3 Инсталиране git за OSX

The git project has a downloadable build of git. Make sure to get the package matching your processor
(x86_64 most likely, only the first Intel Macs need the i386 package).

Веднъж свалено, отворете картината с диск и стартирайте инсталирането.

PPC/source note

The git site does not offer PPC builds. If you need a PPC build, or you just want a little more control
over the installation, you need to compile it yourself.

Download the source from http://git-scm.com/. Unzip it, and in a Terminal cd to the source folder, then:

make prefix=/usr/local

sudo make prefix=/usr/local install

If you don’t need any of the extras, Perl, Python or TclTk (GUI), you can disable them before running
make with:

export NO_PERL=

export NO_TCLTK=

export NO_PYTHON=

2.2 Accessing the Repository

To clone QGIS master:

git clone git://github.com/qgis/QGIS.git

2.3 Check out a branch

To check out a branch, for example the release 2.6.1 branch do:

cd QGIS

git fetch

git branch --track origin release-2_6_1

git checkout release-2_6_1

To check out the master branch:

cd QGIS

git checkout master

Note: In QGIS we keep our most stable code in the current release branch. Master contains code for
the so called ‘unstable’ release series. Periodically we will branch a release off master, and then continue
stabilisation and selective incorporation of new features into master.

See the INSTALL file in the source tree for specific instructions on building development versions.

2.4 QGIS documentation sources

If you’re interested in checking out QGIS documentation sources:

git clone git@github.com:qgis/QGIS-Documentation.git

You can also take a look at the readme included with the documentation repo for more information.

12 Глава 2. GIT Access

http://git-scm.com/
http://git-scm.com/

QGIS Developers Guide, Release 2.18

2.5 QGIS уебсайт източници:

If you’re interested in checking out QGIS website sources:

git clone git@github.com:qgis/QGIS-Website.git

You can also take a look at the readme included with the website repo for more information.

2.6 GIT Documentation

See the following sites for information on becoming a GIT master.

� http://gitref.org

� http://progit.org

� http://gitready.com

2.7 Development in branches

2.7.1 Purpose

The complexity of the QGIS source code has increased considerably during the last years. Therefore it is
hard to anticipate the side effects that the addition of a feature will have. In the past, the QGIS project
had very long release cycles because it was a lot of work to reetablish the stability of the software system
after new features were added. To overcome these problems, QGIS switched to a development model
where new features are coded in GIT branches first and merged to master (the main branch) when they
are finished and stable. This section describes the procedure for branching and merging in the QGIS
project.

2.7.2 Процедура

� Initial announcement on mailing list: Before starting, make an announcement on the
developer mailing list to see if another developer is already working on the same feature.
Also contact the technical advisor of the project steering committee (PSC). If the new feature
requires any changes to the QGIS architecture, a request for comment (RFC) is needed.

Create a branch: Create a new GIT branch for the development of the new feature.

git checkout -b newfeature

Now you can start developing. If you plan to do extensive on that branch, would like to share the work
with other developers, and have write access to the upstream repo, you can push your repo up to the
QGIS official repo by doing:

git push origin newfeature

Note: If the branch already exists your changes will be pushed into it.

Rebase to master regularly: It is recommended to rebase to incorporate the changes in master to the
branch on a regular basis. This makes it easier to merge the branch back to master later. After a rebase
you need to git push -f to your forked repo.

Note: Never git push -f to the origin repository! Only use this for your working branch.

2.5. QGIS уебсайт източници: 13

http://gitref.org
http://progit.org
http://gitready.com

QGIS Developers Guide, Release 2.18

git rebase master

2.7.3 Documentation on wiki

It is also recommended to document the intended changes and the current status of the work on a wiki
page.

2.7.4 Testing before merging back to master

When you are finished with the new feature and happy with the stability, make an announcement on the
developer list. Before merging back, the changes will be tested by developers and users.

2.8 Submitting Patches and Pull Requests

There are a few guidelines that will help you to get your patches and pull requests into QGIS easily, and
help us deal with the patches that are sent to use easily.

2.8.1 Pull Requests

In general it is easier for developers if you submit GitHub pull requests. We do not describe Pull Requests
here, but rather refer you to the GitHub pull request documentation.

If you make a pull request we ask that you please merge master to your PR branch regularly so that
your PR is always mergable to the upstream master branch.

If you are a developer and wish to evaluate the pull request queue, there is a very nice tool that lets you
do this from the command line

Please see the section below on ‘getting your patch noticed’. In general when you submit a PR you should
take the responsibility to follow it through to completion - respond to queries posted by other developers,
seek out a ‘champion’ for your feature and give them a gentle reminder occasionally if you see that your
PR is not being acted on. Please bear in mind that the QGIS project is driven by volunteer effort and
people may not be able to attend to your PR instantaneously. If you feel the PR is not receiving the
attention it deserves your options to accelerate it should be (in order of priority):

� Send a message to the mailing list ‘marketing’ your PR and how wonderful it will be to have it
included in the code base.

� Send a message to the person your PR has been assigned to in the PR queue.

� Send a message to Marco Hugentobler (who manages the PR queue).

