
PyQGIS developer cookbook
Sürüm 2.14

QGIS Project

09 August 2017

Contents

1 Başlangıç 1
1.1 Run Python code when QGIS starts . 1
1.2 Python Console . 2
1.3 Python Plugins . 3
1.4 Python Applications . 3

2 Loading Projects 7

3 Yüklenen katmanlar 9
3.1 Vector Layers . 9
3.2 Raster Layers . 11
3.3 Map Layer Registry . 11

4 Raster Katmanları kullanma 13
4.1 Layer Details . 13
4.2 Renderer . 13
4.3 Refreshing Layers . 15
4.4 Query Values . 15

5 Vektör Katmanları Kullanma 17
5.1 Retrieving information about attributes . 17
5.2 Selecting features . 18
5.3 Iterating over Vector Layer . 18
5.4 Modifying Vector Layers . 20
5.5 Modifying Vector Layers with an Editing Buffer . 21
5.6 Using Spatial Index . 22
5.7 Writing Vector Layers . 23
5.8 Memory Provider . 24
5.9 Appearance (Symbology) of Vector Layers . 25
5.10 Further Topics . 32

6 Geometri Kullanımı 33
6.1 Geometry Construction . 33
6.2 Access to Geometry . 34
6.3 Geometry Predicates and Operations . 34

7 Projeksiyon Desteği 37
7.1 Coordinate reference systems . 37
7.2 Projections . 38

8 Harita tuvalini kullanma 39
8.1 Embedding Map Canvas . 39
8.2 Using Map Tools with Canvas . 40

i

8.3 Rubber Bands and Vertex Markers . 41
8.4 Writing Custom Map Tools . 42
8.5 Writing Custom Map Canvas Items . 43

9 Harita İşleme ve Yazdırma 45
9.1 Simple Rendering . 45
9.2 Rendering layers with different CRS . 46
9.3 Output using Map Composer . 46

10 İfadeler, Filtreleme ve Hesaplama Değerleri 49
10.1 Parsing Expressions . 50
10.2 Evaluating Expressions . 50
10.3 Examples . 51

11 Ayarları okuma ve depolama 53

12 Kullanıcı ile iletişim 55
12.1 Mesajlar gösteriliyor. :sınıf:’QgsMesajÇubuğu’sınıf . 55
12.2 İlerleme gösteriliyor . 56
12.3 Kaydoluyor . 57

13 Python Eklentileri Geliştirme 59
13.1 Bir eklenti yazma . 60
13.2 Eklenti içeriği . 60
13.3 Dokümantasyon . 64
13.4 Translation . 65

14 Yazdırma ve hata ayıklama için IDE ayarları 67
14.1 A note on configuring your IDE on Windows . 67
14.2 Debugging using Eclipse and PyDev . 68
14.3 Debugging using PDB . 72

15 Eklenti Katmanlarının Kullanımı 73
15.1 QgsEklentiKatmanı Altsınıfı oluşturma . 73

16 Eski QGIS versiyonları ile uyumluluk 75
16.1 Plugin menu . 75

17 Releasing your plugin 77
17.1 Metadata ve isimler . 77
17.2 Kod ve yardım . 77
17.3 Resimi python eklenti kaynağı . 78

18 Kod Parçacıkları 81
18.1 Bir metodu anahtar kısa yolla nasıl çağırırsınız . 81
18.2 Katmanları nasıl açıp kaparsınız . 81
18.3 seçili özelliklerin özellik tablosuna nasıl erişilir . 81

19 Writing a Processing plugin 83
19.1 Creating a plugin that adds an algorithm provider . 83
19.2 Creating a plugin that contains a set of processing scripts . 83

20 Ağ analiz kütüphanesi 85
20.1 General information . 85
20.2 Building a graph . 85
20.3 Graph analysis . 87

21 QGIS Server Python Plugins 93
21.1 Server Filter Plugins architecture . 93
21.2 Raising exception from a plugin . 95

ii

21.3 Writing a server plugin . 95
21.4 Access control plugin . 98

Dizin 101

iii

iv

CHAPTER 1

Başlangıç

• Run Python code when QGIS starts
– PYQGIS_STARTUP environment variable
– The startup.py file

• Python Console
• Python Plugins
• Python Applications

– Using PyQGIS in standalone scripts
– Using PyQGIS in custom applications
– Running Custom Applications

This document is intended to work both as a tutorial and a reference guide. While it does not list all possible use
cases, it should give a good overview of the principal functionality.

Starting from 0.9 release, QGIS has optional scripting support using Python language. We’ve decided for Python
as it’s one of the most favourite languages for scripting. PyQGIS bindings depend on SIP and PyQt4. The reason
for using SIP instead of more widely used SWIG is that the whole QGIS code depends on Qt libraries. Python
bindings for Qt (PyQt) are done also using SIP and this allows seamless integration of PyQGIS with PyQt.

There are several ways how to use Python bindings in QGIS desktop, they are covered in detail in the following
sections:

• automatically run Python code when QGIS starts

• issue commands in Python console within QGIS

• create and use plugins in Python

• create custom applications based on QGIS API

Python bindings are also available for QGIS Server:

• starting from 2.8 release, Python plugins are also available on QGIS Server (see: Server Python Plugins)

• starting from 2.11 version (Master at 2015-08-11), QGIS Server library has Python bindings that can be
used to embed QGIS Server into a Python application.

There is a complete QGIS API reference that documents the classes from the QGIS libraries. Pythonic QGIS API
is nearly identical to the API in C++.

A good resource when dealing with plugins is to download some plugins from plugin repository and examine their
code. Also, the python/plugins/ folder in your QGIS installation contains some plugin that you can use to
learn how to develop such plugin and how to perform some of the most common tasks.

1.1 Run Python code when QGIS starts

There are two distinct methods to run Python code every time QGIS starts.

1

http://qgis.org/api/
http://plugins.qgis.org/

PyQGIS developer cookbook, Sürüm 2.14

1.1.1 PYQGIS_STARTUP environment variable

You can run Python code just before QGIS initialization completes by setting the PYQGIS_STARTUP environ-
ment variable to the path of an existing Python file.

This method is something you will probably rarely need, but worth mentioning here because it is one of the several
ways to run Python code within QGIS and because this code will run before QGIS initialization is complete. This
method is very useful for cleaning sys.path, which may have undesireable paths, or for isolating/loading the initial
environ without requiring a virt env, e.g. homebrew or MacPorts installs on Mac.

1.1.2 The startup.py file

Every time QGIS starts, the user’s Python home directory (usually: .qgis2/python) is searched for a file
named startup.py, if that file exists, it is executed by the embedded Python interpreter.

1.2 Python Console

For scripting, it is possible to take advantage of integrated Python console. It can be opened from menu: Plugins
→ Python Console. The console opens as a non-modal utility window:

Figure 1.1: QGIS Python console

The screenshot above illustrates how to get the layer currently selected in the layer list, show its ID and optionally,
if it is a vector layer, show the feature count. For interaction with QGIS environment, there is a iface variable,
which is an instance of QgsInterface. This interface allows access to the map canvas, menus, toolbars and
other parts of the QGIS application.

For convenience of the user, the following statements are executed when the console is started (in future it will be
possible to set further initial commands)

from qgis.core import *
import qgis.utils

For those which use the console often, it may be useful to set a shortcut for triggering the console (within menu
Settings → Configure shortcuts...)

2 Chapter 1. Başlangıç

PyQGIS developer cookbook, Sürüm 2.14

1.3 Python Plugins

QGIS allows enhancement of its functionality using plugins. This was originally possible only with C++ language.
With the addition of Python support to QGIS, it is also possible to use plugins written in Python. The main
advantage over C++ plugins is its simplicity of distribution (no compiling for each platform needed) and easier
development.

Many plugins covering various functionality have been written since the introduction of Python support. The plu-
gin installer allows users to easily fetch, upgrade and remove Python plugins. See the Python Plugin Repositories
page for various sources of plugins.

Creating plugins in Python is simple, see Python Eklentileri Geliştirme for detailed instructions.

Not: Python plugins are also available in QGIS server (label_qgisserver), see QGIS Server Python Plugins for
further details.

1.4 Python Applications

Often when processing some GIS data, it is handy to create some scripts for automating the process instead of
doing the same task again and again. With PyQGIS, this is perfectly possible — import the qgis.core module,
initialize it and you are ready for the processing.

Or you may want to create an interactive application that uses some GIS functionality — measure some data,
export a map in PDF or any other functionality. The qgis.gui module additionally brings various GUI compo-
nents, most notably the map canvas widget that can be very easily incorporated into the application with support
for zooming, panning and/or any further custom map tools.

PyQGIS custom applications or standalone scripts must be configured to locate the QGIS resources such as pro-
jection information, providers for reading vector and raster layers, etc. QGIS Resources are initialized by adding
a few lines to the beginning of your application or script. The code to initialize QGIS for custom applications and
standalone scripts is similar, but examples of each are provided below.

Note: do not use qgis.py as a name for your test script — Python will not be able to import the bindings as the
script’s name will shadow them.

1.4.1 Using PyQGIS in standalone scripts

To start a standalone script, initialize the QGIS resources at the beginning of the script similar to the following
code:

from qgis.core import *

supply path to qgis install location
QgsApplication.setPrefixPath("/path/to/qgis/installation", True)

create a reference to the QgsApplication, setting the
second argument to False disables the GUI
qgs = QgsApplication([], False)

load providers
qgs.initQgis()

Write your code here to load some layers, use processing algorithms, etc.

When your script is complete, call exitQgis() to remove the provider and
layer registries from memory
qgs.exitQgis()

1.3. Python Plugins 3

http://www.qgis.org/wiki/Python_Plugin_Repositories

PyQGIS developer cookbook, Sürüm 2.14

We begin by importing the qgis.core module and then configuring the prefix path. The prefix path is the
location where QGIS is installed on your system. It is configured in the script by calling the setPrefixPath
method. The second argument of setPrefixPath is set to True, which controls whether the default paths are
used.

The QGIS install path varies by platform; the easiest way to find it for your your system is to use the Python
Console from within QGIS and look at the output from running QgsApplication.prefixPath().

After the prefix path is configured, we save a reference to QgsApplication in the variable qgs. The second
argument is set to False, which indicates that we do not plan to use the GUI since we are writing a standalone
script. With the QgsApplication configured, we load the QGIS data providers and layer registry by calling
the qgs.initQgis() method. With QGIS initialized, we are ready to write the rest of the script. Finally, we
wrap up by calling qgs.exitQgis() to remove the data providers and layer registry from memory.

1.4.2 Using PyQGIS in custom applications

The only difference between Using PyQGIS in standalone scripts and a custom PyQGIS application is the second
argument when instantiating the QgsApplication. Pass True instead of False to indicate that we plan to
use a GUI.

from qgis.core import *

supply path to qgis install location
QgsApplication.setPrefixPath("/path/to/qgis/installation", True)

create a reference to the QgsApplication
setting the second argument to True enables the GUI, which we need to do
since this is a custom application
qgs = QgsApplication([], True)

load providers
qgs.initQgis()

Write your code here to load some layers, use processing algorithms, etc.

When your script is complete, call exitQgis() to remove the provider and
layer registries from memory
qgs.exitQgis()

Now you can work with QGIS API — load layers and do some processing or fire up a GUI with a map canvas.
The possibilities are endless :-)

1.4.3 Running Custom Applications

You will need to tell your system where to search for QGIS libraries and appropriate Python modules if they are
not in a well-known location — otherwise Python will complain:

>>> import qgis.core
ImportError: No module named qgis.core

This can be fixed by setting the PYTHONPATH environment variable. In the following commands, qgispath
should be replaced with your actual QGIS installation path:

• on Linux: export PYTHONPATH=/qgispath/share/qgis/python

• on Windows: set PYTHONPATH=c:\qgispath\python

The path to the PyQGIS modules is now known, however they depend on qgis_core and qgis_gui libraries
(the Python modules serve only as wrappers). Path to these libraries is typically unknown for the operating system,
so you get an import error again (the message might vary depending on the system):

4 Chapter 1. Başlangıç

PyQGIS developer cookbook, Sürüm 2.14

>>> import qgis.core
ImportError: libqgis_core.so.1.5.0: cannot open shared object file: No such file or directory

Fix this by adding the directories where the QGIS libraries reside to search path of the dynamic linker:

• on Linux: export LD_LIBRARY_PATH=/qgispath/lib

• on Windows: set PATH=C:\qgispath;%PATH%

These commands can be put into a bootstrap script that will take care of the startup. When deploying custom
applications using PyQGIS, there are usually two possibilities:

• require user to install QGIS on his platform prior to installing your application. The application installer
should look for default locations of QGIS libraries and allow user to set the path if not found. This approach
has the advantage of being simpler, however it requires user to do more steps.

• package QGIS together with your application. Releasing the application may be more challenging and the
package will be larger, but the user will be saved from the burden of downloading and installing additional
pieces of software.

The two deployment models can be mixed - deploy standalone application on Windows and Mac OS X, for Linux
leave the installation of QGIS up to user and his package manager.

1.4. Python Applications 5

PyQGIS developer cookbook, Sürüm 2.14

6 Chapter 1. Başlangıç

CHAPTER 2

Loading Projects

Sometimes you need to load an existing project from a plugin or (more often) when developing a stand-alone
QGIS Python application (see: Python Applications).

To load a project into the current QGIS application you need a QgsProject instance() object and call its
read() method passing to it a QFileInfo object that contains the path from where the project will be loaded:

If you are not inside a QGIS console you first need to import
qgis and PyQt4 classes you will use in this script as shown below:
from qgis.core import QgsProject
from PyQt4.QtCore import QFileInfo
Get the project instance
project = QgsProject.instance()
Print the current project file name (might be empty in case no projects have been loaded)
print project.fileName
u’/home/user/projects/my_qgis_project.qgs’
Load another project
project.read(QFileInfo(’/home/user/projects/my_other_qgis_project.qgs’))
print project.fileName
u’/home/user/projects/my_other_qgis_project.qgs’

In case you need to make some modifications to the project (for example add or remove some layers) and save
your changes, you can call the write() method of your project instance. The write() method also accepts an
optional QFileInfo that allows you to specify a path where the project will be saved:

Save the project to the same
project.write()
... or to a new file
project.write(QFileInfo(’/home/user/projects/my_new_qgis_project.qgs’))

Both read() and write() funtions return a boolean value that you can use to check if the operation was
successful.

Not: If you are writing a QGIS standalone application, in order to synchronise the loaded project with the canvas
you need to instanciate a QgsLayerTreeMapCanvasBridge as in the example below:

bridge = QgsLayerTreeMapCanvasBridge(\
QgsProject.instance().layerTreeRoot(), canvas)

Now you can safely load your project and see it in the canvas
project.read(QFileInfo(’/home/user/projects/my_other_qgis_project.qgs’))

7

PyQGIS developer cookbook, Sürüm 2.14

8 Chapter 2. Loading Projects

CHAPTER 3

Yüklenen katmanlar

• Vector Layers
• Raster Layers
• Map Layer Registry

Let’s open some layers with data. QGIS recognizes vector and raster layers. Additionally, custom layer types are
available, but we are not going to discuss them here.

3.1 Vector Layers

To load a vector layer, specify layer’s data source identifier, name for the layer and provider’s name:

layer = QgsVectorLayer(data_source, layer_name, provider_name)
if not layer.isValid():
print "Layer failed to load!"

The data source identifier is a string and it is specific to each vector data provider. Layer’s name is used in the
layer list widget. It is important to check whether the layer has been loaded successfully. If it was not, an invalid
layer instance is returned.

The quickest way to open and display a vector layer in QGIS is the addVectorLayer function of the
QgisInterface:

layer = iface.addVectorLayer("/path/to/shapefile/file.shp", "layer name you like", "ogr")
if not layer:
print "Layer failed to load!"

This creates a new layer and adds it to the map layer registry (making it appear in the layer list) in one step. The
function returns the layer instance or None if the layer couldn’t be loaded.

The following list shows how to access various data sources using vector data providers:

• OGR library (shapefiles and many other file formats) — data source is the path to the file:

– for shapefile:

vlayer = QgsVectorLayer("/path/to/shapefile/file.shp", "layer_name_you_like", "ogr")

– for dxf (note the internal options in data source uri):

uri = "/path/to/dxffile/file.dxf|layername=entities|geometrytype=Point"
vlayer = QgsVectorLayer(uri, "layer_name_you_like", "ogr")

• PostGIS database — data source is a string with all information needed to create a connection to PostgreSQL
database. QgsDataSourceURI class can generate this string for you. Note that QGIS has to be compiled
with Postgres support, otherwise this provider isn’t available:

9

PyQGIS developer cookbook, Sürüm 2.14

uri = QgsDataSourceURI()
set host name, port, database name, username and password
uri.setConnection("localhost", "5432", "dbname", "johny", "xxx")
set database schema, table name, geometry column and optionally
subset (WHERE clause)
uri.setDataSource("public", "roads", "the_geom", "cityid = 2643")

vlayer = QgsVectorLayer(uri.uri(), "layer name you like", "postgres")

• CSV or other delimited text files — to open a file with a semicolon as a delimiter, with field “x” for x-
coordinate and field “y” with y-coordinate you would use something like this:

uri = "/some/path/file.csv?delimiter=%s&xField=%s&yField=%s" % (";", "x", "y")
vlayer = QgsVectorLayer(uri, "layer name you like", "delimitedtext")

Note: from QGIS version 1.7 the provider string is structured as a URL, so the path must be prefixed with
file://. Also it allows WKT (well known text) formatted geometries as an alternative to “x” and “y” fields,
and allows the coordinate reference system to be specified. For example:

uri = "file:///some/path/file.csv?delimiter=%s&crs=epsg:4723&wktField=%s" % (";", "shape")

• GPX files — the “gpx” data provider reads tracks, routes and waypoints from gpx files. To open a file, the
type (track/route/waypoint) needs to be specified as part of the url:

uri = "path/to/gpx/file.gpx?type=track"
vlayer = QgsVectorLayer(uri, "layer name you like", "gpx")

• SpatiaLite database — supported from QGIS v1.1. Similarly to PostGIS databases, QgsDataSourceURI
can be used for generation of data source identifier:

uri = QgsDataSourceURI()
uri.setDatabase(’/home/martin/test-2.3.sqlite’)
schema = ’’
table = ’Towns’
geom_column = ’Geometry’
uri.setDataSource(schema, table, geom_column)

display_name = ’Towns’
vlayer = QgsVectorLayer(uri.uri(), display_name, ’spatialite’)

• MySQL WKB-based geometries, through OGR — data source is the connection string to the table:

uri = "MySQL:dbname,host=localhost,port=3306,user=root,password=xxx|layername=my_table"
vlayer = QgsVectorLayer(uri, "my table", "ogr")

• WFS connection:. the connection is defined with a URI and using the WFS provider:

uri = "http://localhost:8080/geoserver/wfs?srsname=EPSG:23030&typename=union&version=1.0.0&request=GetFeature&service=WFS",
vlayer = QgsVectorLayer(uri, "my wfs layer", "WFS")

The uri can be created using the standard urllib library:

params = {
’service’: ’WFS’,
’version’: ’1.0.0’,
’request’: ’GetFeature’,
’typename’: ’union’,
’srsname’: "EPSG:23030"

}
uri = ’http://localhost:8080/geoserver/wfs?’ + urllib.unquote(urllib.urlencode(params))

Not: You can change the data source of an existing layer by calling setDataSource() on a
QgsVectorLayer instance, as in the following example:

10 Chapter 3. Yüklenen katmanlar

PyQGIS developer cookbook, Sürüm 2.14

layer is a vector layer, uri is a QgsDataSourceURI instance
layer.setDataSource(uri.uri(), "layer name you like", "postgres")

3.2 Raster Layers

For accessing raster files, GDAL library is used. It supports a wide range of file formats. In case you have troubles
with opening some files, check whether your GDAL has support for the particular format (not all formats are
available by default). To load a raster from a file, specify its file name and base name:

fileName = "/path/to/raster/file.tif"
fileInfo = QFileInfo(fileName)
baseName = fileInfo.baseName()
rlayer = QgsRasterLayer(fileName, baseName)
if not rlayer.isValid():
print "Layer failed to load!"

Similarly to vector layers, raster layers can be loaded using the addRasterLayer function of the QgisInterface:

iface.addRasterLayer("/path/to/raster/file.tif", "layer name you like")

This creates a new layer and adds it to the map layer registry (making it appear in the layer list) in one step.

Raster layers can also be created from a WCS service:

layer_name = ’modis’
uri = QgsDataSourceURI()
uri.setParam(’url’, ’http://demo.mapserver.org/cgi-bin/wcs’)
uri.setParam("identifier", layer_name)
rlayer = QgsRasterLayer(str(uri.encodedUri()), ’my wcs layer’, ’wcs’)

detailed URI settings can be found in provider documentation

Alternatively you can load a raster layer from WMS server. However currently it’s not possible to access GetCa-
pabilities response from API — you have to know what layers you want:

urlWithParams = ’url=http://wms.jpl.nasa.gov/wms.cgi&layers=global_mosaic&styles=pseudo&format=image/jpeg&crs=EPSG:4326’
rlayer = QgsRasterLayer(urlWithParams, ’some layer name’, ’wms’)
if not rlayer.isValid():
print "Layer failed to load!"