� Send a message to the project steering committee asking them to help see your PR incorporated
into the code base.

Best practice for creating a pull request

� Always start a feature branch from current master.

� If you are coding a feature branch, don’t “merge” anything into that branch, rather rebase as
described in the next point to keep your history clean.

� Before you create a pull request do git fetch origin and git rebase origin/master (given
origin is the remote for upstream and not your own remote, check your .git/config or do git

remote -v | grep github.com/qgis).

� You may do a git rebase like in the last line repeatedly without doing any damage (as long as the
only purpose of your branch is to get merged into master).

14 Глава 2. GIT Access

https://help.github.com/articles/using-pull-requests
http://thechangelog.com/git-pulls-command-line-tool-for-github-pull-requests/
http://thechangelog.com/git-pulls-command-line-tool-for-github-pull-requests/

QGIS Developers Guide, Release 2.18

� Attention: After a rebase you need to git push -f to your forked repo. CORE DEVS: DO
NOT DO THIS ON THE QGIS PUBLIC REPOSITORY!

Special labels to notify documentors

Besides common tags you can add to classify your PR, there are special ones you can use to automatically
generate issue reports in QGIS-Documentation repository as soon as your pull request is merged:

� [needs-docs] to instruct doc writers to please add some extra documentation after a fix or addition
to an already existing functionality.

� [feature] in case of new functionnality. Filling a good description in your PR will be a good start.

Please devs use these labels (case insensitive) so doc writers have issues to work on and have an overview
of things to do. BUT please also take time to add some text: either in the commit OR in the docs itself.

For merging a pull request

Option A:

� click the merge button (Creates a non-fast-forward merge)

Option B:

� Checkout the pull request

� Test (Also required for option A, obviously)

� checkout master, git merge pr/1234

� Optional: git pull --rebase: Creates a fast-forward, no “merge commit” is made. Cleaner history,
but it is harder to revert the merge.

� git push (NEVER EVER use the -f option here)

2.9 Patch file naming

If the patch is a fix for a specific bug, please name the file with the bug number in it e.g. bug777fix.patch,
and attach it to the original bug report in trac.

If the bug is an enhancement or new feature, its usually a good idea to create a ticket in trac first and
then attach your patch.

2.10 Create your patch in the top level QGIS source dir

This makes it easier for us to apply the patches since we don’t need to navigate to a specific place in the
source tree to apply the patch. Also when I receive patches I usually evaluate them using merge, and
having the patch from the top level dir makes this much easier. Below is an example of how you can
include multiple changed files into your patch from the top level directory:

cd QGIS

git checkout master

git pull origin master

git checkout newfeature

git format-patch master --stdout > bug777fix.patch

This will make sure your master branch is in sync with the upstream repository, and then generate a
patch which contains the delta between your feature branch and what is in the master branch.

2.9. Patch file naming 15

https://gist.github.com/piscisaureus/3342247
http://hub.qgis.org/projects/quantum-gis
http://hub.qgis.org/projects/quantum-gis

QGIS Developers Guide, Release 2.18

2.10.1 Getting your patch noticed

QGIS developers are busy folk. We do scan the incoming patches on bug reports but sometimes we
miss things. Don’t be offended or alarmed. Try to identify a developer to help you - using the Technical
Resources and contact them asking them if they can look at your patch. If you don’t get any response,
you can escalate your query to one of the Project Steering Committee members (contact details also
available in the Technical Resources).

2.10.2 Due Diligence

QGIS is licensed under the GPL. You should make every effort to ensure you only submit patches which
are unencumbered by conflicting intellectual property rights. Also do not submit code that you are not
happy to have made available under the GPL.

2.11 Obtaining GIT Write Access

Write access to QGIS source tree is by invitation. Typically when a person submits several (there is
no fixed number here) substantial patches that demonstrate basic competence and understanding of
C++ and QGIS coding conventions, one of the PSC members or other existing developers can nominate
that person to the PSC for granting of write access. The nominator should give a basic promotional
paragraph of why they think that person should gain write access. In some cases we will grant write
access to non C++ developers e.g. for translators and documentors. In these cases, the person should
still have demonstrated ability to submit patches and should ideally have submitted several substantial
patches that demonstrate their understanding of modifying the code base without breaking things, etc.

Note: Since moving to GIT, we are less likely to grant write access to new developers since it is trivial
to share code within github by forking QGIS and then issuing pull requests.

Always check that everything compiles before making any commits / pull requests. Try to be aware
of possible breakages your commits may cause for people building on other platforms and with older /
newer versions of libraries.

When making a commit, your editor (as defined in $EDITOR environment variable) will appear and
you should make a comment at the top of the file (above the area that says ‘don’t change this’). Put
a descriptive comment and rather do several small commits if the changes across a number of files are
unrelated. Conversely we prefer you to group related changes into a single commit.

16 Глава 2. GIT Access

http://qgis.org/en/site/getinvolved/governance/organisation/governance.html#community-resources
http://qgis.org/en/site/getinvolved/governance/organisation/governance.html#community-resources

Глава 3

Unit Testing

� The QGIS testing framework - an overview
– Creating a unit test

� Adding your unit test to CMakeLists.txt
� The ADD_QGIS_TEST macro explained
� Building your unit test
� Run your tests

As of November 2007 we require all new features going into master to be accompanied with a unit test.
Initially we have limited this requirement to qgis_core, and we will extend this requirement to other
parts of the code base once people are familiar with the procedures for unit testing explained in the
sections that follow.

3.1 The QGIS testing framework - an overview

Unit testing is carried out using a combination of QTestLib (the Qt testing library) and CTest (a
framework for compiling and running tests as part of the CMake build process). Lets take an overview
of the process before I delve into the details:

� There is some code you want to test, e.g. a class or function. Extreme programming advocates
suggest that the code should not even be written yet when you start building your tests, and
then as you implement your code you can immediately validate each new functional part you add
with your test. In practive you will probably need to write tests for pre-existing code in QGIS
since we are starting with a testing framework well after much application logic has already been
implemented.

� You create a unit test. This happens under <QGIS Source Dir>/tests/src/core in the case of
the core lib. The test is basically a client that creates an instance of a class and calls some methods
on that class. It will check the return from each method to make sure it matches the expected
value. If any one of the calls fails, the unit will fail.

� You include QtTestLib macros in your test class. This macro is processed by the Qt meta object
compiler (moc) and expands your test class into a runnable application.

� You add a section to the CMakeLists.txt in your tests directory that will build your test.

� You ensure you have ENABLE_TESTING enabled in ccmake / cmakesetup. This will ensure your tests
actually get compiled when you type make.

� You optionally add test data to <QGIS Source Dir>/tests/testdata if your test is data driven
(e.g. needs to load a shapefile). These test data should be as small as possible and wherever possible
you should use the existing datasets already there. Your tests should never modify this data in situ,
but rather may a temporary copy somewhere if needed.

17

QGIS Developers Guide, Release 2.18

� You compile your sources and install. Do this using normal make && (sudo) make install

procedure.

� You run your tests. This is normally done simply by doing make test after the make install

step, though I will explain other aproaches that offer more fine grained control over running tests.

Right with that overview in mind, I will delve into a bit of detail. I’ve already done much of the
configuration for you in CMake and other places in the source tree so all you need to do are the easy
bits - writing unit tests!

3.1.1 Creating a unit test

Creating a unit test is easy - typically you will do this by just creating a single .cpp file (not .h file is
used) and implement all your test methods as public methods that return void. I’ll use a simple test class
for QgsRasterLayer throughout the section that follows to illustrate. By convention we will name our test
with the same name as the class they are testing but prefixed with ‘Test’. So our test implementation
goes in a file called testqgsrasterlayer.cpp and the class itself will be TestQgsRasterLayer. First we add
our standard copyright banner:

/***

testqgsvectorfilewriter.cpp

Date : Friday, Jan 27, 2015

Copyright: (C) 2015 by Tim Sutton

Email: tim@kartoza.com

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

***/

Next we use start our includes needed for the tests we plan to run. There is one special include all tests
should have:

include <QtTest / QtTest>

Beyond that you just continue implementing your class as per normal, pulling in whatever headers you
may need:

//Qt includes...

include <QObject>

include <QString>

include <QObject>

include <QApplication>

include <QFileInfo>

include <QDir>

//qgis includes...

include <qgsrasterlayer.h>

include <qgsrasterbandstats.h>

include <qgsapplication.h>

Since we are combining both class declaration and implementation in a single file the class declaration
comes next. We start with our doxygen documentation. Every test case should be properly documented.
We use the doxygen ingroup directive so that all the UnitTests appear as a module in the generated
Doxygen documentation. After that comes a short description of the unit test and the class must inherit
from QObject and include the Q_OBJECT macro.

18 Глава 3. Unit Testing

QGIS Developers Guide, Release 2.18

/** \ingroup UnitTests

* This is a unit test for the QgsRasterLayer class.

*/

class TestQgsRasterLayer: public QObject

{

Q_OBJECT

All our test methods are implemented as private slots. The QtTest framework will sequentially call each
private slot method in the test class. There are four ‘special’ methods which if implemented will be called
at the start of the unit test (initTestCase), at the end of the unit test (cleanupTestCase). Before each
test method is called, the init() method will be called and after each test method is called the cleanup()
method is called. These methods are handy in that they allow you to allocate and cleanup resources
prior to running each test, and the test unit as a whole.

private slots:

// will be called before the first testfunction is executed.

void initTestCase();

// will be called after the last testfunction was executed.

void cleanupTestCase(){};

// will be called before each testfunction is executed.

void init(){};

// will be called after every testfunction.

void cleanup();

Then come your test methods, all of which should take no parameters and should return void. The
methods will be called in order of declaration. I am implementing two methods here which illustrates
two types of testing. In the first case I want to generally test the various parts of the class are working, I
can use a functional testing approach. Once again, extreme programmers would advocate writing these
tests before implementing the class. Then as you work your way through your class implementation you
iteratively run your unit tests. More and more test functions should complete sucessfully as your class
implementation work progresses, and when the whole unit test passes, your new class is done and is now
complete with a repeatable way to validate it.