3.3 Map Layer Registry

If you would like to use the opened layers for rendering, do not forget to add them to map layer registry. The map
layer registry takes ownership of layers and they can be later accessed from any part of the application by their
unique ID. When the layer is removed from map layer registry, it gets deleted, too.

Adding a layer to the registry:

QgsMapLayerRegistry.instance().addMapLayer(layer)

Layers are destroyed automatically on exit, however if you want to delete the layer explicitly, use:

QgsMapLayerRegistry.instance().removeMapLayer(layer_id)

For a list of loaded layers and layer ids, use:

QgsMapLayerRegistry.instance().mapLayers()

3.2. Raster Layers 11

https://github.com/qgis/QGIS/blob/master/src/providers/wcs/URI

PyQGIS developer cookbook, Sürüm 2.14

12 Chapter 3. Yüklenen katmanlar

CHAPTER 4

Raster Katmanları kullanma

• Layer Details
• Renderer

– Single Band Rasters
– Multi Band Rasters

• Refreshing Layers
• Query Values

This sections lists various operations you can do with raster layers.

4.1 Layer Details

A raster layer consists of one or more raster bands — it is referred to as either single band or multi band raster.
One band represents a matrix of values. Usual color image (e.g. aerial photo) is a raster consisting of red, blue and
green band. Single band layers typically represent either continuous variables (e.g. elevation) or discrete variables
(e.g. land use). In some cases, a raster layer comes with a palette and raster values refer to colors stored in the
palette:

rlayer.width(), rlayer.height()
(812, 301)
rlayer.extent()
<qgis._core.QgsRectangle object at 0x000000000F8A2048>
rlayer.extent().toString()
u’12.095833,48.552777 : 18.863888,51.056944’
rlayer.rasterType()
2 # 0 = GrayOrUndefined (single band), 1 = Palette (single band), 2 = Multiband
rlayer.bandCount()
3
rlayer.metadata()
u’<p class="glossy">Driver:</p>...’
rlayer.hasPyramids()
False

4.2 Renderer

When a raster layer is loaded, it gets a default renderer based on its type. It can be altered either in raster layer
properties or programmatically.

To query the current renderer:

13

PyQGIS developer cookbook, Sürüm 2.14

>>> rlayer.renderer()
<qgis._core.QgsSingleBandPseudoColorRenderer object at 0x7f471c1da8a0>
>>> rlayer.renderer().type()
u’singlebandpseudocolor’

To set a renderer use setRenderer() method of QgsRasterLayer. There are several available renderer
classes (derived from QgsRasterRenderer):

• QgsMultiBandColorRenderer

• QgsPalettedRasterRenderer

• QgsSingleBandColorDataRenderer

• QgsSingleBandGrayRenderer

• QgsSingleBandPseudoColorRenderer

Single band raster layers can be drawn either in gray colors (low values = black, high values = white) or with a
pseudocolor algorithm that assigns colors for values from the single band. Single band rasters with a palette can
be additionally drawn using their palette. Multiband layers are typically drawn by mapping the bands to RGB
colors. Other possibility is to use just one band for gray or pseudocolor drawing.

The following sections explain how to query and modify the layer drawing style. After doing the changes, you
might want to force update of map canvas, see Refreshing Layers.

TODO: contrast enhancements, transparency (no data), user defined min/max, band statistics

4.2.1 Single Band Rasters

Let’s say we want to render our raster layer (assuming one band only) with colors ranging from green to yellow
(for pixel values from 0 to 255). In the first stage we will prepare QgsRasterShader object and configure its
shader function:

>>> fcn = QgsColorRampShader()
>>> fcn.setColorRampType(QgsColorRampShader.INTERPOLATED)
>>> lst = [QgsColorRampShader.ColorRampItem(0, QColor(0,255,0)), \

QgsColorRampShader.ColorRampItem(255, QColor(255,255,0))]
>>> fcn.setColorRampItemList(lst)
>>> shader = QgsRasterShader()
>>> shader.setRasterShaderFunction(fcn)

The shader maps the colors as specified by its color map. The color map is provided as a list of items with pixel
value and its associated color. There are three modes of interpolation of values:

• linear (INTERPOLATED): resulting color is linearly interpolated from the color map entries above and
below the actual pixel value

• discrete (DISCRETE): color is used from the color map entry with equal or higher value

• exact (EXACT): color is not interpolated, only the pixels with value equal to color map entries are drawn

In the second step we will associate this shader with the raster layer:

>>> renderer = QgsSingleBandPseudoColorRenderer(layer.dataProvider(), 1, shader)
>>> layer.setRenderer(renderer)

The number 1 in the code above is band number (raster bands are indexed from one).

4.2.2 Multi Band Rasters

By default, QGIS maps the first three bands to red, green and blue values to create a color image (this is the
MultiBandColor drawing style. In some cases you might want to override these setting. The following code
interchanges red band (1) and green band (2):

14 Chapter 4. Raster Katmanları kullanma

PyQGIS developer cookbook, Sürüm 2.14

rlayer.renderer().setGreenBand(1)
rlayer.renderer().setRedBand(2)

In case only one band is necessary for visualization of the raster, single band drawing can be chosen — either gray
levels or pseudocolor.

4.3 Refreshing Layers

If you do change layer symbology and would like ensure that the changes are immediately visible to the user, call
these methods

if hasattr(layer, "setCacheImage"):
layer.setCacheImage(None)

layer.triggerRepaint()

The first call will ensure that the cached image of rendered layer is erased in case render caching is turned on.
This functionality is available from QGIS 1.4, in previous versions this function does not exist — to make sure
that the code works with all versions of QGIS, we first check whether the method exists.

The second call emits signal that will force any map canvas containing the layer to issue a refresh.

With WMS raster layers, these commands do not work. In this case, you have to do it explicitly

layer.dataProvider().reloadData()
layer.triggerRepaint()

In case you have changed layer symbology (see sections about raster and vector layers on how to do that), you
might want to force QGIS to update the layer symbology in the layer list (legend) widget. This can be done as
follows (iface is an instance of QgisInterface)

iface.legendInterface().refreshLayerSymbology(layer)

4.4 Query Values

To do a query on value of bands of raster layer at some specified point

ident = rlayer.dataProvider().identify(QgsPoint(15.30, 40.98), \
QgsRaster.IdentifyFormatValue)

if ident.isValid():
print ident.results()

The results method in this case returns a dictionary, with band indices as keys, and band values as values.

{1: 17, 2: 220}

4.3. Refreshing Layers 15

PyQGIS developer cookbook, Sürüm 2.14

16 Chapter 4. Raster Katmanları kullanma

CHAPTER 5

Vektör Katmanları Kullanma

• Retrieving information about attributes
• Selecting features
• Iterating over Vector Layer

– Accessing attributes
– Iterating over selected features
– Iterating over a subset of features

• Modifying Vector Layers
– Add Features
– Delete Features
– Modify Features
– Adding and Removing Fields

• Modifying Vector Layers with an Editing Buffer
• Using Spatial Index
• Writing Vector Layers
• Memory Provider
• Appearance (Symbology) of Vector Layers

– Single Symbol Renderer
– Categorized Symbol Renderer
– Graduated Symbol Renderer
– Working with Symbols

* Working with Symbol Layers
* Creating Custom Symbol Layer Types

– Creating Custom Renderers
• Further Topics

This section summarizes various actions that can be done with vector layers.

5.1 Retrieving information about attributes

You can retrieve information about the fields associated with a vector layer by calling pendingFields() on a
QgsVectorLayer instance:

"layer" is a QgsVectorLayer instance
for field in layer.pendingFields():

print field.name(), field.typeName()

Not: Starting from QGIS 2.12 there is also a fields() in QgsVectorLayer which is an alias to
pendingFields().

17

PyQGIS developer cookbook, Sürüm 2.14

5.2 Selecting features

In QGIS desktop, features can be selected in different ways, the user can click on a feature, draw a rectangle on
the map canvas or use an expression filter. Selected features are normally highlighted in a different color (default
is yellow) to draw user’s attention on the selection. Sometimes can be useful to programmatically select features
or to change the default color.

To change the selection color you can use setSelectionColor() method of QgsMapCanvas as shown in
the following example:

iface.mapCanvas().setSelectionColor(QColor("red"))

To add add features to the selected features list for a given layer, you can call setSelectedFeatures()
passing to it the list of features IDs:

Get the active layer (must be a vector layer)
layer = iface.activeLayer()
Get the first feature from the layer
feature = layer.getFeatures().next()
Add this features to the selected list
layer.setSelectedFeatures([feature.id()])

To clear the selection, just pass an empty list:

layer.setSelectedFeatures([])

5.3 Iterating over Vector Layer

Iterating over the features in a vector layer is one of the most common tasks. Below is an example of the simple
basic code to perform this task and showing some information about each feature. the layer variable is assumed
to have a QgsVectorLayer object

iter = layer.getFeatures()
for feature in iter:

retrieve every feature with its geometry and attributes
fetch geometry
geom = feature.geometry()
print "Feature ID %d: " % feature.id()

show some information about the feature
if geom.type() == QGis.Point:

x = geom.asPoint()
print "Point: " + str(x)

elif geom.type() == QGis.Line:
x = geom.asPolyline()
print "Line: %d points" % len(x)

elif geom.type() == QGis.Polygon:
x = geom.asPolygon()
numPts = 0
for ring in x:

numPts += len(ring)
print "Polygon: %d rings with %d points" % (len(x), numPts)

else:
print "Unknown"

fetch attributes
attrs = feature.attributes()

attrs is a list. It contains all the attribute values of this feature
print attrs

18 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

5.3.1 Accessing attributes

Attributes can be referred to by their name.

print feature[’name’]

Alternatively, attributes can be referred to by index. This is will be a bit faster than using the name. For example,
to get the first attribute:

print feature[0]

5.3.2 Iterating over selected features

if you only need selected features, you can use the selectedFeatures() method from vector layer:

selection = layer.selectedFeatures()
print len(selection)
for feature in selection:

do whatever you need with the feature

Another option is the Processing features() method:

import processing
features = processing.features(layer)
for feature in features:

do whatever you need with the feature

By default, this will iterate over all the features in the layer, in case there is no selection, or over the selected
features otherwise. Note that this behavior can be changed in the Processing options to ignore selections.

5.3.3 Iterating over a subset of features

If you want to iterate over a given subset of features in a layer, such as those within a given area, you have to add
a QgsFeatureRequest object to the getFeatures() call. Here’s an example

request = QgsFeatureRequest()
request.setFilterRect(areaOfInterest)
for feature in layer.getFeatures(request):

do whatever you need with the feature

If you need an attribute-based filter instead (or in addition) of a spatial one like shown in the example above, you
can build an QgsExpression object and pass it to the QgsFeatureRequest constructor. Here’s an example

The expression will filter the features where the field "location_name" contains
the word "Lake" (case insensitive)
exp = QgsExpression(’location_name ILIKE \’%Lake%\’’)
request = QgsFeatureRequest(exp)

See İfadeler, Filtreleme ve Hesaplama Değerleri for the details about the syntax supported by QgsExpression.

The request can be used to define the data retrieved for each feature, so the iterator returns all features, but returns
partial data for each of them.

Only return selected fields
request.setSubsetOfAttributes([0,2])
More user friendly version
request.setSubsetOfAttributes([’name’,’id’],layer.pendingFields())
Don’t return geometry objects
request.setFlags(QgsFeatureRequest.NoGeometry)

Tüyo: If you only need a subset of the attributes or you don’t need the geometry information, you can significantly

5.3. Iterating over Vector Layer 19

PyQGIS developer cookbook, Sürüm 2.14

increase the speed of the features request by using QgsFeatureRequest.NoGeometry flag or specifying a
subset of attributes (possibly empty) like shown in the example above.

5.4 Modifying Vector Layers

Most vector data providers support editing of layer data. Sometimes they support just a subset of possible editing
actions. Use the capabilities() function to find out what set of functionality is supported

caps = layer.dataProvider().capabilities()
Check if a particular capability is supported:
caps & QgsVectorDataProvider.DeleteFeatures
Print 2 if DeleteFeatures is supported

For a list of all available capabilities, please refer to the API Documentation of QgsVectorDataProvider

To print layer’s capabilities textual description in a comma separated list you can use
capabilitiesString() as in the following example:

caps_string = layer.dataProvider().capabilitiesString()
Print:
u’Add Features, Delete Features, Change Attribute Values,
Add Attributes, Delete Attributes, Create Spatial Index,
Fast Access to Features at ID, Change Geometries,
Simplify Geometries with topological validation’

By using any of the following methods for vector layer editing, the changes are directly committed to the underly-
ing data store (a file, database etc). In case you would like to do only temporary changes, skip to the next section
that explains how to do modifications with editing buffer.

Not: If you are working inside QGIS (either from the console or from a plugin), it might be necessary to force a
redraw of the map canvas in order to see the changes you’ve done to the geometry, to the style or to the attributes:

If caching is enabled, a simple canvas refresh might not be sufficient
to trigger a redraw and you must clear the cached image for the layer
if iface.mapCanvas().isCachingEnabled():

layer.setCacheImage(None)
else:

iface.mapCanvas().refresh()

5.4.1 Add Features

Create some QgsFeature instances and pass a list of them to provider’s addFeatures() method. It will
return two values: result (true/false) and list of added features (their ID is set by the data store).

To set up the attributes you can either initialize the feature passing a QgsFields instance or call
initAttributes() passing the number of fields you want to be added.

if caps & QgsVectorDataProvider.AddFeatures:
feat = QgsFeature(layer.pendingFields())
feat.setAttributes([0, ’hello’])
Or set a single attribute by key or by index:
feat.setAttribute(’name’, ’hello’)
feat.setAttribute(0, ’hello’)
feat.setGeometry(QgsGeometry.fromPoint(QgsPoint(123, 456)))
(res, outFeats) = layer.dataProvider().addFeatures([feat])

20 Chapter 5. Vektör Katmanları Kullanma

http://qgis.org/api/classQgsVectorDataProvider.html

PyQGIS developer cookbook, Sürüm 2.14

5.4.2 Delete Features

To delete some features, just provide a list of their feature IDs

if caps & QgsVectorDataProvider.DeleteFeatures:
res = layer.dataProvider().deleteFeatures([5, 10])

5.4.3 Modify Features

It is possible to either change feature’s geometry or to change some attributes. The following example first changes
values of attributes with index 0 and 1, then it changes the feature’s geometry

fid = 100 # ID of the feature we will modify

if caps & QgsVectorDataProvider.ChangeAttributeValues:
attrs = { 0 : "hello", 1 : 123 }
layer.dataProvider().changeAttributeValues({ fid : attrs })

if caps & QgsVectorDataProvider.ChangeGeometries:
geom = QgsGeometry.fromPoint(QgsPoint(111,222))
layer.dataProvider().changeGeometryValues({ fid : geom })

Tüyo: If you only need to change geometries, you might consider using the QgsVectorLayerEditUtils
which provides some of useful methods to edit geometries (translate, insert or move vertex etc.)

5.4.4 Adding and Removing Fields

To add fields (attributes), you need to specify a list of field definitions. For deletion of fields just provide a list of
field indexes.

if caps & QgsVectorDataProvider.AddAttributes:
res = layer.dataProvider().addAttributes([QgsField("mytext", QVariant.String), QgsField("myint", QVariant.Int)])

if caps & QgsVectorDataProvider.DeleteAttributes:
res = layer.dataProvider().deleteAttributes([0])

After adding or removing fields in the data provider the layer’s fields need to be updated because the changes are
not automatically propagated.

layer.updateFields()

5.5 Modifying Vector Layers with an Editing Buffer

When editing vectors within QGIS application, you have to first start editing mode for a particular layer, then do
some modifications and finally commit (or rollback) the changes. All the changes you do are not written until
you commit them — they stay in layer’s in-memory editing buffer. It is possible to use this functionality also
programmatically — it is just another method for vector layer editing that complements the direct usage of data
providers. Use this option when providing some GUI tools for vector layer editing, since this will allow user to
decide whether to commit/rollback and allows the usage of undo/redo. When committing changes, all changes
from the editing buffer are saved to data provider.

To find out whether a layer is in editing mode, use isEditable() — the editing functions work only when the
editing mode is turned on. Usage of editing functions

add two features (QgsFeature instances)
layer.addFeatures([feat1,feat2])
delete a feature with specified ID

5.5. Modifying Vector Layers with an Editing Buffer 21

PyQGIS developer cookbook, Sürüm 2.14

layer.deleteFeature(fid)

set new geometry (QgsGeometry instance) for a feature
layer.changeGeometry(fid, geometry)
update an attribute with given field index (int) to given value (QVariant)
layer.changeAttributeValue(fid, fieldIndex, value)

add new field
layer.addAttribute(QgsField("mytext", QVariant.String))
remove a field
layer.deleteAttribute(fieldIndex)

In order to make undo/redo work properly, the above mentioned calls have to be wrapped into undo commands.
(If you do not care about undo/redo and want to have the changes stored immediately, then you will have easier
work by editing with data provider.) How to use the undo functionality

layer.beginEditCommand("Feature triangulation")

... call layer’s editing methods ...

if problem_occurred:
layer.destroyEditCommand()
return

... more editing ...

layer.endEditCommand()

The beginEditCommand() will create an internal “active” command and will record subsequent changes
in vector layer. With the call to endEditCommand() the command is pushed onto the undo stack and
the user will be able to undo/redo it from GUI. In case something went wrong while doing the changes, the
destroyEditCommand() method will remove the command and rollback all changes done while this com-
mand was active.

To start editing mode, there is startEditing() method, to stop editing there are commitChanges() and
rollBack()— however normally you should not need these methods and leave this functionality to be triggered
by the user.

You can also use the with edit(layer)-statement to wrap commit and rollback into a more semantic code
block as shown in the example below:

with edit(layer):
f = layer.getFeatures().next()
f[0] = 5
layer.updateFeature(f)

This will automatically call commitChanges() in the end. If any exception occurs, it will rollBack() all
the changes. In case a problem is encountered within commitChanges() (when the method returns False) a
QgsEditError exception will be raised.

5.6 Using Spatial Index

Spatial indexes can dramatically improve the performance of your code if you need to do frequent queries to a
vector layer. Imagine, for instance, that you are writing an interpolation algorithm, and that for a given location you
need to know the 10 closest points from a points layer, in order to use those point for calculating the interpolated
value. Without a spatial index, the only way for QGIS to find those 10 points is to compute the distance from each
and every point to the specified location and then compare those distances. This can be a very time consuming
task, especially if it needs to be repeated for several locations. If a spatial index exists for the layer, the operation
is much more effective.

22 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

Think of a layer without a spatial index as a telephone book in which telephone numbers are not ordered or
indexed. The only way to find the telephone number of a given person is to read from the beginning until you find
it.

Spatial indexes are not created by default for a QGIS vector layer, but you can create them easily. This is what
you have to do:

• create spatial index — the following code creates an empty index

index = QgsSpatialIndex()

• add features to index — index takes QgsFeature object and adds it to the internal data structure.
You can create the object manually or use one from previous call to provider’s nextFeature()

index.insertFeature(feat)

• once spatial index is filled with some values, you can do some queries

returns array of feature IDs of five nearest features
nearest = index.nearestNeighbor(QgsPoint(25.4, 12.7), 5)

returns array of IDs of features which intersect the rectangle
intersect = index.intersects(QgsRectangle(22.5, 15.3, 23.1, 17.2))

5.7 Writing Vector Layers

You can write vector layer files using QgsVectorFileWriter class. It supports any other kind of vector file
that OGR supports (shapefiles, GeoJSON, KML and others).

There are two possibilities how to export a vector layer:

• from an instance of QgsVectorLayer

error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_shapes.shp", "CP1250", None, "ESRI Shapefile")

if error == QgsVectorFileWriter.NoError:
print "success!"

error = QgsVectorFileWriter.writeAsVectorFormat(layer, "my_json.json", "utf-8", None, "GeoJSON")
if error == QgsVectorFileWriter.NoError:

print "success again!"

The third parameter specifies output text encoding. Only some drivers need this
for correct operation - shapefiles are one of those --- however in case you
are not using international characters you do not have to care much about
the encoding. The fourth parameter that we left as ‘‘None‘‘ may specify
destination CRS --- if a valid instance of :class:‘QgsCoordinateReferenceSystem‘
is passed, the layer is transformed to that CRS.

For valid driver names please consult the ‘supported formats by OGR‘_ --- you
should pass the value in the "Code" column as the driver name. Optionally
you can set whether to export only selected features, pass further
driver-specific options for creation or tell the writer not to create
attributes --- look into the documentation for full syntax.