Typically your unit tests would only cover the public API of your class, and normally you do not need to
write tests for accessors and mutators. If it should happen that an acccessor or mutator is not working
as expected you would normally implement a regression test to check for this (see lower down).

//

// Functional Testing

//

/** Check if a raster is valid. */

void isValid();

// more functional tests here ...

Next we implement our regression tests. Regression tests should be implemented to replicate the
conditions of a particular bug. For example I recently received a report by email that the cell count
by rasters was off by 1, throwing off all the statistics for the raster bands. I opened a bug (ticket #832)
and then created a regression test that replicated the bug using a small test dataset (a 10x10 raster).
Then I ran the test and ran it, verifying that it did indeed fail (the cell count was 99 instead of 100). Then
I went to fix the bug and reran the unit test and the regression test passed. I committed the regression
test along with the bug fix. Now if anybody breakes this in the source code again in the future, we can
immediatly identify that the code has regressed. Better yet before committing any changes in the future,
running our tests will ensure our changes don’t have unexpected side effects - like breaking existing
functionality.

There is one more benefit to regression tests - they can save you time. If you ever fixed a bug that involved
making changes to the source, and then running the application and performing a series of convoluted
steps to replicate the issue, it will be immediately apparent that simply implementing your regression
test before fixing the bug will let you automate the testing for bug resolution in an efficient manner.

3.1. The QGIS testing framework - an overview 19

QGIS Developers Guide, Release 2.18

To implement your regression test, you should follow the naming convention of regression<TicketID>
for your test functions. If no redmine ticket exists for the regression, you should create one first. Using
this approach allows the person running a failed regression test easily go and find out more information.

//

// Regression Testing

//

/** This is our second test case...to check if a raster

* reports its dimensions properly. It is a regression test

* for ticket #832 which was fixed with change r7650.

*/

void regression832();

// more regression tests go here ...

Finally in our test class declaration you can declare privately any data members and helper methods
your unit test may need. In our case I will declare a QgsRasterLayer * which can be used by any of our
test methods. The raster layer will be created in the initTestCase() function which is run before any
other tests, and then destroyed using cleanupTestCase() which is run after all tests. By declaring helper
methods (which may be called by various test functions) privately, you can ensure that they wont be
automatically run by the QTest executable that is created when we compile our test.

private:

// Here we have any data structures that may need to

// be used in many test cases.

QgsRasterLayer * mpLayer;

};

That ends our class declaration. The implementation is simply inlined in the same file lower down. First
our init and cleanup functions:

void TestQgsRasterLayer::initTestCase()

{

// init QGIS’s paths - true means that all path will be inited from prefix

QString qgisPath = QCoreApplication::applicationDirPath ();

QgsApplication::setPrefixPath(qgisPath, TRUE);

ifdef Q_OS_LINUX

QgsApplication::setPkgDataPath(qgisPath + "/../share/qgis");

endif

//create some objects that will be used in all tests...

std::cout << "PrefixPATH: " << QgsApplication::prefixPath().toLocal8Bit().data() << std::endl;

std::cout << "PluginPATH: " << QgsApplication::pluginPath().toLocal8Bit().data() << std::endl;

std::cout << "PkgData PATH: " << QgsApplication::pkgDataPath().toLocal8Bit().data() << std::endl;

std::cout << "User DB PATH: " << QgsApplication::qgisUserDbFilePath().toLocal8Bit().data() << std::endl;

//create a raster layer that will be used in all tests...

QString myFileName (TEST_DATA_DIR); //defined in CmakeLists.txt

myFileName = myFileName + QDir::separator() + "tenbytenraster.asc";

QFileInfo myRasterFileInfo (myFileName);

mpLayer = new QgsRasterLayer (myRasterFileInfo.filePath(),

myRasterFileInfo.completeBaseName());

}

void TestQgsRasterLayer::cleanupTestCase()

{

delete mpLayer;

}

The above init function illustrates a couple of interesting things.

1. I needed to manually set the QGIS application data path so that resources such as srs.db can be
found properly.

20 Глава 3. Unit Testing

QGIS Developers Guide, Release 2.18

2. Secondly, this is a data driven test so we needed to provide a way to generically
locate the tenbytenraster.asc file. This was achieved by using the compiler define
TEST_DATA_PATH. The define is created in the CMakeLists.txt configuration file under <QGIS

Source Root>/tests/CMakeLists.txt and is available to all QGIS unit tests. If you need test data
for your test, commit it under <QGIS Source Root>/tests/testdata. You should only commit
very small datasets here. If your test needs to modify the test data, it should make a copy of it
first.

Qt also provides some other interesting mechanisms for data driven testing, so if you are interested to
know more on the topic, consult the Qt documentation.

Next lets look at our functional test. The isValid() test simply checks the raster layer was correctly loaded
in the initTestCase. QVERIFY is a Qt macro that you can use to evaluate a test condition. There are a
few other use macros Qt provide for use in your tests including:

� QCOMPARE (actual, expected)

� QEXPECT_FAIL (dataIndex, comment, mode)

� QFAIL (message)

� QFETCH (type, name)

� QSKIP (description, mode)

� QTEST (actual, testElement)

� QTEST_APPLESS_MAIN (TestClass)

� QTEST_MAIN (TestClass)

� QTEST_NOOP_MAIN ()

� QVERIFY2 (condition, message)

� QVERIFY (condition)

� QWARN (message)

Some of these macros are useful only when using the Qt framework for data driven testing (see the Qt
docs for more detail).

void TestQgsRasterLayer::isValid()

{

QVERIFY (mpLayer->isValid());

}

Normally your functional tests would cover all the range of functionality of your classes public API where
feasible. With our functional tests out the way, we can look at our regression test example.

Since the issue in bug #832 is a misreported cell count, writing our test is simply a matter of using
QVERIFY to check that the cell count meets the expected value:

void TestQgsRasterLayer::regression832()

{

QVERIFY (mpLayer->getRasterXDim() == 10);

QVERIFY (mpLayer->getRasterYDim() == 10);

// regression check for ticket #832

// note getRasterBandStats call is base 1

QVERIFY (mpLayer->getRasterBandStats(1).elementCountInt == 100);

}

With all the unit test functions implemented, there one final thing we need to add to our test class:

QTEST_MAIN(TestQgsRasterLayer)

include "testqgsrasterlayer.moc"

3.1. The QGIS testing framework - an overview 21

QGIS Developers Guide, Release 2.18

The purpose of these two lines is to signal to Qt’s moc that his is a QtTest (it will generate a main
method that in turn calls each test funtion.The last line is the include for the MOC generated sources.
You should replace ‘testqgsrasterlayer’ with the name of your class in lower case.

3.2 Adding your unit test to CMakeLists.txt

Adding your unit test to the build system is simply a matter of editing the CMakeLists.txt in the test
directory, cloning one of the existing test blocks, and then replacing your test class name into it. For
example:

QgsRasterLayer test

ADD_QGIS_TEST(rasterlayertest testqgsrasterlayer.cpp)

3.3 The ADD_QGIS_TEST macro explained

I’ll run through these lines briefly to explain what they do, but if you are not interested, just do the step
explained in the above section and section.

MACRO (ADD_QGIS_TEST testname testsrc)

SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})

SET(qgis_${testname}_MOC_CPPS ${testsrc})

QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})

ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})

ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})

ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)

TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)

SET_TARGET_PROPERTIES(qgis_${testname}

PROPERTIES

skip the full RPATH for the build tree

SKIP_BUILD_RPATHTRUE

when building, use the install RPATH already

(so it doesn’t need to relink when installing)

BUILD_WITH_INSTALL_RPATH TRUE

the RPATH to be used when installing

INSTALL_RPATH ${QGIS_LIB_DIR}

add the automatically determined parts of the RPATH

which point to directories outside the build tree to the install RPATH

INSTALL_RPATH_USE_LINK_PATH true)

IF (APPLE)

For Mac OS X, the executable must be at the root of the bundle’s executable folder

INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})

ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})

ELSE (APPLE)

INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)

ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})

ENDIF (APPLE)

ENDMACRO (ADD_QGIS_TEST)

Lets look a little more in detail at the individual lines. First we define the list of sources for our test.
Since we have only one source file (following the methodology I described above where class declaration
and definition are in the same file) its a simple statement:

SET(qgis_${testname}_SRCS ${testsrc} ${util_SRCS})

Since our test class needs to be run through the Qt meta object compiler (moc) we need to provide a
couple of lines to make that happen too:

22 Глава 3. Unit Testing

QGIS Developers Guide, Release 2.18

SET(qgis_${testname}_MOC_CPPS ${testsrc})

QT4_WRAP_CPP(qgis_${testname}_MOC_SRCS ${qgis_${testname}_MOC_CPPS})

ADD_CUSTOM_TARGET(qgis_${testname}moc ALL DEPENDS ${qgis_${testname}_MOC_SRCS})

Next we tell cmake that it must make an executable from the test class. Remember in the previous section
on the last line of the class implementation I included the moc outputs directly into our test class, so
that will give it (among other things) a main method so the class can be compiled as an executable:

ADD_EXECUTABLE(qgis_${testname} ${qgis_${testname}_SRCS})

ADD_DEPENDENCIES(qgis_${testname} qgis_${testname}moc)

Next we need to specify any library dependencies. At the moment, classes have been implemented with a
catch-all QT_LIBRARIES dependency, but I will be working to replace that with the specific Qt libraries
that each class needs only. Of course you also need to link to the relevant qgis libraries as required by
your unit test.

TARGET_LINK_LIBRARIES(qgis_${testname} ${QT_LIBRARIES} qgis_core)

Next I tell cmake to install the tests to the same place as the qgis binaries itself. This is something I
plan to remove in the future so that the tests can run directly from inside the source tree.