• directly from features

define fields for feature attributes. A QgsFields object is needed
fields = QgsFields()
fields.append(QgsField("first", QVariant.Int))
fields.append(QgsField("second", QVariant.String))

create an instance of vector file writer, which will create the vector file.

5.7. Writing Vector Layers 23

PyQGIS developer cookbook, Sürüm 2.14

Arguments:
1. path to new file (will fail if exists already)
2. encoding of the attributes
3. field map
4. geometry type - from WKBTYPE enum
5. layer’s spatial reference (instance of
QgsCoordinateReferenceSystem) - optional
6. driver name for the output file
writer = QgsVectorFileWriter("my_shapes.shp", "CP1250", fields, QGis.WKBPoint, None, "ESRI Shapefile")

if writer.hasError() != QgsVectorFileWriter.NoError:
print "Error when creating shapefile: ", w.errorMessage()

add a feature
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
fet.setAttributes([1, "text"])
writer.addFeature(fet)

delete the writer to flush features to disk
del writer

5.8 Memory Provider

Memory provider is intended to be used mainly by plugin or 3rd party app developers. It does not store data on
disk, allowing developers to use it as a fast backend for some temporary layers.

The provider supports string, int and double fields.

The memory provider also supports spatial indexing, which is enabled by calling the provider’s
createSpatialIndex() function. Once the spatial index is created you will be able to iterate over fea-
tures within smaller regions faster (since it’s not necessary to traverse all the features, only those in specified
rectangle).

A memory provider is created by passing "memory" as the provider string to the QgsVectorLayer construc-
tor.

The constructor also takes a URI defining the geometry type of the layer, one of: "Point", "LineString",
"Polygon", "MultiPoint", "MultiLineString", or "MultiPolygon".

The URI can also specify the coordinate reference system, fields, and indexing of the memory provider in the URI.
The syntax is:

crs=definition Specifies the coordinate reference system, where definition may be any of the forms accepted by
QgsCoordinateReferenceSystem.createFromString()

index=yes Specifies that the provider will use a spatial index

field=name:type(length,precision) Specifies an attribute of the layer. The attribute has a name, and optionally a
type (integer, double, or string), length, and precision. There may be multiple field definitions.

The following example of a URI incorporates all these options

"Point?crs=epsg:4326&field=id:integer&field=name:string(20)&index=yes"

The following example code illustrates creating and populating a memory provider

create layer
vl = QgsVectorLayer("Point", "temporary_points", "memory")
pr = vl.dataProvider()

add fields
pr.addAttributes([QgsField("name", QVariant.String),

24 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

QgsField("age", QVariant.Int),
QgsField("size", QVariant.Double)])

vl.updateFields() # tell the vector layer to fetch changes from the provider

add a feature
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPoint(QgsPoint(10,10)))
fet.setAttributes(["Johny", 2, 0.3])
pr.addFeatures([fet])

update layer’s extent when new features have been added
because change of extent in provider is not propagated to the layer
vl.updateExtents()

Finally, let’s check whether everything went well

show some stats
print "fields:", len(pr.fields())
print "features:", pr.featureCount()
e = layer.extent()
print "extent:", e.xMiniminum(), e.yMinimum(), e.xMaximum(), e.yMaximum()

iterate over features
f = QgsFeature()
features = vl.getFeatures()
for f in features:

print "F:", f.id(), f.attributes(), f.geometry().asPoint()

5.9 Appearance (Symbology) of Vector Layers

When a vector layer is being rendered, the appearance of the data is given by renderer and symbols associated
with the layer. Symbols are classes which take care of drawing of visual representation of features, while renderers
determine what symbol will be used for a particular feature.

The renderer for a given layer can obtained as shown below:

renderer = layer.rendererV2()

And with that reference, let us explore it a bit

print "Type:", rendererV2.type()

There are several known renderer types available in QGIS core library:

Type Class Tanım
singleSymbol QgsSingleSymbolRendererV2 Renders all features with the same symbol
catego-
rizedSymbol

QgsCategorizedSymbolRendererV2Renders features using a different symbol for each
category

graduatedSym-
bol

QgsGraduatedSymbolRendererV2Renders features using a different symbol for each
range of values

There might be also some custom renderer types, so never make an assumption there are just these types. You can
query QgsRendererV2Registry singleton to find out currently available renderers:

print QgsRendererV2Registry.instance().renderersList()
Print:
[u’singleSymbol’,
u’categorizedSymbol’,
u’graduatedSymbol’,
u’RuleRenderer’,
u’pointDisplacement’,

5.9. Appearance (Symbology) of Vector Layers 25

PyQGIS developer cookbook, Sürüm 2.14

u’invertedPolygonRenderer’,
u’heatmapRenderer’]

It is possible to obtain a dump of a renderer contents in text form — can be useful for debugging

print rendererV2.dump()

5.9.1 Single Symbol Renderer

You can get the symbol used for rendering by calling symbol() method and change it with setSymbol()
method (note for C++ devs: the renderer takes ownership of the symbol.)

You can change the symbol used by a particular vector layer by calling setSymbol() passing an instance
of the appropriate symbol instance. Symbols for point, line and polygon layers can be created by calling the
createSimple() function of the corresponding classes QgsMarkerSymbolV2, QgsLineSymbolV2 and
QgsFillSymbolV2.

The dictionary passed to createSimple() sets the style properties of the symbol.

For example you can replace the symbol used by a particular point layer by calling setSymbol() passing an
instance of a QgsMarkerSymbolV2 as in the following code example:

symbol = QgsMarkerSymbolV2.createSimple({’name’: ’square’, ’color’: ’red’})
layer.rendererV2().setSymbol(symbol)

name indicates the shape of the marker, and can be any of the following:

• circle

• square

• cross

• rectangle

• diamond

• pentagon

• triangle

• equilateral_triangle

• star

• regular_star

• arrow

• filled_arrowhead

• x

To get the full list of properties for the first symbol layer of a simbol instance you can follow the example code:

print layer.rendererV2().symbol().symbolLayers()[0].properties()
Prints
{u’angle’: u’0’,
u’color’: u’0,128,0,255’,
u’horizontal_anchor_point’: u’1’,
u’name’: u’circle’,
u’offset’: u’0,0’,
u’offset_map_unit_scale’: u’0,0’,
u’offset_unit’: u’MM’,
u’outline_color’: u’0,0,0,255’,
u’outline_style’: u’solid’,
u’outline_width’: u’0’,
u’outline_width_map_unit_scale’: u’0,0’,

26 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

u’outline_width_unit’: u’MM’,
u’scale_method’: u’area’,
u’size’: u’2’,
u’size_map_unit_scale’: u’0,0’,
u’size_unit’: u’MM’,
u’vertical_anchor_point’: u’1’}

This can be useful if you want to alter some properties:

You can alter a single propery...
layer.rendererV2().symbol().symbolLayer(0).setName(’square’)
... but not all properties are accessible from methods,
you can also replace the symbol completely:
props = layer.rendererV2().symbol().symbolLayer(0).properties()
props[’color’] = ’yellow’
props[’name’] = ’square’
layer.rendererV2().setSymbol(QgsMarkerSymbolV2.createSimple(props))

5.9.2 Categorized Symbol Renderer

You can query and set attribute name which is used for classification: use classAttribute() and
setClassAttribute() methods.

To get a list of categories

for cat in rendererV2.categories():
print "%s: %s :: %s" % (cat.value().toString(), cat.label(), str(cat.symbol()))

Where value() is the value used for discrimination between categories, label() is a text used for category
description and symbol() method returns assigned symbol.

The renderer usually stores also original symbol and color ramp which were used for the classification:
sourceColorRamp() and sourceSymbol() methods.

5.9.3 Graduated Symbol Renderer

This renderer is very similar to the categorized symbol renderer described above, but instead of one attribute value
per class it works with ranges of values and thus can be used only with numerical attributes.

To find out more about ranges used in the renderer

for ran in rendererV2.ranges():
print "%f - %f: %s %s" % (

ran.lowerValue(),
ran.upperValue(),
ran.label(),
str(ran.symbol())

)

you can again use classAttribute() to find out classification attribute name, sourceSymbol() and
sourceColorRamp() methods. Additionally there is mode() method which determines how the ranges were
created: using equal intervals, quantiles or some other method.

If you wish to create your own graduated symbol renderer you can do so as illustrated in the example snippet
below (which creates a simple two class arrangement)

from qgis.core import *

myVectorLayer = QgsVectorLayer(myVectorPath, myName, ’ogr’)
myTargetField = ’target_field’
myRangeList = []
myOpacity = 1

5.9. Appearance (Symbology) of Vector Layers 27

PyQGIS developer cookbook, Sürüm 2.14

Make our first symbol and range...
myMin = 0.0
myMax = 50.0
myLabel = ’Group 1’
myColour = QtGui.QColor(’#ffee00’)
mySymbol1 = QgsSymbolV2.defaultSymbol(myVectorLayer.geometryType())
mySymbol1.setColor(myColour)
mySymbol1.setAlpha(myOpacity)
myRange1 = QgsRendererRangeV2(myMin, myMax, mySymbol1, myLabel)
myRangeList.append(myRange1)
#now make another symbol and range...
myMin = 50.1
myMax = 100
myLabel = ’Group 2’
myColour = QtGui.QColor(’#00eeff’)
mySymbol2 = QgsSymbolV2.defaultSymbol(

myVectorLayer.geometryType())
mySymbol2.setColor(myColour)
mySymbol2.setAlpha(myOpacity)
myRange2 = QgsRendererRangeV2(myMin, myMax, mySymbol2 myLabel)
myRangeList.append(myRange2)
myRenderer = QgsGraduatedSymbolRendererV2(’’, myRangeList)
myRenderer.setMode(QgsGraduatedSymbolRendererV2.EqualInterval)
myRenderer.setClassAttribute(myTargetField)

myVectorLayer.setRendererV2(myRenderer)
QgsMapLayerRegistry.instance().addMapLayer(myVectorLayer)

5.9.4 Working with Symbols

For representation of symbols, there is QgsSymbolV2 base class with three derived classes:

• QgsMarkerSymbolV2 — for point features

• QgsLineSymbolV2 — for line features

• QgsFillSymbolV2 — for polygon features

Every symbol consists of one or more symbol layers (classes derived from QgsSymbolLayerV2). The sym-
bol layers do the actual rendering, the symbol class itself serves only as a container for the symbol layers.

Having an instance of a symbol (e.g. from a renderer), it is possible to explore it: type() method says whether
it is a marker, line or fill symbol. There is a dump() method which returns a brief description of the symbol. To
get a list of symbol layers

for i in xrange(symbol.symbolLayerCount()):
lyr = symbol.symbolLayer(i)
print "%d: %s" % (i, lyr.layerType())

To find out symbol’s color use color() method and setColor() to change its color. With marker symbols
additionally you can query for the symbol size and rotation with size() and angle()methods, for line symbols
there is width() method returning line width.

Size and width are in millimeters by default, angles are in degrees.

Working with Symbol Layers

As said before, symbol layers (subclasses of QgsSymbolLayerV2) determine the appearance of the features.
There are several basic symbol layer classes for general use. It is possible to implement new symbol layer types
and thus arbitrarily customize how features will be rendered. The layerType() method uniquely identifies
the symbol layer class — the basic and default ones are SimpleMarker, SimpleLine and SimpleFill symbol layers
types.

28 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

You can get a complete list of the types of symbol layers you can create for a given symbol layer class like this

from qgis.core import QgsSymbolLayerV2Registry
myRegistry = QgsSymbolLayerV2Registry.instance()
myMetadata = myRegistry.symbolLayerMetadata("SimpleFill")
for item in myRegistry.symbolLayersForType(QgsSymbolV2.Marker):

print item

Output

EllipseMarker
FontMarker
SimpleMarker
SvgMarker
VectorField

QgsSymbolLayerV2Registry class manages a database of all available symbol layer types.

To access symbol layer data, use its properties() method that returns a key-value dictionary of properties
which determine the appearance. Each symbol layer type has a specific set of properties that it uses. Additionally,
there are generic methods color(), size(), angle(), width() with their setter counterparts. Of course
size and angle is available only for marker symbol layers and width for line symbol layers.

Creating Custom Symbol Layer Types

Imagine you would like to customize the way how the data gets rendered. You can create your own symbol layer
class that will draw the features exactly as you wish. Here is an example of a marker that draws red circles with
specified radius

class FooSymbolLayer(QgsMarkerSymbolLayerV2):

def __init__(self, radius=4.0):
QgsMarkerSymbolLayerV2.__init__(self)
self.radius = radius
self.color = QColor(255,0,0)

def layerType(self):
return "FooMarker"

def properties(self):
return { "radius" : str(self.radius) }

def startRender(self, context):
pass

def stopRender(self, context):
pass

def renderPoint(self, point, context):
Rendering depends on whether the symbol is selected (QGIS >= 1.5)
color = context.selectionColor() if context.selected() else self.color
p = context.renderContext().painter()
p.setPen(color)
p.drawEllipse(point, self.radius, self.radius)

def clone(self):
return FooSymbolLayer(self.radius)

The layerType() method determines the name of the symbol layer, it has to be unique among all symbol
layers. Properties are used for persistence of attributes. clone() method must return a copy of the symbol
layer with all attributes being exactly the same. Finally there are rendering methods: startRender() is called
before rendering first feature, stopRender() when rendering is done. And renderPoint() method which
does the rendering. The coordinates of the point(s) are already transformed to the output coordinates.

5.9. Appearance (Symbology) of Vector Layers 29

PyQGIS developer cookbook, Sürüm 2.14

For polylines and polygons the only difference would be in the rendering method: you would use
renderPolyline() which receives a list of lines, resp. renderPolygon() which receives list of points on
outer ring as a first parameter and a list of inner rings (or None) as a second parameter.

Usually it is convenient to add a GUI for setting attributes of the symbol layer type to allow users to customize the
appearance: in case of our example above we can let user set circle radius. The following code implements such
widget

class FooSymbolLayerWidget(QgsSymbolLayerV2Widget):
def __init__(self, parent=None):

QgsSymbolLayerV2Widget.__init__(self, parent)

self.layer = None

setup a simple UI
self.label = QLabel("Radius:")
self.spinRadius = QDoubleSpinBox()
self.hbox = QHBoxLayout()
self.hbox.addWidget(self.label)
self.hbox.addWidget(self.spinRadius)
self.setLayout(self.hbox)
self.connect(self.spinRadius, SIGNAL("valueChanged(double)"), \

self.radiusChanged)

def setSymbolLayer(self, layer):
if layer.layerType() != "FooMarker":

return
self.layer = layer
self.spinRadius.setValue(layer.radius)

def symbolLayer(self):
return self.layer

def radiusChanged(self, value):
self.layer.radius = value
self.emit(SIGNAL("changed()"))

This widget can be embedded into the symbol properties dialog. When the symbol layer type is selected in symbol
properties dialog, it creates an instance of the symbol layer and an instance of the symbol layer widget. Then it
calls setSymbolLayer() method to assign the symbol layer to the widget. In that method the widget should
update the UI to reflect the attributes of the symbol layer. symbolLayer() function is used to retrieve the
symbol layer again by the properties dialog to use it for the symbol.

On every change of attributes, the widget should emit changed() signal to let the properties dialog update the
symbol preview.

Now we are missing only the final glue: to make QGIS aware of these new classes. This is done by adding the
symbol layer to registry. It is possible to use the symbol layer also without adding it to the registry, but some
functionality will not work: e.g. loading of project files with the custom symbol layers or inability to edit the
layer’s attributes in GUI.

We will have to create metadata for the symbol layer

class FooSymbolLayerMetadata(QgsSymbolLayerV2AbstractMetadata):

def __init__(self):
QgsSymbolLayerV2AbstractMetadata.__init__(self, "FooMarker", QgsSymbolV2.Marker)

def createSymbolLayer(self, props):
radius = float(props[QString("radius")]) if QString("radius") in props else 4.0
return FooSymbolLayer(radius)

def createSymbolLayerWidget(self):
return FooSymbolLayerWidget()

30 Chapter 5. Vektör Katmanları Kullanma

PyQGIS developer cookbook, Sürüm 2.14

QgsSymbolLayerV2Registry.instance().addSymbolLayerType(FooSymbolLayerMetadata())

You should pass layer type (the same as returned by the layer) and symbol type (marker/line/fill) to the con-
structor of parent class. createSymbolLayer() takes care of creating an instance of symbol layer with
attributes specified in the props dictionary. (Beware, the keys are QString instances, not “str” objects). And there
is createSymbolLayerWidget() method which returns settings widget for this symbol layer type.

The last step is to add this symbol layer to the registry — and we are done.

5.9.5 Creating Custom Renderers

It might be useful to create a new renderer implementation if you would like to customize the rules how to select
symbols for rendering of features. Some use cases where you would want to do it: symbol is determined from a
combination of fields, size of symbols changes depending on current scale etc.

The following code shows a simple custom renderer that creates two marker symbols and chooses randomly one
of them for every feature

import random

class RandomRenderer(QgsFeatureRendererV2):
def __init__(self, syms=None):
QgsFeatureRendererV2.__init__(self, "RandomRenderer")
self.syms = syms if syms else [QgsSymbolV2.defaultSymbol(QGis.Point), QgsSymbolV2.defaultSymbol(QGis.Point)]

def symbolForFeature(self, feature):
return random.choice(self.syms)

def startRender(self, context, vlayer):
for s in self.syms:

s.startRender(context)

def stopRender(self, context):
for s in self.syms:

s.stopRender(context)

def usedAttributes(self):
return []

def clone(self):
return RandomRenderer(self.syms)

The constructor of parent QgsFeatureRendererV2 class needs renderer name (has to be unique among ren-
derers). symbolForFeature() method is the one that decides what symbol will be used for a particular
feature. startRender() and stopRender() take care of initialization/finalization of symbol rendering.
usedAttributes() method can return a list of field names that renderer expects to be present. Finally
clone() function should return a copy of the renderer.

Like with symbol layers, it is possible to attach a GUI for configuration of the renderer. It has to be derived from
QgsRendererV2Widget. The following sample code creates a button that allows user to set symbol of the
first symbol

class RandomRendererWidget(QgsRendererV2Widget):
def __init__(self, layer, style, renderer):
QgsRendererV2Widget.__init__(self, layer, style)
if renderer is None or renderer.type() != "RandomRenderer":

self.r = RandomRenderer()
else:
self.r = renderer

setup UI
self.btn1 = QgsColorButtonV2()

5.9. Appearance (Symbology) of Vector Layers 31

PyQGIS developer cookbook, Sürüm 2.14

self.btn1.setColor(self.r.syms[0].color())
self.vbox = QVBoxLayout()
self.vbox.addWidget(self.btn1)
self.setLayout(self.vbox)
self.connect(self.btn1, SIGNAL("clicked()"), self.setColor1)

def setColor1(self):
color = QColorDialog.getColor(self.r.syms[0].color(), self)
if not color.isValid(): return
self.r.syms[0].setColor(color);
self.btn1.setColor(self.r.syms[0].color())

def renderer(self):
return self.r

The constructor receives instances of the active layer (QgsVectorLayer), the global style (QgsStyleV2) and
current renderer. If there is no renderer or the renderer has different type, it will be replaced with our new renderer,
otherwise we will use the current renderer (which has already the type we need). The widget contents should be
updated to show current state of the renderer. When the renderer dialog is accepted, widget’s renderer()
method is called to get the current renderer — it will be assigned to the layer.

The last missing bit is the renderer metadata and registration in registry, otherwise loading of layers with the
renderer will not work and user will not be able to select it from the list of renderers. Let us finish our Random-
Renderer example

class RandomRendererMetadata(QgsRendererV2AbstractMetadata):
def __init__(self):
QgsRendererV2AbstractMetadata.__init__(self, "RandomRenderer", "Random renderer")

def createRenderer(self, element):
return RandomRenderer()

def createRendererWidget(self, layer, style, renderer):
return RandomRendererWidget(layer, style, renderer)

QgsRendererV2Registry.instance().addRenderer(RandomRendererMetadata())

Similarly as with symbol layers, abstract metadata constructor awaits renderer name, name visible for users and
optionally name of renderer’s icon. createRenderer() method passes QDomElement instance that can be
used to restore renderer’s state from DOM tree. createRendererWidget()method creates the configuration
widget. It does not have to be present or can return None if the renderer does not come with GUI.

To associate an icon with the renderer you can assign it in QgsRendererV2AbstractMetadata construc-
tor as a third (optional) argument — the base class constructor in the RandomRendererMetadata __init__()
function becomes

QgsRendererV2AbstractMetadata.__init__(self,
"RandomRenderer",
"Random renderer",
QIcon(QPixmap("RandomRendererIcon.png", "png")))

The icon can be associated also at any later time using setIcon() method of the metadata class. The icon can
be loaded from a file (as shown above) or can be loaded from a Qt resource (PyQt4 includes .qrc compiler for
Python).

5.10 Further Topics

TODO: creating/modifying symbols working with style (QgsStyleV2) working with color ramps
(QgsVectorColorRampV2) rule-based renderer (see this blogpost) exploring symbol layer and renderer
registries

32 Chapter 5. Vektör Katmanları Kullanma

http://qt.nokia.com/doc/4.5/resources.html
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins

CHAPTER 6

Geometri Kullanımı

• Geometry Construction
• Access to Geometry
• Geometry Predicates and Operations

Points, linestrings and polygons that represent a spatial feature are commonly referred to as geometries. In QGIS
they are represented with the QgsGeometry class. All possible geometry types are nicely shown in JTS discus-
sion page.

Sometimes one geometry is actually a collection of simple (single-part) geometries. Such a geometry is called
a multi-part geometry. If it contains just one type of simple geometry, we call it multi-point, multi-linestring or
multi-polygon. For example, a country consisting of multiple islands can be represented as a multi-polygon.

The coordinates of geometries can be in any coordinate reference system (CRS). When fetching features from a
layer, associated geometries will have coordinates in CRS of the layer.

6.1 Geometry Construction

There are several options for creating a geometry:

• from coordinates

gPnt = QgsGeometry.fromPoint(QgsPoint(1,1))
gLine = QgsGeometry.fromPolyline([QgsPoint(1, 1), QgsPoint(2, 2)])
gPolygon = QgsGeometry.fromPolygon([[QgsPoint(1, 1), QgsPoint(2, 2), QgsPoint(2, 1)]])

Coordinates are given using QgsPoint class.

Polyline (Linestring) is represented by a list of points. Polygon is represented by a list of linear rings (i.e.
closed linestrings). First ring is outer ring (boundary), optional subsequent rings are holes in the polygon.

Multi-part geometries go one level further: multi-point is a list of points, multi-linestring is a list of
linestrings and multi-polygon is a list of polygons.

• from well-known text (WKT)

gem = QgsGeometry.fromWkt("POINT(3 4)")

• from well-known binary (WKB)

g = QgsGeometry()
g.setWkbAndOwnership(wkb, len(wkb))

33

http://www.vividsolutions.com/jts/discussion.htm#spatialDataModel
http://www.vividsolutions.com/jts/discussion.htm#spatialDataModel

PyQGIS developer cookbook, Sürüm 2.14

6.2 Access to Geometry

First, you should find out geometry type, wkbType() method is the one to use — it returns a value from
QGis.WkbType enumeration

>>> gPnt.wkbType() == QGis.WKBPoint
True
>>> gLine.wkbType() == QGis.WKBLineString
True
>>> gPolygon.wkbType() == QGis.WKBPolygon
True
>>> gPolygon.wkbType() == QGis.WKBMultiPolygon
False

As an alternative, one can use type()method which returns a value from QGis.GeometryType enumeration.
There is also a helper function isMultipart() to find out whether a geometry is multipart or not.

To extract information from geometry there are accessor functions for every vector type. How to use accessors

>>> gPnt.asPoint()
(1, 1)
>>> gLine.asPolyline()
[(1, 1), (2, 2)]
>>> gPolygon.asPolygon()
[[(1, 1), (2, 2), (2, 1), (1, 1)]]

Note: the tuples (x,y) are not real tuples, they are QgsPoint objects, the values are accessible with x() and y()
methods.

For multipart geometries there are similar accessor functions: asMultiPoint(), asMultiPolyline(),
asMultiPolygon().

6.3 Geometry Predicates and Operations

QGIS uses GEOS library for advanced geometry operations such as geometry predicates (contains(),
intersects(), ...) and set operations (union(), difference(), ...). It can also compute geometric
properties of geometries, such as area (in the case of polygons) or lengths (for polygons and lines)

Here you have a small example that combines iterating over the features in a given layer and performing some
geometric computations based on their geometries.

we assume that ’layer’ is a polygon layer
features = layer.getFeatures()
for f in features:
geom = f.geometry()
print "Area:", geom.area()
print "Perimeter:", geom.length()

Areas and perimeters don’t take CRS into account when computed using these methods from the QgsGeometry
class. For a more powerful area and distance calculation, the QgsDistanceArea class can be used. If projec-
tions are turned off, calculations will be planar, otherwise they’ll be done on the ellipsoid. When an ellipsoid is
not set explicitly, WGS84 parameters are used for calculations.

d = QgsDistanceArea()
d.setEllipsoidalMode(True)

print "distance in meters: ", d.measureLine(QgsPoint(10,10),QgsPoint(11,11))

You can find many example of algorithms that are included in QGIS and use these methods to analyze and trans-
form vector data. Here are some links to the code of a few of them.

Additional information can be found in following sources:

34 Chapter 6. Geometri Kullanımı

PyQGIS developer cookbook, Sürüm 2.14

• Geometry transformation: Reproject algorithm

• Distance and area using the QgsDistanceArea class: Distance matrix algorithm

• Multi-part to single-part algorithm

6.3. Geometry Predicates and Operations 35

https://raw.github.com/qgis/QGIS/release-2_0/python/plugins/processing/algs/ftools/ReprojectLayer.py
https://raw.github.com/qgis/QGIS/release-2_0/python/plugins/processing/algs/ftools/PointDistance.py
https://raw.github.com/qgis/QGIS/release-2_0/python/plugins/processing/algs/ftools/MultipartToSingleparts.py

PyQGIS developer cookbook, Sürüm 2.14

36 Chapter 6. Geometri Kullanımı

CHAPTER 7

Projeksiyon Desteği

• Coordinate reference systems
• Projections

7.1 Coordinate reference systems

Coordinate reference systems (CRS) are encapsulated by QgsCoordinateReferenceSystem class. In-
stances of this class can be created by several different ways:

• specify CRS by its ID

PostGIS SRID 4326 is allocated for WGS84
crs = QgsCoordinateReferenceSystem(4326, QgsCoordinateReferenceSystem.PostgisCrsId)

QGIS uses three different IDs for every reference system:

– PostgisCrsId — IDs used within PostGIS databases.

– InternalCrsId — IDs internally used in QGIS database.

– EpsgCrsId — IDs assigned by the EPSG organization

If not specified otherwise in second parameter, PostGIS SRID is used by default.

• specify CRS by its well-known text (WKT)

wkt = ’GEOGCS["WGS84", DATUM["WGS84", SPHEROID["WGS84", 6378137.0, 298.257223563]],’
PRIMEM["Greenwich", 0.0], UNIT["degree",0.017453292519943295],’
AXIS["Longitude",EAST], AXIS["Latitude",NORTH]]’

crs = QgsCoordinateReferenceSystem(wkt)

• create invalid CRS and then use one of the create*() functions to initialize it. In following example we
use Proj4 string to initialize the projection

crs = QgsCoordinateReferenceSystem()
crs.createFromProj4("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")

It’s wise to check whether creation (i.e. lookup in the database) of the CRS has been successful: isValid()
must return True.

Note that for initialization of spatial reference systems QGIS needs to look up appropriate values in its internal
database srs.db. Thus in case you create an independent application you need to set paths correctly with
QgsApplication.setPrefixPath() otherwise it will fail to find the database. If you are running the
commands from QGIS python console or developing a plugin you do not care: everything is already set up for
you.

Accessing spatial reference system information

37

PyQGIS developer cookbook, Sürüm 2.14

print "QGIS CRS ID:", crs.srsid()
print "PostGIS SRID:", crs.srid()
print "EPSG ID:", crs.epsg()
print "Description:", crs.description()
print "Projection Acronym:", crs.projectionAcronym()
print "Ellipsoid Acronym:", crs.ellipsoidAcronym()
print "Proj4 String:", crs.proj4String()
check whether it’s geographic or projected coordinate system
print "Is geographic:", crs.geographicFlag()
check type of map units in this CRS (values defined in QGis::units enum)
print "Map units:", crs.mapUnits()

7.2 Projections

You can do transformation between different spatial reference systems by using QgsCoordinateTransform
class. The easiest way to use it is to create source and destination CRS and construct
QgsCoordinateTransform instance with them. Then just repeatedly call transform() function
to do the transformation. By default it does forward transformation, but it is capable to do also inverse
transformation

crsSrc = QgsCoordinateReferenceSystem(4326) # WGS 84
crsDest = QgsCoordinateReferenceSystem(32633) # WGS 84 / UTM zone 33N
xform = QgsCoordinateTransform(crsSrc, crsDest)

forward transformation: src -> dest
pt1 = xform.transform(QgsPoint(18,5))
print "Transformed point:", pt1

inverse transformation: dest -> src
pt2 = xform.transform(pt1, QgsCoordinateTransform.ReverseTransform)
print "Transformed back:", pt2

38 Chapter 7. Projeksiyon Desteği

CHAPTER 8

Harita tuvalini kullanma

• Embedding Map Canvas
• Using Map Tools with Canvas
• Rubber Bands and Vertex Markers
• Writing Custom Map Tools
• Writing Custom Map Canvas Items

The Map canvas widget is probably the most important widget within QGIS because it shows the map composed
from overlaid map layers and allows interaction with the map and layers. The canvas shows always a part of the
map defined by the current canvas extent. The interaction is done through the use of map tools: there are tools for
panning, zooming, identifying layers, measuring, vector editing and others. Similar to other graphics programs,
there is always one tool active and the user can switch between the available tools.

Map canvas is implemented as QgsMapCanvas class in qgis.gui module. The implementation is based
on the Qt Graphics View framework. This framework generally provides a surface and a view where custom
graphics items are placed and user can interact with them. We will assume that you are familiar enough with Qt
to understand the concepts of the graphics scene, view and items. If not, please make sure to read the overview of
the framework.

Whenever the map has been panned, zoomed in/out (or some other action triggers a refresh), the map is rendered
again within the current extent. The layers are rendered to an image (using QgsMapRenderer class) and that
image is then displayed in the canvas. The graphics item (in terms of the Qt graphics view framework) responsible
for showing the map is QgsMapCanvasMap class. This class also controls refreshing of the rendered map.
Besides this item which acts as a background, there may be more map canvas items. Typical map canvas items
are rubber bands (used for measuring, vector editing etc.) or vertex markers. The canvas items are usually used
to give some visual feedback for map tools, for example, when creating a new polygon, the map tool creates a
rubber band canvas item that shows the current shape of the polygon. All map canvas items are subclasses of
QgsMapCanvasItem which adds some more functionality to the basic QGraphicsItem objects.

To summarize, the map canvas architecture consists of three concepts:

• map canvas — for viewing of the map

• map canvas items — additional items that can be displayed in map canvas

• map tools — for interaction with map canvas

8.1 Embedding Map Canvas

Map canvas is a widget like any other Qt widget, so using it is as simple as creating and showing it

canvas = QgsMapCanvas()
canvas.show()

39

http://qt-project.org/doc/qt-4.8/graphicsview.html
http://qt-project.org/doc/qt-4.8/graphicsview.html

PyQGIS developer cookbook, Sürüm 2.14

This produces a standalone window with map canvas. It can be also embedded into an existing widget or win-
dow. When using .ui files and Qt Designer, place a QWidget on the form and promote it to a new class: set
QgsMapCanvas as class name and set qgis.gui as header file. The pyuic4 utility will take care of it. This
is a very convenient way of embedding the canvas. The other possibility is to manually write the code to construct
map canvas and other widgets (as children of a main window or dialog) and create a layout.

By default, map canvas has black background and does not use anti-aliasing. To set white background and enable
anti-aliasing for smooth rendering

canvas.setCanvasColor(Qt.white)
canvas.enableAntiAliasing(True)

(In case you are wondering, Qt comes from PyQt4.QtCore module and Qt.white is one of the predefined
QColor instances.)

Now it is time to add some map layers. We will first open a layer and add it to the map layer registry. Then we
will set the canvas extent and set the list of layers for canvas

layer = QgsVectorLayer(path, name, provider)
if not layer.isValid():
raise IOError, "Failed to open the layer"

add layer to the registry
QgsMapLayerRegistry.instance().addMapLayer(layer)

set extent to the extent of our layer
canvas.setExtent(layer.extent())

set the map canvas layer set
canvas.setLayerSet([QgsMapCanvasLayer(layer)])

After executing these commands, the canvas should show the layer you have loaded.

8.2 Using Map Tools with Canvas

The following example constructs a window that contains a map canvas and basic map tools for map panning
and zooming. Actions are created for activation of each tool: panning is done with QgsMapToolPan, zooming
in/out with a pair of QgsMapToolZoom instances. The actions are set as checkable and later assigned to the
tools to allow automatic handling of checked/unchecked state of the actions – when a map tool gets activated, its
action is marked as selected and the action of the previous map tool is deselected. The map tools are activated
using setMapTool() method.

from qgis.gui import *
from PyQt4.QtGui import QAction, QMainWindow
from PyQt4.QtCore import SIGNAL, Qt, QString

class MyWnd(QMainWindow):
def __init__(self, layer):
QMainWindow.__init__(self)

self.canvas = QgsMapCanvas()
self.canvas.setCanvasColor(Qt.white)

self.canvas.setExtent(layer.extent())
self.canvas.setLayerSet([QgsMapCanvasLayer(layer)])

self.setCentralWidget(self.canvas)

actionZoomIn = QAction(QString("Zoom in"), self)
actionZoomOut = QAction(QString("Zoom out"), self)
actionPan = QAction(QString("Pan"), self)

40 Chapter 8. Harita tuvalini kullanma

PyQGIS developer cookbook, Sürüm 2.14

actionZoomIn.setCheckable(True)
actionZoomOut.setCheckable(True)
actionPan.setCheckable(True)

self.connect(actionZoomIn, SIGNAL("triggered()"), self.zoomIn)
self.connect(actionZoomOut, SIGNAL("triggered()"), self.zoomOut)
self.connect(actionPan, SIGNAL("triggered()"), self.pan)

self.toolbar = self.addToolBar("Canvas actions")
self.toolbar.addAction(actionZoomIn)
self.toolbar.addAction(actionZoomOut)
self.toolbar.addAction(actionPan)

create the map tools
self.toolPan = QgsMapToolPan(self.canvas)
self.toolPan.setAction(actionPan)
self.toolZoomIn = QgsMapToolZoom(self.canvas, False) # false = in
self.toolZoomIn.setAction(actionZoomIn)
self.toolZoomOut = QgsMapToolZoom(self.canvas, True) # true = out
self.toolZoomOut.setAction(actionZoomOut)

self.pan()

def zoomIn(self):
self.canvas.setMapTool(self.toolZoomIn)

def zoomOut(self):
self.canvas.setMapTool(self.toolZoomOut)

def pan(self):
self.canvas.setMapTool(self.toolPan)

You can put the above code to a file, e.g. mywnd.py and try it out in Python console within QGIS. This code will
put the currently selected layer into newly created canvas

import mywnd
w = mywnd.MyWnd(qgis.utils.iface.activeLayer())
w.show()

Just make sure that the mywnd.py file is located within Python search path (sys.path). If it isn’t, you can
simply add it: sys.path.insert(0, ’/my/path’)— otherwise the import statement will fail, not finding
the module.

8.3 Rubber Bands and Vertex Markers

To show some additional data on top of the map in canvas, use map canvas items. It is possible to create cus-
tom canvas item classes (covered below), however there are two useful canvas item classes for convenience:
QgsRubberBand for drawing polylines or polygons, and QgsVertexMarker for drawing points. They both
work with map coordinates, so the shape is moved/scaled automatically when the canvas is being panned or
zoomed.

To show a polyline

r = QgsRubberBand(canvas, False) # False = not a polygon
points = [QgsPoint(-1, -1), QgsPoint(0, 1), QgsPoint(1, -1)]
r.setToGeometry(QgsGeometry.fromPolyline(points), None)

To show a polygon

8.3. Rubber Bands and Vertex Markers 41

PyQGIS developer cookbook, Sürüm 2.14

r = QgsRubberBand(canvas, True) # True = a polygon
points = [[QgsPoint(-1, -1), QgsPoint(0, 1), QgsPoint(1, -1)]]
r.setToGeometry(QgsGeometry.fromPolygon(points), None)

Note that points for polygon is not a plain list: in fact, it is a list of rings containing linear rings of the polygon:
first ring is the outer border, further (optional) rings correspond to holes in the polygon.

Rubber bands allow some customization, namely to change their color and line width

r.setColor(QColor(0, 0, 255))
r.setWidth(3)

The canvas items are bound to the canvas scene. To temporarily hide them (and show again, use the hide() and
show() combo. To completely remove the item, you have to remove it from the scene of the canvas

canvas.scene().removeItem(r)

(in C++ it’s possible to just delete the item, however in Python del r would just delete the reference and the
object will still exist as it is owned by the canvas)

Rubber band can be also used for drawing points, however QgsVertexMarker class is better suited for this
(QgsRubberBand would only draw a rectangle around the desired point). How to use the vertex marker

m = QgsVertexMarker(canvas)
m.setCenter(QgsPoint(0, 0))

This will draw a red cross on position [0,0]. It is possible to customize the icon type, size, color and pen width

m.setColor(QColor(0, 255, 0))
m.setIconSize(5)
m.setIconType(QgsVertexMarker.ICON_BOX) # or ICON_CROSS, ICON_X
m.setPenWidth(3)

For temporary hiding of vertex markers and removing them from canvas, the same applies as for the rubber bands.

8.4 Writing Custom Map Tools

You can write your custom tools, to implement a custom behaviour to actions performed by users on the canvas.

Map tools should inherit from the QgsMapTool class or any derived class, and selected as active tools in the
canvas using the setMapTool() method as we have already seen.

Here is an example of a map tool that allows to define a rectangular extent by clicking and dragging on the canvas.
When the rectangle is defined, it prints its boundary coordinates in the console. It uses the rubber band elements
described before to show the selected rectangle as it is being defined.

class RectangleMapTool(QgsMapToolEmitPoint):
def __init__(self, canvas):

self.canvas = canvas
QgsMapToolEmitPoint.__init__(self, self.canvas)
self.rubberBand = QgsRubberBand(self.canvas, QGis.Polygon)
self.rubberBand.setColor(Qt.red)
self.rubberBand.setWidth(1)
self.reset()

def reset(self):
self.startPoint = self.endPoint = None
self.isEmittingPoint = False
self.rubberBand.reset(QGis.Polygon)

def canvasPressEvent(self, e):
self.startPoint = self.toMapCoordinates(e.pos())
self.endPoint = self.startPoint

42 Chapter 8. Harita tuvalini kullanma

PyQGIS developer cookbook, Sürüm 2.14

self.isEmittingPoint = True
self.showRect(self.startPoint, self.endPoint)

def canvasReleaseEvent(self, e):
self.isEmittingPoint = False
r = self.rectangle()
if r is not None:
print "Rectangle:", r.xMinimum(), r.yMinimum(), r.xMaximum(), r.yMaximum()

def canvasMoveEvent(self, e):
if not self.isEmittingPoint:

return

self.endPoint = self.toMapCoordinates(e.pos())
self.showRect(self.startPoint, self.endPoint)

def showRect(self, startPoint, endPoint):
self.rubberBand.reset(QGis.Polygon)
if startPoint.x() == endPoint.x() or startPoint.y() == endPoint.y():

return

point1 = QgsPoint(startPoint.x(), startPoint.y())
point2 = QgsPoint(startPoint.x(), endPoint.y())
point3 = QgsPoint(endPoint.x(), endPoint.y())
point4 = QgsPoint(endPoint.x(), startPoint.y())

self.rubberBand.addPoint(point1, False)
self.rubberBand.addPoint(point2, False)
self.rubberBand.addPoint(point3, False)
self.rubberBand.addPoint(point4, True) # true to update canvas
self.rubberBand.show()

def rectangle(self):
if self.startPoint is None or self.endPoint is None:

return None
elif self.startPoint.x() == self.endPoint.x() or self.startPoint.y() == self.endPoint.y():
return None

return QgsRectangle(self.startPoint, self.endPoint)

def deactivate(self):
super(RectangleMapTool, self).deactivate()
self.emit(SIGNAL("deactivated()"))

8.5 Writing Custom Map Canvas Items

TODO: how to create a map canvas item

import sys
from qgis.core import QgsApplication
from qgis.gui import QgsMapCanvas

def init():
a = QgsApplication(sys.argv, True)
QgsApplication.setPrefixPath(’/home/martin/qgis/inst’, True)
QgsApplication.initQgis()
return a

def show_canvas(app):
canvas = QgsMapCanvas()
canvas.show()

8.5. Writing Custom Map Canvas Items 43

PyQGIS developer cookbook, Sürüm 2.14

app.exec_()
app = init()
show_canvas(app)

44 Chapter 8. Harita tuvalini kullanma

CHAPTER 9

Harita İşleme ve Yazdırma

• Simple Rendering
• Rendering layers with different CRS
• Output using Map Composer

– Output to a raster image
– Output to PDF

There are generally two approaches when input data should be rendered as a map: either do it quick way using
QgsMapRenderer or produce more fine-tuned output by composing the map with QgsComposition class
and friends.