SET_TARGET_PROPERTIES(qgis_${testname}

PROPERTIES

skip the full RPATH for the build tree

SKIP_BUILD_RPATHTRUE

when building, use the install RPATH already

(so it doesn’t need to relink when installing)

BUILD_WITH_INSTALL_RPATH TRUE

the RPATH to be used when installing

INSTALL_RPATH ${QGIS_LIB_DIR}

add the automatically determined parts of the RPATH

which point to directories outside the build tree to the install RPATH

INSTALL_RPATH_USE_LINK_PATH true)

IF (APPLE)

For Mac OS X, the executable must be at the root of the bundle’s executable folder

INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX})

ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/qgis_${testname})

ELSE (APPLE)

INSTALL(TARGETS qgis_${testname} RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/bin)

ADD_TEST(qgis_${testname} ${CMAKE_INSTALL_PREFIX}/bin/qgis_${testname})

ENDIF (APPLE)

Finally the above uses ADD_TEST to register the test with cmake / ctest. Here is where the best magic
happens - we register the class with ctest. If you recall in the overview I gave in the beginning of this
section, we are using both QtTest and CTest together. To recap, QtTest adds a main method to your test
unit and handles calling your test methods within the class. It also provides some macros like QVERIFY
that you can use as to test for failure of the tests using conditions. The output from a QtTest unit test
is an executable which you can run from the command line. However when you have a suite of tests and
you want to run each executable in turn, and better yet integrate running tests into the build process,
the CTest is what we use.

3.4 Building your unit test

To build the unit test you need only to make sure that ENABLE_TESTS=true in the cmake configuration.
There are two ways to do this:

1. Run ccmake .. (or cmakesetup .. under windows) and interactively set the ENABLE_TESTS flag
to ON.

2. Add a command line flag to cmake e.g. cmake -DENABLE_TESTS=true ..

3.4. Building your unit test 23

QGIS Developers Guide, Release 2.18

Other than that, just build QGIS as per normal and the tests should build too.

3.5 Run your tests

The simplest way to run the tests is as part of your normal build process:

make && make install && make test

The make test command will invoke CTest which will run each test that was registered using the
ADD_TEST CMake directive described above. Typical output from make test will look like this:

Running tests...

Start processing tests

Test project /Users/tim/dev/cpp/qgis/build

13 Testing qgis_applicationtest***Exception: Other

23 Testing qgis_filewritertest *** Passed

33 Testing qgis_rasterlayertest*** Passed

0 tests passed, 3 tests failed out of 3

The following tests FAILED:

1- qgis_applicationtest (OTHER_FAULT)

Errors while running CTest

make: *** [test] Error 8

If a test fails, you can use the ctest command to examine more closely why it failed. Use the -R option
to specify a regex for which tests you want to run and -V to get verbose output:

$ ctest -R appl -V

Start processing tests

Test project /Users/tim/dev/cpp/qgis/build

Constructing a list of tests

Done constructing a list of tests

Changing directory into /Users/tim/dev/cpp/qgis/build/tests/src/core

13 Testing qgis_applicationtest

Test command: /Users/tim/dev/cpp/qgis/build/tests/src/core/qgis_applicationtest

********* Start testing of TestQgsApplication *********

Config: Using QTest library 4.3.0, Qt 4.3.0

PASS : TestQgsApplication::initTestCase()

PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../

PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis

PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis

User DB PATH: /Users/tim/.qgis/qgis.db

PASS : TestQgsApplication::getPaths()

PrefixPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../

PluginPATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//lib/qgis

PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis

User DB PATH: /Users/tim/.qgis/qgis.db

QDEBUG : TestQgsApplication::checkTheme() Checking if a theme icon exists:

QDEBUG : TestQgsApplication::checkTheme()

/Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis/themes/default//mIconProjectionDisabled.png

FAIL!: TestQgsApplication::checkTheme() ’!myPixmap.isNull()’ returned FALSE. ()

Loc: [/Users/tim/dev/cpp/qgis/tests/src/core/testqgsapplication.cpp(59)]

PASS : TestQgsApplication::cleanupTestCase()

Totals: 3 passed, 1 failed, 0 skipped

********* Finished testing of TestQgsApplication *********

-- Process completed

***Failed

0 tests passed, 1 tests failed out of 1

24 Глава 3. Unit Testing

QGIS Developers Guide, Release 2.18

The following tests FAILED:

1- qgis_applicationtest (Failed)

Errors while running CTest

Well that concludes this section on writing unit tests in QGIS. We hope you will get into the habit of
writing test to test new functionality and to check for regressions. Some aspects of the test system (in
particular the CMakeLists.txt parts) are still being worked on so that the testing framework works in a
truly platform way. I will update this document as things progress.

3.5. Run your tests 25

QGIS Developers Guide, Release 2.18

26 Глава 3. Unit Testing

Глава 4

Getting up and running with QtCreator and QGIS

� Installing QtCreator
� Setting up your project
� Setting up your build environment
� Setting your run environment
� Running and debugging

QtCreator is a newish IDE from the makers of the Qt library. With QtCreator you can build any C++
project, but it’s really optimised for people working on Qt(4) based applications (including mobile apps).
Everything I describe below assumes you are running Ubuntu 11.04 ‘Natty’.

4.1 Installing QtCreator

This part is easy:

sudo apt-get install qtcreator qtcreator-doc

After installing you should find it in your gnome menu.

4.2 Setting up your project

I’m assuming you have already got a local QGIS clone containing the source code, and have installed all
needed build dependencies etc. There are detailed instructions for git access and dependency installation.