9.1 Simple Rendering

Render some layers using QgsMapRenderer — create destination paint device (QImage, QPainter etc.), set
up layer set, extent, output size and do the rendering

create image
img = QImage(QSize(800, 600), QImage.Format_ARGB32_Premultiplied)

set image’s background color
color = QColor(255, 255, 255)
img.fill(color.rgb())

create painter
p = QPainter()
p.begin(img)
p.setRenderHint(QPainter.Antialiasing)

render = QgsMapRenderer()

set layer set
lst = [layer.getLayerID()] # add ID of every layer
render.setLayerSet(lst)

set extent
rect = QgsRectangle(render.fullExtent())
rect.scale(1.1)
render.setExtent(rect)

set output size
render.setOutputSize(img.size(), img.logicalDpiX())

do the rendering
render.render(p)

45

PyQGIS developer cookbook, Sürüm 2.14

p.end()

save image
img.save("render.png","png")

9.2 Rendering layers with different CRS

If you have more than one layer and they have a different CRS, the simple example above will probably not work:
to get the right values from the extent calculations you have to explicitly set the destination CRS and enable OTF
reprojection as in the example below (only the renderer configuration part is reported)
...
set layer set
layers = QgsMapLayerRegistry.instance().mapLayers()
lst = layers.keys()
render.setLayerSet(lst)

Set destination CRS to match the CRS of the first layer
render.setDestinationCrs(layers.values()[0].crs())
Enable OTF reprojection
render.setProjectionsEnabled(True)
...

9.3 Output using Map Composer

Map composer is a very handy tool if you would like to do a more sophisticated output than the simple rendering
shown above. Using the composer it is possible to create complex map layouts consisting of map views, labels,
legend, tables and other elements that are usually present on paper maps. The layouts can be then exported to
PDF, raster images or directly printed on a printer.

The composer consists of a bunch of classes. They all belong to the core library. QGIS application has a convenient
GUI for placement of the elements, though it is not available in the GUI library. If you are not familiar with Qt
Graphics View framework, then you are encouraged to check the documentation now, because the composer is
based on it. Also check the Python documentation of the implementation of QGraphicView.

The central class of the composer is QgsComposition which is derived from QGraphicsScene. Let us
create one

mapRenderer = iface.mapCanvas().mapRenderer()
c = QgsComposition(mapRenderer)
c.setPlotStyle(QgsComposition.Print)

Note that the composition takes an instance of QgsMapRenderer. In the code we expect we are running within
QGIS application and thus use the map renderer from map canvas. The composition uses various parameters from
the map renderer, most importantly the default set of map layers and the current extent. When using composer in
a standalone application, you can create your own map renderer instance the same way as shown in the section
above and pass it to the composition.

It is possible to add various elements (map, label, ...) to the composition — these elements have to be descendants
of QgsComposerItem class. Currently supported items are:

• map — this item tells the libraries where to put the map itself. Here we create a map and stretch it over the
whole paper size

x, y = 0, 0
w, h = c.paperWidth(), c.paperHeight()
composerMap = QgsComposerMap(c, x ,y, w, h)
c.addItem(composerMap)

46 Chapter 9. Harita İşleme ve Yazdırma

http://doc.qt.io/qt-4.8/qgraphicsview.html
http://doc.qt.io/qt-4.8/qgraphicsview.html
http://pyqt.sourceforge.net/Docs/PyQt4/qgraphicsview.html

PyQGIS developer cookbook, Sürüm 2.14

• label — allows displaying labels. It is possible to modify its font, color, alignment and margin

composerLabel = QgsComposerLabel(c)
composerLabel.setText("Hello world")
composerLabel.adjustSizeToText()
c.addItem(composerLabel)

• legend

legend = QgsComposerLegend(c)
legend.model().setLayerSet(mapRenderer.layerSet())
c.addItem(legend)

• scale bar

item = QgsComposerScaleBar(c)
item.setStyle(’Numeric’) # optionally modify the style
item.setComposerMap(composerMap)
item.applyDefaultSize()
c.addItem(item)

• arrow

• picture

• shape

• tablo

By default the newly created composer items have zero position (top left corner of the page) and zero size. The
position and size are always measured in millimeters

set label 1cm from the top and 2cm from the left of the page
composerLabel.setItemPosition(20, 10)
set both label’s position and size (width 10cm, height 3cm)
composerLabel.setItemPosition(20, 10, 100, 30)

A frame is drawn around each item by default. How to remove the frame

composerLabel.setFrame(False)

Besides creating the composer items by hand, QGIS has support for composer templates which are essentially
compositions with all their items saved to a .qpt file (with XML syntax). Unfortunately this functionality is not
yet available in the API.

Once the composition is ready (the composer items have been created and added to the composition), we can
proceed to produce a raster and/or vector output.

The default output settings for composition are page size A4 and resolution 300 DPI. You can change them if
necessary. The paper size is specified in millimeters

c.setPaperSize(width, height)
c.setPrintResolution(dpi)

9.3.1 Output to a raster image

The following code fragment shows how to render a composition to a raster image

dpi = c.printResolution()
dpmm = dpi / 25.4
width = int(dpmm * c.paperWidth())
height = int(dpmm * c.paperHeight())

create output image and initialize it
image = QImage(QSize(width, height), QImage.Format_ARGB32)

9.3. Output using Map Composer 47

PyQGIS developer cookbook, Sürüm 2.14

image.setDotsPerMeterX(dpmm * 1000)
image.setDotsPerMeterY(dpmm * 1000)
image.fill(0)

render the composition
imagePainter = QPainter(image)
sourceArea = QRectF(0, 0, c.paperWidth(), c.paperHeight())
targetArea = QRectF(0, 0, width, height)
c.render(imagePainter, targetArea, sourceArea)
imagePainter.end()

image.save("out.png", "png")

9.3.2 Output to PDF

The following code fragment renders a composition to a PDF file

printer = QPrinter()
printer.setOutputFormat(QPrinter.PdfFormat)
printer.setOutputFileName("out.pdf")
printer.setPaperSize(QSizeF(c.paperWidth(), c.paperHeight()), QPrinter.Millimeter)
printer.setFullPage(True)
printer.setColorMode(QPrinter.Color)
printer.setResolution(c.printResolution())

pdfPainter = QPainter(printer)
paperRectMM = printer.pageRect(QPrinter.Millimeter)
paperRectPixel = printer.pageRect(QPrinter.DevicePixel)
c.render(pdfPainter, paperRectPixel, paperRectMM)
pdfPainter.end()

48 Chapter 9. Harita İşleme ve Yazdırma

CHAPTER 10

İfadeler, Filtreleme ve Hesaplama Değerleri

• Parsing Expressions
• Evaluating Expressions

– Basic Expressions
– Expressions with features
– Handling errors

• Examples

QGIS has some support for parsing of SQL-like expressions. Only a small subset of SQL syntax is supported.
The expressions can be evaluated either as boolean predicates (returning True or False) or as functions (returning
a scalar value). See vector_expressions in the User Manual for a complete list of available functions.

Three basic types are supported:

• number — both whole numbers and decimal numbers, e.g. 123, 3.14

• string — they have to be enclosed in single quotes: ’hello world’

• column reference — when evaluating, the reference is substituted with the actual value of the field. The
names are not escaped.

The following operations are available:

• arithmetic operators: +, -, *, /, ^

• parentheses: for enforcing the operator precedence: (1 + 1) * 3

• unary plus and minus: -12, +5

• mathematical functions: sqrt, sin, cos, tan, asin, acos, atan

• conversion functions: to_int, to_real, to_string, to_date

• geometry functions: $area, $length

• geometry handling functions: $x, $y, $geometry, num_geometries, centroid

And the following predicates are supported:

• comparison: =, !=, >, >=, <, <=

• pattern matching: LIKE (using % and _), ~ (regular expressions)

• logical predicates: AND, OR, NOT

• NULL value checking: IS NULL, IS NOT NULL

Examples of predicates:

• 1 + 2 = 3

• sin(angle) > 0

49

PyQGIS developer cookbook, Sürüm 2.14

• ’Hello’ LIKE ’He%’

• (x > 10 AND y > 10) OR z = 0

Examples of scalar expressions:

• 2 ^ 10

• sqrt(val)

• $length + 1

10.1 Parsing Expressions

>>> exp = QgsExpression(’1 + 1 = 2’)
>>> exp.hasParserError()
False
>>> exp = QgsExpression(’1 + 1 = ’)
>>> exp.hasParserError()
True
>>> exp.parserErrorString()
PyQt4.QtCore.QString(u’syntax error, unexpected $end’)

10.2 Evaluating Expressions

10.2.1 Basic Expressions

>>> exp = QgsExpression(’1 + 1 = 2’)
>>> value = exp.evaluate()
>>> value
1

10.2.2 Expressions with features

The following example will evaluate the given expression against a feature. “Column” is the name of the field in
the layer.

>>> exp = QgsExpression(’Column = 99’)
>>> value = exp.evaluate(feature, layer.pendingFields())
>>> bool(value)
True

You can also use QgsExpression.prepare() if you need check more than one feature. Using
QgsExpression.prepare() will increase the speed that evaluate takes to run.

>>> exp = QgsExpression(’Column = 99’)
>>> exp.prepare(layer.pendingFields())
>>> value = exp.evaluate(feature)
>>> bool(value)
True

10.2.3 Handling errors

exp = QgsExpression("1 + 1 = 2 ")
if exp.hasParserError():

raise Exception(exp.parserErrorString())

50 Chapter 10. İfadeler, Filtreleme ve Hesaplama Değerleri

PyQGIS developer cookbook, Sürüm 2.14

value = exp.evaluate()
if exp.hasEvalError():

raise ValueError(exp.evalErrorString())

print value

10.3 Examples

The following example can be used to filter a layer and return any feature that matches a predicate.

def where(layer, exp):
print "Where"
exp = QgsExpression(exp)
if exp.hasParserError():
raise Exception(exp.parserErrorString())

exp.prepare(layer.pendingFields())
for feature in layer.getFeatures():
value = exp.evaluate(feature)
if exp.hasEvalError():

raise ValueError(exp.evalErrorString())
if bool(value):

yield feature

layer = qgis.utils.iface.activeLayer()
for f in where(layer, ’Test > 1.0’):
print f + " Matches expression"

10.3. Examples 51

PyQGIS developer cookbook, Sürüm 2.14

52 Chapter 10. İfadeler, Filtreleme ve Hesaplama Değerleri

CHAPTER 11

Ayarları okuma ve depolama

Many times it is useful for a plugin to save some variables so that the user does not have to enter or select them
again next time the plugin is run.

These variables can be saved and retrieved with help of Qt and QGIS API. For each variable, you should pick a
key that will be used to access the variable — for user’s favourite color you could use key “favourite_color” or
any other meaningful string. It is recommended to give some structure to naming of keys.

We can make difference between several types of settings:

• global settings — they are bound to the user at particular machine. QGIS itself stores a lot of global settings,
for example, main window size or default snapping tolerance. This functionality is provided directly by Qt
framework by the means of QSettings class. By default, this class stores settings in system’s “native”
way of storing settings, that is — registry (on Windows), .plist file (on Mac OS X) or .ini file (on Unix).
The QSettings documentation is comprehensive, so we will provide just a simple example

def store():
s = QSettings()
s.setValue("myplugin/mytext", "hello world")
s.setValue("myplugin/myint", 10)
s.setValue("myplugin/myreal", 3.14)

def read():
s = QSettings()
mytext = s.value("myplugin/mytext", "default text")
myint = s.value("myplugin/myint", 123)
myreal = s.value("myplugin/myreal", 2.71)

The second parameter of the value() method is optional and specifies the default value if there is no
previous value set for the passed setting name.

• project settings — vary between different projects and therefore they are connected with a project file.
Map canvas background color or destination coordinate reference system (CRS) are examples — white
background and WGS84 might be suitable for one project, while yellow background and UTM projection
are better for another one. An example of usage follows

proj = QgsProject.instance()

store values
proj.writeEntry("myplugin", "mytext", "hello world")
proj.writeEntry("myplugin", "myint", 10)
proj.writeEntry("myplugin", "mydouble", 0.01)
proj.writeEntry("myplugin", "mybool", True)

read values
mytext = proj.readEntry("myplugin", "mytext", "default text")[0]
myint = proj.readNumEntry("myplugin", "myint", 123)[0]

53

http://doc.qt.io/qt-4.8/qsettings.html

PyQGIS developer cookbook, Sürüm 2.14

As you can see, the writeEntry()method is used for all data types, but several methods exist for reading
the setting value back, and the corresponding one has to be selected for each data type.

• map layer settings — these settings are related to a particular instance of a map layer with a project. They
are not connected with underlying data source of a layer, so if you create two map layer instances of one
shapefile, they will not share the settings. The settings are stored in project file, so if the user opens the
project again, the layer-related settings will be there again. This functionality has been added in QGIS v1.4.
The API is similar to QSettings — it takes and returns QVariant instances

save a value
layer.setCustomProperty("mytext", "hello world")

read the value again
mytext = layer.customProperty("mytext", "default text")

54 Chapter 11. Ayarları okuma ve depolama

CHAPTER 12

Kullanıcı ile iletişim

• Mesajlar gösteriliyor. :sınıf:’QgsMesajÇubuğu’sınıf
• İlerleme gösteriliyor
• Kaydoluyor

Bu bölüm Kullanıcı Arayüzdeki sürekliliği sağlamak amacıyla, kullanıcı ile iletişim kurmak için kullanılan metot
ve elementleri gösterir.

12.1 Mesajlar gösteriliyor. :sınıf:’QgsMesajÇubuğu’sınıf

Kullanıcı deneyimi açısından mesaj kutusu kullanmak yanlış olabilir. Küçük bir bilgi veya uyarı/hata mesajı
çizgisi göstermek için QGIS mesaj çubuğu kullanmak genellikle en iyi seçenektir.

QGIS arayüz nesnesi için referansı kullanarak bir mesajı, mesaj çubuğundaki sonraki codla gösterebilirsiniz

from qgis.gui import QgsMessageBar
iface.messageBar().pushMessage("Error", "I’m sorry Dave, I’m afraid I can’t do that", level=QgsMessageBar.CRITICAL)

Figure 12.1: QGIS Mesaj çubuğu

Bunu sınırlı bir zamanda göstermek için süre ayarı koyabilirsiniz.

iface.messageBar().pushMessage("Error", ""Ooops, the plugin is not working as it should", level=QgsMessageBar.CRITICAL, duration=3)

Figure 12.2: Sayaçlı QGIS Mesaj çubuğu

Yukarıdaki örnekler bir hata çubuğunu gösterir, ama ‘seviye’ parametresi QgsMesajCubugu.UYARI uyarı
mesajları oluşturmak için veya QgsMesajCubugu.BILGI bilgi mesajları oluşturmak için kullanılabilir.

Mesaj çubuğuna Widgetlar eklenebilir örneğin daha fazla bilgi göstermek için bir buton

55

PyQGIS developer cookbook, Sürüm 2.14

Figure 12.3: QGIS Mesaj çubuğu(bilgi için)

def showError():
pass

widget = iface.messageBar().createMessage("Missing Layers", "Show Me")
button = QPushButton(widget)
button.setText("Show Me")
button.pressed.connect(showError)
widget.layout().addWidget(button)
iface.messageBar().pushWidget(widget, QgsMessageBar.WARNING)

Figure 12.4: Butonlu bir QGIS Mesaj çubuğu

Ana QGIS penceresinde bir mesaj kutusu göstermek gereksizse veya pencerenizde mesaj kutusu göstermek is-
temiyorsanız kendi pencerenizde bir mesaj çubu kullanabilirsiniz.

class MyDialog(QDialog):
def __init__(self):

QDialog.__init__(self)
self.bar = QgsMessageBar()
self.bar.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed)
self.setLayout(QGridLayout())
self.layout().setContentsMargins(0, 0, 0, 0)
self.buttonbox = QDialogButtonBox(QDialogButtonBox.Ok)
self.buttonbox.accepted.connect(self.run)
self.layout().addWidget(self.buttonbox, 0, 0, 2, 1)
self.layout().addWidget(self.bar, 0, 0, 1, 1)

def run(self):
self.bar.pushMessage("Hello", "World", level=QgsMessageBar.INFO)

12.2 İlerleme gösteriliyor

ilerleme çubukları, gördüğümüz gibi, QGIS mesaj çubukları içine de konulabilir olduğundan, widgetları kabul
eder. Konsolda deneyebileceğiniz kodları burada bulabilirsiniz.

import time
from PyQt4.QtGui import QProgressBar
from PyQt4.QtCore import *
progressMessageBar = iface.messageBar().createMessage("Doing something boring...")
progress = QProgressBar()
progress.setMaximum(10)
progress.setAlignment(Qt.AlignLeft|Qt.AlignVCenter)

56 Chapter 12. Kullanıcı ile iletişim

PyQGIS developer cookbook, Sürüm 2.14

Figure 12.5: QGIS özel diyalogdaki mesaj çubupu

progressMessageBar.layout().addWidget(progress)
iface.messageBar().pushWidget(progressMessageBar, iface.messageBar().INFO)
for i in range(10):

time.sleep(1)
progress.setValue(i + 1)

iface.messageBar().clearWidgets()

Hatta bir sonraki örnekte olduğu gibi, ilerlemeyi raporlamak için dahili durum çubuğunu kullanabilirsiniz

count = layers.featureCount()
for i, feature in enumerate(features):

#do something time-consuming here
...
percent = i / float(count) * 100
iface.mainWindow().statusBar().showMessage("Processed {} %".format(int(percent)))

iface.mainWindow().statusBar().clearMessage()

12.3 Kaydoluyor

QGIS kayıt sistemini kodunuzun çalışması hakkındaki görmek istediğiniz tüm bilgileri kaydetmek için kullan-
abilirsiniz.

You can optionally pass a ’tag’ and a ’level’ parameters
QgsMessageLog.logMessage("Your plugin code has been executed correctly", ’MyPlugin’, QgsMessageLog.INFO)
QgsMessageLog.logMessage("Your plugin code might have some problems", level=QgsMessageLog.WARNING)
QgsMessageLog.logMessage("Your plugin code has crashed!", level=QgsMessageLog.CRITICAL)

12.3. Kaydoluyor 57

PyQGIS developer cookbook, Sürüm 2.14

58 Chapter 12. Kullanıcı ile iletişim

CHAPTER 13

Python Eklentileri Geliştirme

• Bir eklenti yazma
– Eklenti dosyaları

• Eklenti içeriği
– Eklenti değişim verisi
– __init__.py
– anaEklenti.py
– Kaynak Dosya

• Dokümantasyon
• Translation

– Software requirements
– Files and directory

* .pro file
* .ts file
* .qm file

– Load the plugin

Python programlama dilinde eklenti oluşturmak mümkündür. C++ ile yazılan klasik eklentilerle
karşılaştırıldığında, Python dilinin dinamik doğası gereği Python da eklenti yazmak, anlamak, bakımı ve dağıtımı
daha kolaydır.

QGIS eklenti yönetiminde Python eklentileri C++ eklentileri ile birlikte listelenir. Bu yoldan araştırılırlar.

• UNIX/Mac: ~/.qgis2/python/plugins and (qgis_prefix)/share/qgis/python/plugins

• Windows: ~/.qgis2/python/plugins and (qgis_prefix)/python/plugins

Home directory (denoted by above ~) on Windows is usually something like C:\Documents and
Settings\(user) (on Windows XP or earlier) or C:\Users\(user). Since QGIS is using Python 2.7,
subdirectories of these paths have to contain an __init__.py file to be considered Python packages that can be
imported as plugins.

Not: By setting QGIS_PLUGINPATH to an existing directory path, you can add this path to the list of paths that
are searched for plugins.

Adımlar:

1. Düşünce: Yeni QGIS eklentiniz ile ne yapmak istediğinize dair bir fikriniz var. Neden yapmalısınız? Hangi
problemi çözmeniz gerekiyor? Bu problem için zaten mevcut bir eklenti var mı?

2. Create files: Create the files described next. A starting point (__init__.py). Fill in the Eklenti değişim
verisi (metadata.txt) A main python plugin body (mainplugin.py). A form in QT-Designer
(form.ui), with its resources.qrc.

3. Write code: Write the code inside the mainplugin.py

4. Test: QGIS ı kapatıp tekrar açınız. Herşey normalmi kontrol ediniz.

59

PyQGIS developer cookbook, Sürüm 2.14

5. Publish: Publish your plugin in QGIS repository or make your own repository as an “arsenal” of personal
“GIS weapons”.

13.1 Bir eklenti yazma

Since the introduction of Python plugins in QGIS, a number of plugins have appeared - on Plugin Repositories
wiki page you can find some of them, you can use their source to learn more about programming with PyQGIS
or find out whether you are not duplicating development effort. The QGIS team also maintains an Resimi python
eklenti kaynağı. Ready to create a plugin but no idea what to do? Python Plugin Ideas wiki page lists wishes from
the community!

13.1.1 Eklenti dosyaları

Örnek eklentimizin dizin yapısı şu şekilde

PYTHON_PLUGINS_PATH/
MyPlugin/
__init__.py --> *required*
mainPlugin.py --> *required*
metadata.txt --> *required*
resources.qrc --> *likely useful*
resources.py --> *compiled version, likely useful*
form.ui --> *likely useful*
form.py --> *compiled version, likely useful*

Dosyaların anlamı nedir:

• __init__.py = The starting point of the plugin. It has to have the classFactory() method and may
have any other initialisation code.

• mainPlugin.py = The main working code of the plugin. Contains all the information about the actions
of the plugin and the main code.

• resources.qrc = The .xml document created by Qt Designer. Contains relative paths to resources of
the forms.

• :dosya:‘kaynaklar.py‘ = .qrc dosyasının çevirisi yukarıda Python da anlatılmıştır.

• :dosya:‘form.ui‘= KGA Qt Tasarımcı tarafından oluşturuldu.

• :dosya:‘form.py‘ = form.ui nin çevirisi yukarıda Python da anlatılmıştır.

• metadata.txt = Required for QGIS >= 1.8.0. Contains general info, version, name and some
other metadata used by plugins website and plugin infrastructure. Since QGIS 2.0 the metadata from
__init__.py are not accepted anymore and the metadata.txt is required.

Here is an online automated way of creating the basic files (skeleton) of a typical QGIS Python plugin.

Also there is a QGIS plugin called Plugin Builder that creates plugin template from QGIS and doesn’t require
internet connection. This is the recommended option, as it produces 2.0 compatible sources.

Uyarı: If you plan to upload the plugin to the Resimi python eklenti kaynağı you must check that your plugin
follows some additional rules, required for plugin Onaylama

13.2 Eklenti içeriği

Burada dosya yapısı yukarıda anlatılan her bir dosyaya ne eklemek istediğinizle ilgili bilgi ve örnekler bula-
bilirsiniz.

60 Chapter 13. Python Eklentileri Geliştirme

http://www.qgis.org/wiki/Python_Plugin_Repositories
http://www.qgis.org/wiki/Python_Plugin_Repositories
http://www.qgis.org/wiki/Python_Plugin_Ideas
http://www.dimitrisk.gr/qgis/creator/
http://geoapt.net/pluginbuilder/

PyQGIS developer cookbook, Sürüm 2.14

13.2.1 Eklenti değişim verisi

First, plugin manager needs to retrieve some basic information about the plugin such as its name, description etc.
File metadata.txt is the right place to put this information.

Önemli: Tüm değişim verileri UTF-8 formatında kodlanmış olmalıdır.

Değişim
verisi adı

GerekenNotlar

ad Doğru eklentinin adını içeren bir kısa dizi
qgisAs-
gariVer-
siyon

Doğru asgari QGIS versiyonunun noktalama notasyonu

qgisAza-
miVersiy-
onu

Yan-
lış

azami QGIS versiyonunun noktalama notasyonu

tanım Doğru eklentiyi tanımlayan kısa metin, HTML de kullanılmaz
about Doğru eklenti detaylarında tanımlanan uzun metin, HTML de kullanılmaz
versiyon Doğru noktalama notasyonuyla kısa dizi
yazar Doğru yazar adı
e-posta Doğru email of the author, not shown in the QGIS plugin manager or in the website unless by

a registered logged in user, so only visible to other plugin authors and plugin website
administrators

changelog Yan-
lış

dizi, çoklu çizgi olabilir, HTML de kullanılamaz

deneysel Yan-
lış

boolean bayrak.‘Doğru‘ veya Yanlış

itiraz Yan-
lış

boolean bayrak.‘Doğru‘ veya Yanlış, sadece yüklenen versiyona değil tüm eklentiye
uygular

başlıklar Yan-
lış

virgül ayırma listesi, boşluklar ayrı taglerin içinde kullanılırlar

anasayfa Yan-
lış

geçerli bir URL sizin eklentinizin anasayfasını işaret eder

Depo Doğru kaynak kod deposu için doğru bir URL
takipçi Yan-

lış
hata raporları ve etiketler için doğru bir URL

simge Yan-
lış

a file name or a relative path (relative to the base folder of the plugin’s compressed
package) of a web friendly image (PNG, JPEG)

kategori Yan-
lış

one of Raster, Vector, Database and Web

By default, plugins are placed in the Plugins menu (we will see in the next section how to add a menu entry for
your plugin) but they can also be placed the into Raster, Vector, Database and Web menus.

A corresponding “category” metadata entry exists to specify that, so the plugin can be classified accordingly. This
metadata entry is used as tip for users and tells them where (in which menu) the plugin can be found. Allowed
values for “category” are: Vector, Raster, Database or Web. For example, if your plugin will be available from
Raster menu, add this to metadata.txt

category=Raster

Not: If qgisMaximumVersion is empty, it will be automatically set to the major version plus .99 when uploaded
to the Resimi python eklenti kaynağı.

An example for this metadata.txt

; the next section is mandatory

[general]
name=HelloWorld

13.2. Eklenti içeriği 61

PyQGIS developer cookbook, Sürüm 2.14

email=me@example.com
author=Just Me
qgisMinimumVersion=2.0
description=This is an example plugin for greeting the world.

Multiline is allowed:
lines starting with spaces belong to the same
field, in this case to the "description" field.
HTML formatting is not allowed.

about=This paragraph can contain a detailed description
of the plugin. Multiline is allowed, HTML is not.

version=version 1.2
tracker=http://bugs.itopen.it
repository=http://www.itopen.it/repo
; end of mandatory metadata

; start of optional metadata
category=Raster
changelog=The changelog lists the plugin versions

and their changes as in the example below:
1.0 - First stable release
0.9 - All features implemented
0.8 - First testing release

; Tags are in comma separated value format, spaces are allowed within the
; tag name.
; Tags should be in English language. Please also check for existing tags and
; synonyms before creating a new one.
tags=wkt,raster,hello world

; these metadata can be empty, they will eventually become mandatory.
homepage=http://www.itopen.it
icon=icon.png

; experimental flag (applies to the single version)
experimental=True

; deprecated flag (applies to the whole plugin and not only to the uploaded version)
deprecated=False

; if empty, it will be automatically set to major version + .99
qgisMaximumVersion=2.0

13.2.2 __init__.py

This file is required by Python’s import system. Also, QGIS requires that this file contains a classFactory()
function, which is called when the plugin gets loaded to QGIS. It receives reference to instance of
QgisInterface and must return instance of your plugin’s class from the mainplugin.py — in our case it’s
called TestPlugin (see below). This is how __init__.py should look like

def classFactory(iface):
from mainPlugin import TestPlugin
return TestPlugin(iface)

any other initialisation needed

13.2.3 anaEklenti.py

Büyünün olduğu ve nasıl göründüğü yer burasıdır:(:dosya:‘anaEklenti.py‘)

62 Chapter 13. Python Eklentileri Geliştirme

PyQGIS developer cookbook, Sürüm 2.14

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from qgis.core import *

initialize Qt resources from file resources.py
import resources

class TestPlugin:

def __init__(self, iface):
save reference to the QGIS interface
self.iface = iface

def initGui(self):
create action that will start plugin configuration
self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setObjectName("testAction")
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")
QObject.connect(self.action, SIGNAL("triggered()"), self.run)

add toolbar button and menu item
self.iface.addToolBarIcon(self.action)
self.iface.addPluginToMenu("&Test plugins", self.action)

connect to signal renderComplete which is emitted when canvas
rendering is done
QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def unload(self):
remove the plugin menu item and icon
self.iface.removePluginMenu("&Test plugins", self.action)
self.iface.removeToolBarIcon(self.action)

disconnect form signal of the canvas
QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def run(self):
create and show a configuration dialog or something similar
print "TestPlugin: run called!"

def renderTest(self, painter):
use painter for drawing to map canvas
print "TestPlugin: renderTest called!"

ana eklenti kaynak dosyasında olması gerekli olan tek eklenti fonksiyonları(:dosya:‘anaEklenti.py gibi‘)

• __init__ –> which gives access to QGIS interface

• initGui() –> eklenti yüklendiğinde çağrılır

• unload() –> eklenti boşaltıldığı zaman çağrılır

You can see that in the above example, the addPluginToMenu() is used. This will add the corresponding
menu action to the Plugins menu. Alternative methods exist to add the action to a different menu. Here is a list of
those methods:

• RasterMenüyeEklentiekle()

• VektörMenüyeEklentiekle()

• VeriTabanıMenüyeEklentiekle()

• WebMenüyeEklentiekle()

Onların hepsi MenüyeEklentiekle() metodu ile aynı sentaksa sahiptir.

13.2. Eklenti içeriği 63

PyQGIS developer cookbook, Sürüm 2.14

Adding your plugin menu to one of those predefined method is recommended to keep consistency in how plugin
entries are organized. However, you can add your custom menu group directly to the menu bar, as the next example
demonstrates:

def initGui(self):
self.menu = QMenu(self.iface.mainWindow())
self.menu.setObjectName("testMenu")
self.menu.setTitle("MyMenu")

self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setObjectName("testAction")
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")
QObject.connect(self.action, SIGNAL("triggered()"), self.run)
self.menu.addAction(self.action)

menuBar = self.iface.mainWindow().menuBar()
menuBar.insertMenu(self.iface.firstRightStandardMenu().menuAction(), self.menu)

def unload(self):
self.menu.deleteLater()

Don’t forget to set QAction and QMenu objectName to a name specific to your plugin so that it can be
customized.

13.2.4 Kaynak Dosya

Kaynak dosyadan ikon(:dosya:’kaynaklar.qrc’ olarak adlandırılır) kullanıyoruz, bunu:func:initGui() de göre-
bilirsiniz.

<RCC>
<qresource prefix="/plugins/testplug" >

<file>icon.png</file>
</qresource>

</RCC>

It is good to use a prefix that will not collide with other plugins or any parts of QGIS, otherwise you might get
resources you did not want. Now you just need to generate a Python file that will contain the resources. It’s done
with pyrcc4 command:

pyrcc4 -o resources.py resources.qrc

Not: In Windows environments, attempting to run the pyrcc4 from Command Prompt or Powershell will prob-
ably result in the error “Windows cannot access the specified device, path, or file [...]”. The easiest solution
is probably to use the OSGeo4W Shell but if you are comfortable modifying the PATH environment variable
or specifiying the path to the executable explicitly you should be able to find it at <Your QGIS Install
Directory>\bin\pyrcc4.exe.

Hepsi bu... zor birşey yok :)

If you’ve done everything correctly you should be able to find and load your plugin in the plugin manager and see
a message in console when toolbar icon or appropriate menu item is selected.

Gerçek bir eklenti üzerinde çalışırken çalışan başka bir (çalışan) adres defterinde eklenti yazmanın yolu ve UI +
kaynak dosya oluşturan ve QGIS kurulumunuzun eklentisini kuran bir makefile oluşturmaktır.

13.3 Dokümantasyon

Eklenti dokümantasyonu HTML yardım dosyası şeklinde yazılabilir.:mod:qgis.utils modülü yardım dosyası
tarayıcısı showPluginHelp() fonksiyonunu sağlar, diğer QGIS yardımlarıda aynı şekildedir.

64 Chapter 13. Python Eklentileri Geliştirme

PyQGIS developer cookbook, Sürüm 2.14

The showPluginHelp() function looks for help files in the same directory as the calling module. It will
look for, in turn, index-ll_cc.html, index-ll.html, index-en.html, index-en_us.html and
index.html, displaying whichever it finds first. Here ll_cc is the QGIS locale. This allows multiple transla-
tions of the documentation to be included with the plugin.

The showPluginHelp() function can also take parameters packageName, which identifies a specific plugin
for which the help will be displayed, filename, which can replace “index” in the names of files being searched,
and section, which is the name of an html anchor tag in the document on which the browser will be positioned.

13.4 Translation

With a few steps you can set up the environment for the plugin localization so that depending on the locale settings
of your computer the plugin will be loaded in different languages.

13.4.1 Software requirements

The easiest way to create and manage all the translation files is to install Qt Linguist. In a Linux like environment
you can install it typing:

sudo apt-get install qt4-dev-tools

13.4.2 Files and directory

When you create the plugin you will find the i18n folder within the main plugin directory.

All the translation files have to be within this directory.

.pro file

First you should create a .pro file, that is a project file that can be managed by Qt Linguist.

In this .pro file you have to specify all the files and forms you want to translate. This file is used to set up the
localization files and variables. An example of the pro file is:

FORMS = ../ui/*

SOURCES = ../your_plugin.py

TRANSLATIONS = your_plugin_it.ts

In this particular case all your UIs are placed in the ../ui folder and you want to translate all of them.

Furthermore, the your_plugin.py file is the file that calls all the menu and sub-menus of your plugin in the
QGIS toolbar and you want to translate them all.

Finally with the TRANSLATIONS variable you can specify the translation languages you want.

Uyarı: Be sure to name the ts file like your_plugin_ + language + .ts otherwise the language
loading will fail! Use 2 letters shortcut for the language (it for Italian, de for German, etc...)

.ts file

Once you have created the .pro you are ready to generate the .ts file(s) of the language(s) of your plugin.

Open a terminal, go to your_plugin/i18n directory and type:

13.4. Translation 65

http://doc.qt.io/qt-4.8/linguist-manual.html

PyQGIS developer cookbook, Sürüm 2.14

lupdate your_plugin.pro

you should see the your_plugin_language.ts file(s).

Open the .ts file with Qt Linguist and start to translate.

.qm file

When you finish to translate your plugin (if some strings are not completed the source language for those strings
will be used) you have to create the .qm file (the compiled .ts file that will be used by QGIS).

Just open a terminal cd in your_plugin/i18n directory and type:

lrelease your_plugin.ts

now, in the i18n directory you will see the your_plugin.qm file(s).

13.4.3 Load the plugin

In order to see the translation of your plugin just open QGIS, change the language (Settings → Options → Lan-
guage) and restart QGIS.

You should see your plugin in the correct language.

Uyarı: If you change something in your plugin (new UIs, new menu, etc..) you have to generate again the
update version of both .ts and .qm file, so run again the command of above.

66 Chapter 13. Python Eklentileri Geliştirme

CHAPTER 14

Yazdırma ve hata ayıklama için IDE ayarları

• A note on configuring your IDE on Windows
• Debugging using Eclipse and PyDev

– Installation
– Preparing QGIS
– Setting up Eclipse
– Configuring the debugger
– Making eclipse understand the API

• Debugging using PDB

Although each programmer has his preferred IDE/Text editor, here are some recommendations for setting up
popular IDE’s for writing and debugging QGIS Python plugins.

14.1 A note on configuring your IDE on Windows

On Linux there is no additional configuration needed to develop plugins. But on Windows you need to make sure
you that you have the same environment settings and use the same libraries and interpreter as QGIS. The fastest
way to do this, is to modify the startup batch file of QGIS.

If you used the OSGeo4W Installer, you can find this under the bin folder of your OSGeo4W install. Look for
something like C:\OSGeo4W\bin\qgis-unstable.bat.

For using Pyscripter IDE, here’s what you have to do:

• Make a copy of qgis-unstable.bat and rename it pyscripter.bat.

• Open it in an editor. And remove the last line, the one that starts QGIS.

• Add a line that points to your Pyscripter executable and add the commandline argument that sets the version
of Python to be used (2.7 in the case of QGIS >= 2.0)

• Also add the argument that points to the folder where Pyscripter can find the Python dll used by QGIS, you
can find this under the bin folder of your OSGeoW install

@echo off
SET OSGEO4W_ROOT=C:\OSGeo4W
call "%OSGEO4W_ROOT%"\bin\o4w_env.bat
call "%OSGEO4W_ROOT%"\bin\gdal16.bat
@echo off
path %PATH%;%GISBASE%\bin
Start C:\pyscripter\pyscripter.exe --python25 --pythondllpath=C:\OSGeo4W\bin

Now when you double click this batch file it will start Pyscripter, with the correct path.

67

http://code.google.com/p/pyscripter

PyQGIS developer cookbook, Sürüm 2.14

More popular than Pyscripter, Eclipse is a common choice among developers. In the following sections, we will be
explaining how to configure it for developing and testing plugins. To prepare your environment for using Eclipse
in Windows, you should also create a batch file and use it to start Eclipse.

To create that batch file, follow these steps:

• Locate the folder where qgis_core.dll resides in. Normally this is
C:\OSGeo4W\apps\qgis\bin, but if you compiled your own QGIS application this is in your
build folder in output/bin/RelWithDebInfo

• Locate your eclipse.exe executable.

• Create the following script and use this to start eclipse when developing QGIS plugins.

call "C:\OSGeo4W\bin\o4w_env.bat"
set PATH=%PATH%;C:\path\to\your\qgis_core.dll\parent\folder
C:\path\to\your\eclipse.exe

14.2 Debugging using Eclipse and PyDev

14.2.1 Installation

To use Eclipse, make sure you have installed the following

• Eclipse

• Aptana Eclipse Plugin or PyDev

• QGIS 2.x

14.2.2 Preparing QGIS

There is some preparation to be done on QGIS itself. Two plugins are of interest: Remote Debug and Plugin
reloader.

• Go to Plugins → Manage and Install plugins...

• Search for Remote Debug (at the moment it’s still experimental, so enable experimental plugins under the
Options tab in case it does not show up). Install it.

• Search for Plugin reloader and install it as well. This will let you reload a plugin instead of having to close
and restart QGIS to have the plugin reloaded.

14.2.3 Setting up Eclipse

In Eclipse, create a new project. You can select General Project and link your real sources later on, so it does not
really matter where you place this project.

Now right-click your new project and choose New → Folder.

Click [Advanced] and choose Link to alternate location (Linked Folder). In case you already have sources you
want to debug, choose these. In case you don’t, create a folder as it was already explained.

Now in the view Project Explorer, your source tree pops up and you can start working with the code. You already
have syntax highlighting and all the other powerful IDE tools available.

68 Chapter 14. Yazdırma ve hata ayıklama için IDE ayarları

https://eclipse.org
http://www.aptana.com/products/studio3/success_plugin.html
http://www.pydev.org

PyQGIS developer cookbook, Sürüm 2.14

Figure 14.1: Eclipse project

14.2. Debugging using Eclipse and PyDev 69

PyQGIS developer cookbook, Sürüm 2.14

14.2.4 Configuring the debugger

To get the debugger working, switch to the Debug perspective in Eclipse (Window → Open Perspective → Other
→ Debug).

Now start the PyDev debug server by choosing PyDev → Start Debug Server.

Eclipse is now waiting for a connection from QGIS to its debug server and when QGIS connects to the debug
server it will allow it to control the python scripts. That’s exactly what we installed the Remote Debug plugin for.
So start QGIS in case you did not already and click the bug symbol.

Now you can set a breakpoint and as soon as the code hits it, execution will stop and you can inspect the current
state of your plugin. (The breakpoint is the green dot in the image below, set one by double clicking in the white
space left to the line you want the breakpoint to be set).

Figure 14.2: Breakpoint

A very interesting thing you can make use of now is the debug console. Make sure that the execution is currently
stopped at a break point, before you proceed.

Open the Console view (Window → Show view). It will show the Debug Server console which is not very inter-
esting. But there is a button [Open Console] which lets you change to a more interesting PyDev Debug Console.
Click the arrow next to the [Open Console] button and choose PyDev Console. A window opens up to ask you
which console you want to start. Choose PyDev Debug Console. In case its greyed out and tells you to Start the
debugger and select the valid frame, make sure that you’ve got the remote debugger attached and are currently on
a breakpoint.

Figure 14.3: PyDev Debug Console

You have now an interactive console which let’s you test any commands from within the current context. You can
manipulate variables or make API calls or whatever you like.

A little bit annoying is, that every time you enter a command, the console switches back to the Debug Server. To
stop this behavior, you can click the Pin Console button when on the Debug Server page and it should remember
this decision at least for the current debug session.

70 Chapter 14. Yazdırma ve hata ayıklama için IDE ayarları

PyQGIS developer cookbook, Sürüm 2.14

14.2.5 Making eclipse understand the API

A very handy feature is to have Eclipse actually know about the QGIS API. This enables it to check your code for
typos. But not only this, it also enables Eclipse to help you with autocompletion from the imports to API calls.

To do this, Eclipse parses the QGIS library files and gets all the information out there. The only thing you have to
do is to tell Eclipse where to find the libraries.

Click Window → Preferences → PyDev → Interpreter → Python.

You will see your configured python interpreter in the upper part of the window (at the moment python2.7 for
QGIS) and some tabs in the lower part. The interesting tabs for us are Libraries and Forced Builtins.

Figure 14.4: PyDev Debug Console

First open the Libraries tab. Add a New Folder and choose the python folder of your QGIS installation. If
you do not know where this folder is (it’s not the plugins folder) open QGIS, start a python console and sim-
ply enter qgis and press Enter. It will show you which QGIS module it uses and its path. Strip the trailing
/qgis/__init__.pyc from this path and you’ve got the path you are looking for.

You should also add your plugins folder here (on Linux it is ~/.qgis2/python/plugins).