On my system I have checked out the code into $HOME/dev/cpp/QGIS and the rest of the article is written
assuming that, you should update these paths as appropriate for your local system.

On launching QtCreator do:

File -> Open File or Project

Then use the resulting file selection dialog to browse to and open this file:

$HOME/dev/cpp/QGIS/CMakeLists.txt

27

https://htmlpreview.github.io/?https://github.com/qgis/QGIS/blob/master/doc/INSTALL.html

QGIS Developers Guide, Release 2.18

Next you will be prompted for a build location. I create a specific build dir for QtCreator to work in
under:

$HOME/dev/cpp/QGIS/build-master-qtcreator

Its probably a good idea to create separate build directories for different branches if you can afford the
disk space.

Next you will be asked if you have any CMake build options to pass to CMake. We will tell CMake that
we want a debug build by adding this option:

-DCMAKE_BUILD_TYPE=Debug

28 Глава 4. Getting up and running with QtCreator and QGIS

QGIS Developers Guide, Release 2.18

That’s the basics of it. When you complete the Wizard, QtCreator will start scanning the source tree
for autocompletion support and do some other housekeeping stuff in the background. We want to tweak
a few things before we start to build though.

4.3 Setting up your build environment

Click on the ‘Projects’ icon on the left of the QtCreator window.

4.3. Setting up your build environment 29

QGIS Developers Guide, Release 2.18

Select the build settings tab (normally active by default).

We now want to add a custom process step. Why? Because QGIS can currently only run from an install
directory, not its build directory, so we need to ensure that it is installed whenever we build it. Under
‘Build Steps’, click on the ‘Add BuildStep’ combo button and choose ‘Custom Process Step’.

Now we set the following details:

Enable custom process step: [yes]

Command: make

Working directory: $HOME/dev/cpp/QGIS/build-master-qtcreator

Command arguments: install

30 Глава 4. Getting up and running with QtCreator and QGIS

QGIS Developers Guide, Release 2.18

You are almost ready to build. Just one note: QtCreator will need write permissions on the install prefix.
By default (which I am using here) QGIS is going to get installed to /usr/local/. For my purposes on
my development machine, I just gave myself write permissions to the /usr/local directory.

To start the build, click that big hammer icon on the bottom left of the window.

4.4 Setting your run environment

As mentioned above, we cannot run QGIS from directly in the build directly, so we need to create a
custom run target to tell QtCreator to run QGIS from the install dir (in my case /usr/local/). To do
that, return to the projects configuration screen.

4.4. Setting your run environment 31

QGIS Developers Guide, Release 2.18

Now select the ‘Run Settings’ tab

We need to update the default run settings from using the ‘qgis’ run configuration to using a custom
one.

Do do that, click the ‘Add v’ combo button next to the Run configuration combo and choose ‘Custom
Executable’ from the top of the list.

32 Глава 4. Getting up and running with QtCreator and QGIS

QGIS Developers Guide, Release 2.18

Now in the properties area set the following details:

Executable: /usr/local/bin/qgis

Arguments :

Working directory: $HOME

Run in terminal: [no]

Debugger: C++ [yes]

Qml [no]

Then click the ‘Rename’ button and give your custom executable a meaningful name e.g. ‘Installed QGIS’

4.5 Running and debugging

Now you are ready to run and debug QGIS. To set a break point, simply open a source file and click in
the left column.

Now launch QGIS under the debugger by clicking the icon with a bug on it in the bottom left of the
window.

4.5. Running and debugging 33

QGIS Developers Guide, Release 2.18

34 Глава 4. Getting up and running with QtCreator and QGIS

Глава 5

HIG (Human Interface Guidelines)

In order for all graphical user interface elements to appear consistant and to all the user to instinctively
use dialogs, it is important that the following guidelines are followed in layout and design of GUIs.

1. Group related elements using group boxes: Try to identify elements that can be grouped together
and then use group boxes with a label to identify the topic of that group. Avoid using group boxes
with only a single widget / item inside.

2. Capitalise first letter only in labels: Labels (and group box labels) should be written as a phrase
with leading capital letter, and all remaining words written with lower case first letters

3. Do not end labels for widgets or group boxes with a colon: Adding a colon causes visual noise and
does not impart additional meaning, so don’t use them. An exception to this rule is when you have
two labels next to each other e.g.: Label1 Plugin (Path:) Label2 [/path/to/plugins]

4. Keep harmful actions away from harmless ones: If you have actions for ‘delete’, ‘remove’ etc, try
to impose adequate space between the harmful action and innocuous actions so that the users is
less likely to inadvertantly click on the harmful action.

5. Always use a QButtonBox for ‘OK’, ‘Cancel’ etc buttons: Using a button box will ensure that the
order of ‘OK’ and ‘Cancel’ etc, buttons is consistent with the operating system / locale / desktop
environment that the user is using.

6. Tabs should not be nested. If you use tabs, follow the style of the tabs used in
QgsVectorLayerProperties / QgsProjectProperties etc. i.e. tabs at top with icons at 22x22.