Next jump to the Forced Builtins tab, click on New... and enter qgis. This will make Eclipse parse the QGIS
API. You probably also want Eclipse to know about the PyQt4 API. Therefore also add PyQt4 as forced builtin.
That should probably already be present in your libraries tab.

Click OK and you’re done.

Not: Every time the QGIS API changes (e.g. if you’re compiling QGIS master and the SIP file changed), you
should go back to this page and simply click Apply. This will let Eclipse parse all the libraries again.

For another possible setting of Eclipse to work with QGIS Python plugins, check this link

14.2. Debugging using Eclipse and PyDev 71

http://linfiniti.com/2011/12/remote-debugging-qgis-python-plugins-with-pydev

PyQGIS developer cookbook, Sürüm 2.14

14.3 Debugging using PDB

If you do not use an IDE such as Eclipse, you can debug using PDB, following these steps.

First add this code in the spot where you would like to debug

Use pdb for debugging
import pdb
These lines allow you to set a breakpoint in the app
pyqtRemoveInputHook()
pdb.set_trace()

Then run QGIS from the command line.

On Linux do:

$./Qgis

On Mac OS X do:

$ /Applications/Qgis.app/Contents/MacOS/Qgis

And when the application hits your breakpoint you can type in the console!

TODO: Add testing information

72 Chapter 14. Yazdırma ve hata ayıklama için IDE ayarları

CHAPTER 15

Eklenti Katmanlarının Kullanımı

Bir harita katmanını çevirmek için sizin eklentiniz kendi methodunu kullanıyorsa,bunu sağlamanın en iyi yolu
QgsEklentiKatmanı a göre kendi katman tipinizi yazmanız olabilir.

YAPILACAKLAR: QgsEklentiKatmanı için uygun kullanım durumları detaylandırın ve doğruluğunu kontrol
edin

15.1 QgsEklentiKatmanı Altsınıfı oluşturma

Below is an example of a minimal QgsPluginLayer implementation. It is an excerpt of the Watermark example
plugin

class WatermarkPluginLayer(QgsPluginLayer):

LAYER_TYPE="watermark"

def __init__(self):
QgsPluginLayer.__init__(self, WatermarkPluginLayer.LAYER_TYPE, "Watermark plugin layer")
self.setValid(True)

def draw(self, rendererContext):
image = QImage("myimage.png")
painter = rendererContext.painter()
painter.save()
painter.drawImage(10, 10, image)
painter.restore()
return True

özel bilgi için okuma ve yazma metodları da proje dosyasına eklenebilir

def readXml(self, node):
pass

def writeXml(self, node, doc):
pass

layer bulunan bir proje yükleneceği zaman factory sınıfı gereklidir

class WatermarkPluginLayerType(QgsPluginLayerType):

def __init__(self):
QgsPluginLayerType.__init__(self, WatermarkPluginLayer.LAYER_TYPE)

def createLayer(self):
return WatermarkPluginLayer()

bir katmandaki özel bilgilerin gösterilmesi için kod da ekleyebilirsiniz

73

http://github.com/sourcepole/qgis-watermark-plugin
http://github.com/sourcepole/qgis-watermark-plugin

PyQGIS developer cookbook, Sürüm 2.14

def showLayerProperties(self, layer):
pass

74 Chapter 15. Eklenti Katmanlarının Kullanımı

CHAPTER 16

Eski QGIS versiyonları ile uyumluluk

16.1 Plugin menu

If you place your plugin menu entries into one of the new menus (Raster, Vector, Database or Web), you should
modify the code of the initGui() and unload() functions. Since these new menus are available only in
QGIS 2.0 and greater, the first step is to check that the running QGIS version has all the necessary functions. If the
new menus are available, we will place our plugin under this menu, otherwise we will use the old Plugins menu.
Here is an example for Raster menu

def initGui(self):
create action that will start plugin configuration
self.action = QAction(QIcon(":/plugins/testplug/icon.png"), "Test plugin", self.iface.mainWindow())
self.action.setWhatsThis("Configuration for test plugin")
self.action.setStatusTip("This is status tip")
QObject.connect(self.action, SIGNAL("triggered()"), self.run)

check if Raster menu available
if hasattr(self.iface, "addPluginToRasterMenu"):
Raster menu and toolbar available
self.iface.addRasterToolBarIcon(self.action)
self.iface.addPluginToRasterMenu("&Test plugins", self.action)

else:
there is no Raster menu, place plugin under Plugins menu as usual
self.iface.addToolBarIcon(self.action)
self.iface.addPluginToMenu("&Test plugins", self.action)

connect to signal renderComplete which is emitted when canvas rendering is done
QObject.connect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

def unload(self):
check if Raster menu available and remove our buttons from appropriate
menu and toolbar
if hasattr(self.iface, "addPluginToRasterMenu"):
self.iface.removePluginRasterMenu("&Test plugins", self.action)
self.iface.removeRasterToolBarIcon(self.action)

else:
self.iface.removePluginMenu("&Test plugins", self.action)
self.iface.removeToolBarIcon(self.action)

disconnect from signal of the canvas
QObject.disconnect(self.iface.mapCanvas(), SIGNAL("renderComplete(QPainter *)"), self.renderTest)

75

PyQGIS developer cookbook, Sürüm 2.14

76 Chapter 16. Eski QGIS versiyonları ile uyumluluk

CHAPTER 17

Releasing your plugin

• Metadata ve isimler
• Kod ve yardım
• Resimi python eklenti kaynağı

– İzinler
– Sorumluluk yönetimi
– Onaylama
– Eklenti yapısı

Once your plugin is ready and you think the plugin could be helpful for some people, do not hesitate to upload
it to Resimi python eklenti kaynağı. On that page you can find also packaging guidelines about how to prepare
the plugin to work well with the plugin installer. Or in case you would like to set up your own plugin repository,
create a simple XML file that will list the plugins and their metadata, for examples see other plugin repositories.

Aşağıdaki önerileri uygularken lütfen özel itina gösteriniz:

17.1 Metadata ve isimler

• mevcut eklentilere çok benzer izim kullanmaktan kaçının

• if your plugin has a similar functionality to an existing plugin, please explain the differences in the About
field, so the user will know which one to use without the need to install and test it

• eklentnin kendi isimlendirmesinde “eklenti” tekrar etmekten kaçının

• use the description field in metadata for a 1 line description, the About field for more detailed instructions

• include a code repository, a bug tracker, and a home page; this will greatly enhance the possibility of
collaboration, and can be done very easily with one of the available web infrastructures (GitHub, GitLab,
Bitbucket, etc.)

• choose tags with care: avoid the uninformative ones (e.g. vector) and prefer the ones already used by others
(see the plugin website)

• add a proper icon, do not leave the default one; see QGIS interface for a suggestion of the style to be used

17.2 Kod ve yardım

• do not include generated file (ui_*.py, resources_rc.py, generated help files. . .) and useless stuff (e.g. .git-
ignore) in repository

• uygun menüye eklenti ekleme(Vektör, Raster, Web, Database)

77

http://www.qgis.org/wiki/Python_Plugin_Repositories

PyQGIS developer cookbook, Sürüm 2.14

• when appropriate (plugins performing analyses), consider adding the plugin as a subplugin of Processing
framework: this will allow users to run it in batch, to integrate it in more complex workflows, and will free
you from the burden of designing an interface

• include at least minimal documentation and, if useful for testing and understanding, sample data.

17.3 Resimi python eklenti kaynağı

resmi python eklenti kaynağını burdan bulabilirsiniz http://plugins.qgis.org/.

resmi kaynağı kullanmak için OSGEO web portalden. OSGED ID almanız gerekir.

Eklentinizi yükledikten sonra bir personel bunu onaylayacak ve sonra size bildirimde bulunulacaktır.

YAPILACAKLAR Yönetim belgesine link ekleme

17.3.1 İzinler

Resmi eklenti kaynaklarında uygulanan kurallar:

• Yetkilendirilmiş her kullancı yeni bir eklenti ekleyebilir

• personel eklentilerin her türünü onaylayabilir veya reddedebilir

• özel eklentiler.onaylanabilir ve benzeri yetkisi olan kullanıcıların yüklediği eklentiler otomatikman onay-
lanır

• özel eklentiler.onaylanabilir yetkisi olan kullanıcılar sahipler eklentisi listesinde oldukları sürece diğer kul-
lanıcıların yükledikleri eklentileri onaylayabilirler

• özel bir eklenti ancak personel kullanıcılar ve sahip eklenti ile eklenebilir ve silinebilir

• Eğer yeni özel eklentiler.onaylanabilir izni olmayan bir kullanıcı eklentinin yeni versiyonun yüklerse eklenti
versiyonu otomatikman onaylanmaz.

17.3.2 Sorumluluk yönetimi

Staff members can grant trust to selected plugin creators setting plugins.can_approve permission through the
front-end application.

The plugin details view offers direct links to grant trust to the plugin creator or the plugin owners.

17.3.3 Onaylama

Plugin’s metadata are automatically imported and validated from the compressed package when the plugin is
uploaded.

Resmi kayanağa bir eklenti yüklemek istediğinizde uymanız gereken kuralların bazıları:

1. the name of the main folder containing your plugin must contain only ASCII characters (A-Z and a-z), digits
and the characters underscore (_) and minus (-), also it cannot start with a digit

2. :dosy:‘metadata.txt‘ gerekli

3. all required metadata listed in metadata table must be present

4. version metadata alanı benzersiz olmalı

78 Chapter 17. Releasing your plugin

http://plugins.qgis.org/
http://www.osgeo.org/osgeo_userid/

PyQGIS developer cookbook, Sürüm 2.14

17.3.4 Eklenti yapısı

Following the validation rules the compressed (.zip) package of your plugin must have a specific structure to
validate as a functional plugin. As the plugin will be unzipped inside the users plugins folder it must have it’s
own directory inside the .zip file to not interfere with other plugins. Mandatory files are: metadata.txt
and __init__.py. But it would be nice to have a README and of course an icon to represent the plugin
(resources.qrc). Following is an example of how a plugin.zip should look like.

plugin.zip
pluginfolder/
|-- i18n
| |-- translation_file_de.ts
|-- img
| |-- icon.png
| ‘-- iconsource.svg
|-- __init__.py
|-- Makefile
|-- metadata.txt
|-- more_code.py
|-- main_code.py
|-- README
|-- resources.qrc
|-- resources_rc.py
‘-- ui_Qt_user_interface_file.ui

17.3. Resimi python eklenti kaynağı 79

PyQGIS developer cookbook, Sürüm 2.14

80 Chapter 17. Releasing your plugin

CHAPTER 18

Kod Parçacıkları

• Bir metodu anahtar kısa yolla nasıl çağırırsınız
• Katmanları nasıl açıp kaparsınız
• seçili özelliklerin özellik tablosuna nasıl erişilir

Bu bölüm eklenti geliştirmeyi kolaylaştıran kod parçacıklarını belirtir.

18.1 Bir metodu anahtar kısa yolla nasıl çağırırsınız

Eklentide ki ekleme initGui()

self.keyAction = QAction("Test Plugin", self.iface.mainWindow())
self.iface.registerMainWindowAction(self.keyAction, "F7") # action1 triggered by F7 key
self.iface.addPluginToMenu("&Test plugins", self.keyAction)
QObject.connect(self.keyAction, SIGNAL("triggered()"),self.keyActionF7)

initGui() ye ekleme

self.iface.unregisterMainWindowAction(self.keyAction)

F7 ye tıklandığında çağırılan metod

def keyActionF7(self):
QMessageBox.information(self.iface.mainWindow(),"Ok", "You pressed F7")

18.2 Katmanları nasıl açıp kaparsınız

Açıklamadaki katman ağacına doğrudan erişime izin veren yeni ağaç katmanı API si QGIS 2.4 ten beri mevcuttur.
Aktif katmanın görünürlüğünün nasıl açılıp kapatılacağına dair bir örnek buradadır.

root = QgsProject.instance().layerTreeRoot()
node = root.findLayer(iface.activeLayer().id())
new_state = Qt.Checked if node.isVisible() == Qt.Unchecked else Qt.Unchecked
node.setVisible(new_state)

18.3 seçili özelliklerin özellik tablosuna nasıl erişilir

def changeValue(self, value):
layer = self.iface.activeLayer()
if(layer):

81

PyQGIS developer cookbook, Sürüm 2.14

nF = layer.selectedFeatureCount()
if (nF > 0):

layer.startEditing()
ob = layer.selectedFeaturesIds()
b = QVariant(value)
if (nF > 1):

for i in ob:
layer.changeAttributeValue(int(i), 1, b) # 1 being the second column

else:
layer.changeAttributeValue(int(ob[0]), 1, b) # 1 being the second column

layer.commitChanges()
else:

QMessageBox.critical(self.iface.mainWindow(), "Error", "Please select at least one feature from current layer")
else:
QMessageBox.critical(self.iface.mainWindow(), "Error", "Please select a layer")

Metot tek bir parametre ihtiyaç duyar(seçili özellik(ler)in öznitelik alanları için yeni değer) ve ile adlandırılabilir

self.changeValue(50)

82 Chapter 18. Kod Parçacıkları

CHAPTER 19

Writing a Processing plugin

• Creating a plugin that adds an algorithm provider
• Creating a plugin that contains a set of processing scripts

Depending on the kind of plugin that you are going to develop, it might be better option to add its functionality
as a Processing algorithm (or a set of them). That would provide a better integration within QGIS, additional
functionality (since it can be run in the components of Processing, such as the modeler or the batch processing
interface), and a quicker development time (since Processing will take of a large part of the work).

This document describes how to create a new plugin that adds its functionality as Processing algorithms.

There are two main mechanisms for doing that:

• Creating a plugin that adds an algorithm provider: This options is more complex, but provides more flexi-
bility

• Creating a plugin that contains a set of processing scripts: The simplest solution, you just need a set of
Processing script files.

19.1 Creating a plugin that adds an algorithm provider

To create an algorithm provider, follow these steps:

• Install the Plugin Builder plugin

• Create a new plugin using the Plugin Builder. When the Plugin Builder asks you for the template to use,
select “Processing provider”.

• The created plugin contains a provider with a single algorithm. Both the provider file and the algorithm
file are fully commented and contain information about how to modify the provider and add additional
algorithms. Refer to them for more information.

19.2 Creating a plugin that contains a set of processing scripts

To create a set of processing scripts, follow these steps:

• Create your scripts as described in the PyQGIS cookbook. All the scripts that you want to add, you should
have them available in the Processing toolbox.

• In the Scripts/Tools group in the Processing toolbox, double-click on the Create script collection plugin
item. You will see a window where you should select the scripts to add to the plugin (from the set of
available ones in the toolbox), and some additional information needed for the plugin metadata.

• Click on OK and the plugin will be created.

83

PyQGIS developer cookbook, Sürüm 2.14

• You can add additional scripts to the plugin by adding scripts python files to the scripts folder in the resulting
plugin folder.

84 Chapter 19. Writing a Processing plugin

CHAPTER 20

Ağ analiz kütüphanesi

• General information
• Building a graph
• Graph analysis

– Finding shortest paths
– Areas of availability

Starting from revision ee19294562 (QGIS >= 1.8) the new network analysis library was added to the QGIS core
analysis library. The library:

• creates mathematical graph from geographical data (polyline vector layers)

• implements basic methods from graph theory (currently only Dijkstra’s algorithm)

The network analysis library was created by exporting basic functions from the RoadGraph core plugin and now
you can use it’s methods in plugins or directly from the Python console.

20.1 General information

Briefly, a typical use case can be described as:

1. create graph from geodata (usually polyline vector layer)

2. run graph analysis

3. use analysis results (for example, visualize them)

20.2 Building a graph

The first thing you need to do — is to prepare input data, that is to convert a vector layer into a graph. All further
actions will use this graph, not the layer.

As a source we can use any polyline vector layer. Nodes of the polylines become graph vertexes, and segments of
the polylines are graph edges. If several nodes have the same coordinates then they are the same graph vertex. So
two lines that have a common node become connected to each other.

Additionally, during graph creation it is possible to “fix” (“tie”) to the input vector layer any number of additional
points. For each additional point a match will be found — the closest graph vertex or closest graph edge. In the
latter case the edge will be split and a new vertex added.

Vector layer attributes and length of an edge can be used as the properties of an edge.

Converting from a vector layer to the graph is done using the Builder programming pattern. A graph is constructed
using a so-called Director. There is only one Director for now: QgsLineVectorLayerDirector. The director sets
the basic settings that will be used to construct a graph from a line vector layer, used by the builder to create the

85

https://github.com/qgis/QGIS/commit/ee19294562b00c6ce957945f14c1727210cffdf7
http://en.wikipedia.org/wiki/Builder_pattern
http://qgis.org/api/classQgsLineVectorLayerDirector.html

PyQGIS developer cookbook, Sürüm 2.14

graph. Currently, as in the case with the director, only one builder exists: QgsGraphBuilder, that creates QgsGraph
objects. You may want to implement your own builders that will build a graphs compatible with such libraries as
BGL or NetworkX.

To calculate edge properties the programming pattern strategy is used. For now only QgsDistanceArcProperter
strategy is available, that takes into account the length of the route. You can implement your own strategy that
will use all necessary parameters. For example, RoadGraph plugin uses a strategy that computes travel time using
edge length and speed value from attributes.

It’s time to dive into the process.

First of all, to use this library we should import the networkanalysis module

from qgis.networkanalysis import *

Then some examples for creating a director

don’t use information about road direction from layer attributes,
all roads are treated as two-way
director = QgsLineVectorLayerDirector(vLayer, -1, ’’, ’’, ’’, 3)

use field with index 5 as source of information about road direction.
one-way roads with direct direction have attribute value "yes",
one-way roads with reverse direction have the value "1", and accordingly
bidirectional roads have "no". By default roads are treated as two-way.
This scheme can be used with OpenStreetMap data
director = QgsLineVectorLayerDirector(vLayer, 5, ’yes’, ’1’, ’no’, 3)

To construct a director we should pass a vector layer, that will be used as the source for the graph structure and
information about allowed movement on each road segment (one-way or bidirectional movement, direct or reverse
direction). The call looks like this

director = QgsLineVectorLayerDirector(vl, directionFieldId,
directDirectionValue,
reverseDirectionValue,
bothDirectionValue,
defaultDirection)

And here is full list of what these parameters mean:

• vl — vector layer used to build the graph

• directionFieldId — index of the attribute table field, where information about roads direction is
stored. If -1, then don’t use this info at all. An integer.

• directDirectionValue — field value for roads with direct direction (moving from first line point to
last one). A string.

• reverseDirectionValue — field value for roads with reverse direction (moving from last line point
to first one). A string.

• bothDirectionValue — field value for bidirectional roads (for such roads we can move from first
point to last and from last to first). A string.

• defaultDirection — default road direction. This value will be used for those roads where field
directionFieldId is not set or has some value different from any of the three values specified above.
An integer. 1 indicates direct direction, 2 indicates reverse direction, and 3 indicates both directions.

It is necessary then to create a strategy for calculating edge properties

properter = QgsDistanceArcProperter()

And tell the director about this strategy

director.addProperter(properter)

86 Chapter 20. Ağ analiz kütüphanesi

http://qgis.org/api/classQgsGraphBuilder.html
http://qgis.org/api/classQgsGraph.html
http://www.boost.org/doc/libs/1_48_0/libs/graph/doc/index.html
http://networkx.lanl.gov/
http://en.wikipedia.org/wiki/Strategy_pattern
http://qgis.org/api/classQgsDistanceArcProperter.html

PyQGIS developer cookbook, Sürüm 2.14

Now we can use the builder, which will create the graph. The QgsGraphBuilder class constructor takes several
arguments:

• crs — coordinate reference system to use. Mandatory argument.

• otfEnabled — use “on the fly” reprojection or no. By default const:True (use OTF).

• topologyTolerance — topological tolerance. Default value is 0.

• ellipsoidID — ellipsoid to use. By default “WGS84”.

only CRS is set, all other values are defaults
builder = QgsGraphBuilder(myCRS)

Also we can define several points, which will be used in the analysis. For example

startPoint = QgsPoint(82.7112, 55.1672)
endPoint = QgsPoint(83.1879, 54.7079)

Now all is in place so we can build the graph and “tie” these points to it

tiedPoints = director.makeGraph(builder, [startPoint, endPoint])

Building the graph can take some time (which depends on the number of features in a layer and layer size).
tiedPoints is a list with coordinates of “tied” points. When the build operation is finished we can get the
graph and use it for the analysis

graph = builder.graph()

With the next code we can get the vertex indexes of our points

startId = graph.findVertex(tiedPoints[0])
endId = graph.findVertex(tiedPoints[1])

20.3 Graph analysis

Networks analysis is used to find answers to two questions: which vertexes are connected and how to find a
shortest path. To solve these problems the network analysis library provides Dijkstra’s algorithm.

Dijkstra’s algorithm finds the shortest route from one of the vertexes of the graph to all the others and the values
of the optimization parameters. The results can be represented as a shortest path tree.