7. Widget stacks should be avoided if at all possible. They cause problems with layouts and
inexplicable (to the user) resizing of dialogs to accommodate widgets that are not visible.

8. Try to avoid technical terms and rather use a laymans equivalent e.g. use the word ‘Transparency’
rather than ‘Alpha Channel’ (contrived example), ‘Text’ instead of ‘String’ and so on.

9. Use consistent iconography. If you need an icon or icon elements, please contact Robert Szczepanek
on the mailing list for assistance.

10. Place long lists of widgets into scroll boxes. No dialog should exceed 580 pixels in height and 1000
pixels in width.

11. Separate advanced options from basic ones. Novice users should be able to quickly access the items
needed for basic activities without needing to concern themselves with complexity of advanced
features. Advanced features should either be located below a dividing line, or placed onto a separate
tab.

12. Don’t add options for the sake of having lots of options. Strive to keep the user interface minimalistic
and use sensible defaults.

13. If clicking a button will spawn a new dialog, an ellipsis (...) should be suffixed to the button text.

35

QGIS Developers Guide, Release 2.18

5.1 Автори

� Tim Sutton (author and editor)

� Gary Sherman

� Marco Hugentobler

� Matthias Kuhn

36 Глава 5. HIG (Human Interface Guidelines)

Глава 6

OGC Conformance Testing

� Setup of WMS 1.3 and WMS 1.1.1 conformance tests
� Test project
� Running the WMS 1.3.0 test
� Running the WMS 1.1.1 test

The Open Geospatial Consortium (OGC) provides tests which can be run free of charge to make sure a
server is compliant with a certain specification. This chapter provides a quick tutorial to setup the WMS
tests on an Ubuntu system. A detailed documentation can be found at the OGC website.

6.1 Setup of WMS 1.3 and WMS 1.1.1 conformance tests

sudo apt-get install openjdk-8-jdk maven

cd ~/src

git clone https://github.com/opengeospatial/teamengine.git

cd teamengine

mvn install

mkdir ~/TE_BASE

export TE_BASE=~/TE_BASE

unzip -o ./teamengine-console/target/teamengine-console-4.11-SNAPSHOT-base.zip -d $TE_BASE

mkdir ~/te-install

unzip -o ./teamengine-console/target/teamengine-console-4.11-SNAPSHOT-bin.zip -d ~/te-install

Download and install WMS 1.3.0 test

cd ~/src

git clone https://github.com/opengeospatial/ets-wms13.git

cd ets-wms13

mvn install

Download and install WMS 1.1.1 test

cd ~/src

git clone https://github.com/opengeospatial/ets-wms11.git

cd ets-wms11

mvn install

6.2 Test project

For the WMS tests, data can be downloaded and loaded into a QGIS project:

37

http://www.opengeospatial.org/compliance

QGIS Developers Guide, Release 2.18

wget http://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/data-wms-1.3.0.zip

unzip data-wms-1.3.0.zip

Then create a QGIS project according to the description in
http://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/. To run the tests, we need to
provide the GetCapabilities URL of the service later.

6.3 Running the WMS 1.3.0 test

export PATH=/usr/lib/jvm/java-8-openjdk-amd64/bin:$PATH

export TE_BASE=$HOME/TE_BASE

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

cd ~/te-install

./bin/unix/test.sh -source=$HOME/src/ets-wms13/src/main/scripts/ctl/main.xml

6.4 Running the WMS 1.1.1 test

export PATH=/usr/lib/jvm/java-8-openjdk-amd64/bin:$PATH

export TE_BASE=$HOME/TE_BASE

export ETS_SRC=$HOME/ets-resources

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

cd ~/te-install

./bin/unix/test.sh -source=$HOME/src/ets-wms11/src/main/scripts/ctl/wms.xml

38 Глава 6. OGC Conformance Testing

https://github.com/qgis/QGIS/blob/master/tests/testdata/qgis_server/ets-wms12/project.qgs
http://cite.opengeospatial.org/teamengine/about/wms/1.3.0/site/

Index

OGC Conformance Testing, 36

39

	QGIS Coding Standards
	
	Qt Designer
	C++
	
	Enumerated Types
	Global Constants & Macros
	Qt Signals and Slots
	
	API Compatibility
	Coding Style
	Credits for contributions

	GIT Access
	
	Accessing the Repository
	Check out a branch
	QGIS documentation sources
	QGIS :
	GIT Documentation
	Development in branches
	Submitting Patches and Pull Requests
	Patch file naming
	Create your patch in the top level QGIS source dir
	Obtaining GIT Write Access

	Unit Testing
	The QGIS testing framework - an overview
	Adding your unit test to CMakeLists.txt
	The ADD_QGIS_TEST macro explained
	Building your unit test
	Run your tests

	Getting up and running with QtCreator and QGIS
	Installing QtCreator
	Setting up your project
	Setting up your build environment
	Setting your run environment
	Running and debugging

	HIG (Human Interface Guidelines)
	

	OGC Conformance Testing
	Setup of WMS 1.3 and WMS 1.1.1 conformance tests
	Test project
	Running the WMS 1.3.0 test
	Running the WMS 1.1.1 test

	Index