The shortest path tree is a directed weighted graph (or more precisely — tree) with the following properties:

• only one vertex has no incoming edges — the root of the tree

• all other vertexes have only one incoming edge

• if vertex B is reachable from vertex A, then the path from A to B is the single available path and it is optimal
(shortest) on this graph

To get the shortest path tree use the methods shortestTree() and dijkstra() of QgsGraphAnalyzer class.
It is recommended to use method dijkstra() because it works faster and uses memory more efficiently.

The shortestTree() method is useful when you want to walk around the shortest path tree. It always creates
a new graph object (QgsGraph) and accepts three variables:

• source — input graph

• startVertexIdx — index of the point on the tree (the root of the tree)

• criterionNum — number of edge property to use (started from 0).

tree = QgsGraphAnalyzer.shortestTree(graph, startId, 0)

20.3. Graph analysis 87

http://qgis.org/api/classQgsGraphAnalyzer.html

PyQGIS developer cookbook, Sürüm 2.14

The dijkstra() method has the same arguments, but returns two arrays. In the first array element i contains
index of the incoming edge or -1 if there are no incoming edges. In the second array element i contains distance
from the root of the tree to vertex i or DOUBLE_MAX if vertex i is unreachable from the root.

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, startId, 0)

Here is some very simple code to display the shortest path tree using the graph created with the
shortestTree() method (select linestring layer in TOC and replace coordinates with your own). Warn-
ing: use this code only as an example, it creates a lots of QgsRubberBand objects and may be slow on large
data-sets.

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.743804, 0.22954)
tiedPoint = director.makeGraph(builder, [pStart])
pStart = tiedPoint[0]

graph = builder.graph()

idStart = graph.findVertex(pStart)

tree = QgsGraphAnalyzer.shortestTree(graph, idStart, 0)

i = 0;
while (i < tree.arcCount()):

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor (Qt.red)
rb.addPoint (tree.vertex(tree.arc(i).inVertex()).point())
rb.addPoint (tree.vertex(tree.arc(i).outVertex()).point())
i = i + 1

Same thing but using dijkstra() method

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-1.37144, 0.543836)
tiedPoint = director.makeGraph(builder, [pStart])
pStart = tiedPoint[0]

graph = builder.graph()

88 Chapter 20. Ağ analiz kütüphanesi

http://qgis.org/api/classQgsRubberBand.html

PyQGIS developer cookbook, Sürüm 2.14

idStart = graph.findVertex(pStart)

(tree, costs) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

for edgeId in tree:
if edgeId == -1:
continue

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor (Qt.red)
rb.addPoint (graph.vertex(graph.arc(edgeId).inVertex()).point())
rb.addPoint (graph.vertex(graph.arc(edgeId).outVertex()).point())

20.3.1 Finding shortest paths

To find the optimal path between two points the following approach is used. Both points (start A and end B) are
“tied” to the graph when it is built. Then using the methods shortestTree() or dijkstra() we build the
shortest path tree with root in the start point A. In the same tree we also find the end point B and start to walk
through the tree from point B to point A. The whole algorithm can be written as

assign = B
while != A

add point to path
get incoming edge for point
look for point , that is start point of this edge
assign =

add point to path

At this point we have the path, in the form of the inverted list of vertexes (vertexes are listed in reversed order
from end point to start point) that will be visited during traveling by this path.

Here is the sample code for QGIS Python Console (you will need to select linestring layer in TOC and replace
coordinates in the code with yours) that uses method shortestTree()

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.835953, 0.15679)
pStop = QgsPoint(-1.1027, 0.699986)

tiedPoints = director.makeGraph(builder, [pStart, pStop])
graph = builder.graph()

tStart = tiedPoints[0]
tStop = tiedPoints[1]

idStart = graph.findVertex(tStart)
tree = QgsGraphAnalyzer.shortestTree(graph, idStart, 0)

idStart = tree.findVertex(tStart)
idStop = tree.findVertex(tStop)

20.3. Graph analysis 89

PyQGIS developer cookbook, Sürüm 2.14

if idStop == -1:
print "Path not found"

else:
p = []
while (idStart != idStop):
l = tree.vertex(idStop).inArc()
if len(l) == 0:

break
e = tree.arc(l[0])
p.insert(0, tree.vertex(e.inVertex()).point())
idStop = e.outVertex()

p.insert(0, tStart)
rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor(Qt.red)

for pnt in p:
rb.addPoint(pnt)

And here is the same sample but using dijkstra() method

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(-0.835953, 0.15679)
pStop = QgsPoint(-1.1027, 0.699986)

tiedPoints = director.makeGraph(builder, [pStart, pStop])
graph = builder.graph()

tStart = tiedPoints[0]
tStop = tiedPoints[1]

idStart = graph.findVertex(tStart)
idStop = graph.findVertex(tStop)

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

if tree[idStop] == -1:
print "Path not found"

else:
p = []
curPos = idStop
while curPos != idStart:
p.append(graph.vertex(graph.arc(tree[curPos]).inVertex()).point())
curPos = graph.arc(tree[curPos]).outVertex();

p.append(tStart)

rb = QgsRubberBand(qgis.utils.iface.mapCanvas())
rb.setColor(Qt.red)

90 Chapter 20. Ağ analiz kütüphanesi

PyQGIS developer cookbook, Sürüm 2.14

for pnt in p:
rb.addPoint(pnt)

20.3.2 Areas of availability

The area of availability for vertex A is the subset of graph vertexes that are accessible from vertex A and the cost
of the paths from A to these vertexes are not greater that some value.

More clearly this can be shown with the following example: “There is a fire station. Which parts of city can a
fire truck reach in 5 minutes? 10 minutes? 15 minutes?”. Answers to these questions are fire station’s areas of
availability.

To find the areas of availability we can use method dijkstra() of the QgsGraphAnalyzer class. It is
enough to compare the elements of the cost array with a predefined value. If cost[i] is less than or equal to a
predefined value, then vertex i is inside the area of availability, otherwise it is outside.

A more difficult problem is to get the borders of the area of availability. The bottom border is the set of vertexes
that are still accessible, and the top border is the set of vertexes that are not accessible. In fact this is simple: it
is the availability border based on the edges of the shortest path tree for which the source vertex of the edge is
accessible and the target vertex of the edge is not.

Here is an example

from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *

vl = qgis.utils.iface.mapCanvas().currentLayer()
director = QgsLineVectorLayerDirector(vl, -1, ’’, ’’, ’’, 3)
properter = QgsDistanceArcProperter()
director.addProperter(properter)
crs = qgis.utils.iface.mapCanvas().mapRenderer().destinationCrs()
builder = QgsGraphBuilder(crs)

pStart = QgsPoint(65.5462, 57.1509)
delta = qgis.utils.iface.mapCanvas().getCoordinateTransform().mapUnitsPerPixel() * 1

rb = QgsRubberBand(qgis.utils.iface.mapCanvas(), True)
rb.setColor(Qt.green)
rb.addPoint(QgsPoint(pStart.x() - delta, pStart.y() - delta))
rb.addPoint(QgsPoint(pStart.x() + delta, pStart.y() - delta))
rb.addPoint(QgsPoint(pStart.x() + delta, pStart.y() + delta))
rb.addPoint(QgsPoint(pStart.x() - delta, pStart.y() + delta))

tiedPoints = director.makeGraph(builder, [pStart])
graph = builder.graph()
tStart = tiedPoints[0]

idStart = graph.findVertex(tStart)

(tree, cost) = QgsGraphAnalyzer.dijkstra(graph, idStart, 0)

upperBound = []
r = 2000.0
i = 0
while i < len(cost):

if cost[i] > r and tree[i] != -1:
outVertexId = graph.arc(tree [i]).outVertex()
if cost[outVertexId] < r:

20.3. Graph analysis 91

PyQGIS developer cookbook, Sürüm 2.14

upperBound.append(i)
i = i + 1

for i in upperBound:
centerPoint = graph.vertex(i).point()
rb = QgsRubberBand(qgis.utils.iface.mapCanvas(), True)
rb.setColor(Qt.red)
rb.addPoint(QgsPoint(centerPoint.x() - delta, centerPoint.y() - delta))
rb.addPoint(QgsPoint(centerPoint.x() + delta, centerPoint.y() - delta))
rb.addPoint(QgsPoint(centerPoint.x() + delta, centerPoint.y() + delta))
rb.addPoint(QgsPoint(centerPoint.x() - delta, centerPoint.y() + delta))

92 Chapter 20. Ağ analiz kütüphanesi

CHAPTER 21

QGIS Server Python Plugins

• Server Filter Plugins architecture
– requestReady
– sendResponse
– responseComplete

• Raising exception from a plugin
• Writing a server plugin

– Plugin files
– __init__.py
– HelloServer.py
– Modifying the input
– Modifying or replacing the output

• Access control plugin
– Plugin files
– __init__.py
– AccessControl.py
– layerFilterExpression
– layerFilterSubsetString
– layerPermissions
– authorizedLayerAttributes
– allowToEdit
– cacheKey

Python plugins can also run on QGIS Server (see: label_qgisserver): by using the server interface
(QgsServerInterface) a Python plugin running on the server can alter the behavior of existing core ser-
vices (WMS, WFS etc.).

With the server filter interface (QgsServerFilter) we can change the input parameters, change the generated
output or even by providing new services.

With the access control interface (QgsAccessControlFilter) we can apply some access restriction per
requests.

21.1 Server Filter Plugins architecture

Server python plugins are loaded once when the FCGI application starts. They register one or more
QgsServerFilter (from this point, you might find useful a quick look to the server plugins API docs). Each
filter should implement at least one of three callbacks:

• requestReady()

• responseComplete()

• sendResponse()

93

http://qgis.org/api/group__server.html

PyQGIS developer cookbook, Sürüm 2.14

All filters have access to the request/response object (QgsRequestHandler) and can manipulate all its prop-
erties (input/output) and raise exceptions (while in a quite particular way as we’ll see below).

Here is a pseudo code showing a typical server session and when the filter’s callbacks are called:

• Get the incoming request

– create GET/POST/SOAP request handler

– pass request to an instance of QgsServerInterface

– call plugins requestReady() filters

– if there is not a response

* if SERVICE is WMS/WFS/WCS

· create WMS/WFS/WCS server

call server’s executeRequest() and possibily call sendResponse() plugin
filters when streaming output or store the byte stream output and content type in
the request handler

* call plugins responseComplete() filters

– call plugins sendResponse() filters

– request handler output the response

The following paragraphs describe the available callbacks in details.

21.1.1 requestReady

This is called when the request is ready: incoming URL and data have been parsed and before entering the core
services (WMS, WFS etc.) switch, this is the point where you can manipulate the input and perform actions like:

• authentication/authorization

• redirects

• add/remove certain parameters (typenames for example)

• raise exceptions

You could even substitute a core service completely by changing SERVICE parameter and hence bypassing the
core service completely (not that this make much sense though).

21.1.2 sendResponse

This is called whenever output is sent to FCGI stdout (and from there, to the client), this is normally done af-
ter core services have finished their process and after responseComplete hook was called, but in a few cases
XML can become so huge that a streaming XML implementation was needed (WFS GetFeature is one of
them), in this case, sendResponse() is called multiple times before the response is complete (and before
responseComplete() is called). The obvious consequence is that sendResponse() is normally called
once but might be exceptionally called multiple times and in that case (and only in that case) it is also called
before responseComplete().

sendResponse() is the best place for direct manipulation of core service’s output and while
responseComplete() is typically also an option, sendResponse() is the only viable option in case of
streaming services.

94 Chapter 21. QGIS Server Python Plugins

PyQGIS developer cookbook, Sürüm 2.14

21.1.3 responseComplete

This is called once when core services (if hit) finish their process and the request is ready to be sent to the client.
As discussed above, this is normally called before sendResponse() except for streaming services (or other
plugin filters) that might have called sendResponse() earlier.

responseComplete() is the ideal place to provide new services implementation (WPS or custom services)
and to perform direct manipulation of the output coming from core services (for example to add a watermark upon
a WMS image).

21.2 Raising exception from a plugin

Some work has still to be done on this topic: the current implementation can distinguish between
handled and unhandled exceptions by setting a QgsRequestHandler property to an instance of
QgsMapServiceException, this way the main C++ code can catch handled python exceptions and ignore
unhandled exceptions (or better: log them).

This approach basically works but it is not very “pythonic”: a better approach would be to raise exceptions from
python code and see them bubbling up into C++ loop for being handled there.

21.3 Writing a server plugin

A server plugins is just a standard QGIS Python plugin as described in Python Eklentileri Geliştirme, that just
provides an additional (or alternative) interface: a typical QGIS desktop plugin has access to QGIS application
through the QgisInterface instance, a server plugin has also access to a QgsServerInterface.

To tell QGIS Server that a plugin has a server interface, a special metadata entry is needed (in metadata.txt)

server=True

The example plugin discussed here (with many more example filters) is available on github: QGIS HelloServer
Example Plugin

21.3.1 Plugin files

Here’s the directory structure of our example server plugin

PYTHON_PLUGINS_PATH/
HelloServer/
__init__.py --> *required*
HelloServer.py --> *required*
metadata.txt --> *required*

21.3.2 __init__.py

This file is required by Python’s import system. Also, QGIS Server requires that this file contains a
serverClassFactory() function, which is called when the plugin gets loaded into QGIS Server when the
server starts. It receives reference to instance of QgsServerInterface and must return instance of your
plugin’s class. This is how the example plugin __init__.py looks like:

-*- coding: utf-8 -*-

def serverClassFactory(serverIface):
from HelloServer import HelloServerServer
return HelloServerServer(serverIface)

21.2. Raising exception from a plugin 95

https://github.com/elpaso/qgis-helloserver
https://github.com/elpaso/qgis-helloserver

PyQGIS developer cookbook, Sürüm 2.14

21.3.3 HelloServer.py

This is where the magic happens and this is how magic looks like: (e.g. HelloServer.py)

A server plugin typically consists in one or more callbacks packed into objects called QgsServerFilter.

Each QgsServerFilter implements one or more of the following callbacks:

• requestReady()

• responseComplete()

• sendResponse()

The following example implements a minimal filter which prints HelloServer! in case the SERVICE parameter
equals to “HELLO”:

from qgis.server import *
from qgis.core import *

class HelloFilter(QgsServerFilter):

def __init__(self, serverIface):
super(HelloFilter, self).__init__(serverIface)

def responseComplete(self):
request = self.serverInterface().requestHandler()
params = request.parameterMap()
if params.get(’SERVICE’, ’’).upper() == ’HELLO’:

request.clearHeaders()
request.setHeader(’Content-type’, ’text/plain’)
request.clearBody()
request.appendBody(’HelloServer!’)

The filters must be registered into the serverIface as in the following example:

class HelloServerServer:
def __init__(self, serverIface):

Save reference to the QGIS server interface
self.serverIface = serverIface
serverIface.registerFilter(HelloFilter, 100)

The second parameter of registerFilter() allows to set a priority which defines the order for the callbacks
with the same name (the lower priority is invoked first).

By using the three callbacks, plugins can manipulate the input and/or the output of the server in many dif-
ferent ways. In every moment, the plugin instance has access to the QgsRequestHandler through the
QgsServerInterface, the QgsRequestHandler has plenty of methods that can be used to alter the input
parameters before entering the core processing of the server (by using requestReady()) or after the request
has been processed by the core services (by using sendResponse()).

The following examples cover some common use cases:

21.3.4 Modifying the input

The example plugin contains a test example that changes input parameters coming from the query string, in this
example a new parameter is injected into the (already parsed) parameterMap, this parameter is then visible by
core services (WMS etc.), at the end of core services processing we check that the parameter is still there:

from qgis.server import *
from qgis.core import *

class ParamsFilter(QgsServerFilter):

96 Chapter 21. QGIS Server Python Plugins

PyQGIS developer cookbook, Sürüm 2.14

def __init__(self, serverIface):
super(ParamsFilter, self).__init__(serverIface)

def requestReady(self):
request = self.serverInterface().requestHandler()
params = request.parameterMap()
request.setParameter(’TEST_NEW_PARAM’, ’ParamsFilter’)

def responseComplete(self):
request = self.serverInterface().requestHandler()
params = request.parameterMap()
if params.get(’TEST_NEW_PARAM’) == ’ParamsFilter’:

QgsMessageLog.logMessage("SUCCESS - ParamsFilter.responseComplete", ’plugin’, QgsMessageLog.INFO)
else:

QgsMessageLog.logMessage("FAIL - ParamsFilter.responseComplete", ’plugin’, QgsMessageLog.CRITICAL)

This is an extract of what you see in the log file:

src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] HelloServerServer - loading filter ParamsFilter
src/core/qgsmessagelog.cpp: 45: (logMessage) [1ms] 2014-12-12T12:39:29 Server[0] Server plugin HelloServer loaded!
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 Server[0] Server python plugins loaded
src/mapserver/qgsgetrequesthandler.cpp: 35: (parseInput) [0ms] query string is: SERVICE=HELLO&request=GetOutput
src/mapserver/qgshttprequesthandler.cpp: 547: (requestStringToParameterMap) [1ms] inserting pair SERVICE // HELLO into the parameter map
src/mapserver/qgshttprequesthandler.cpp: 547: (requestStringToParameterMap) [0ms] inserting pair REQUEST // GetOutput into the parameter map
src/mapserver/qgsserverfilter.cpp: 42: (requestReady) [0ms] QgsServerFilter plugin default requestReady called
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] HelloFilter.requestReady
src/mapserver/qgis_map_serv.cpp: 235: (configPath) [0ms] Using default configuration file path: /home/xxx/apps/bin/admin.sld
src/mapserver/qgshttprequesthandler.cpp: 49: (setHttpResponse) [0ms] Checking byte array is ok to set...
src/mapserver/qgshttprequesthandler.cpp: 59: (setHttpResponse) [0ms] Byte array looks good, setting response...
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] HelloFilter.responseComplete
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] SUCCESS - ParamsFilter.responseComplete
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] RemoteConsoleFilter.responseComplete
src/mapserver/qgshttprequesthandler.cpp: 158: (sendResponse) [0ms] Sending HTTP response
src/core/qgsmessagelog.cpp: 45: (logMessage) [0ms] 2014-12-12T12:39:29 plugin[0] HelloFilter.sendResponse

On line 13 the “SUCCESS” string indicates that the plugin passed the test.

The same technique can be exploited to use a custom service instead of a core one: you could for example skip
a WFS SERVICE request or any other core request just by changing the SERVICE parameter to something
different and the core service will be skipped, then you can inject your custom results into the output and send
them to the client (this is explained here below).

21.3.5 Modifying or replacing the output

The watermark filter example shows how to replace the WMS output with a new image obtained by adding a
watermark image on the top of the WMS image generated by the WMS core service:

import os

from qgis.server import *
from qgis.core import *
from PyQt4.QtCore import *
from PyQt4.QtGui import *

class WatermarkFilter(QgsServerFilter):

def __init__(self, serverIface):
super(WatermarkFilter, self).__init__(serverIface)

21.3. Writing a server plugin 97

PyQGIS developer cookbook, Sürüm 2.14

def responseComplete(self):
request = self.serverInterface().requestHandler()
params = request.parameterMap()
Do some checks
if (request.parameter(’SERVICE’).upper() == ’WMS’ \

and request.parameter(’REQUEST’).upper() == ’GETMAP’ \
and not request.exceptionRaised()):

QgsMessageLog.logMessage("WatermarkFilter.responseComplete: image ready %s" % request.infoFormat(), ’plugin’, QgsMessageLog.INFO)
Get the image
img = QImage()
img.loadFromData(request.body())
Adds the watermark
watermark = QImage(os.path.join(os.path.dirname(__file__), ’media/watermark.png’))
p = QPainter(img)
p.drawImage(QRect(20, 20, 40, 40), watermark)
p.end()
ba = QByteArray()
buffer = QBuffer(ba)
buffer.open(QIODevice.WriteOnly)
img.save(buffer, "PNG")
Set the body
request.clearBody()
request.appendBody(ba)

In this example the SERVICE parameter value is checked and if the incoming request is a WMS GETMAP and
no exceptions have been set by a previously executed plugin or by the core service (WMS in this case), the WMS
generated image is retrieved from the output buffer and the watermark image is added. The final step is to clear the
output buffer and replace it with the newly generated image. Please note that in a real-world situation we should
also check for the requested image type instead of returning PNG in any case.

21.4 Access control plugin

21.4.1 Plugin files

Here’s the directory structure of our example server plugin:

PYTHON_PLUGINS_PATH/
MyAccessControl/
__init__.py --> *required*
AccessControl.py --> *required*
metadata.txt --> *required*

21.4.2 __init__.py

This file is required by Python’s import system. As for all QGIS server plugins, this file contains a
serverClassFactory() function, which is called when the plugin gets loaded into QGIS Server when the
server starts. It receives reference to instance of QgsServerInterface and must return instance of your
plugin’s class. This is how the example plugin __init__.py looks like:

-*- coding: utf-8 -*-

def serverClassFactory(serverIface):
from MyAccessControl.AccessControl import AccessControl
return AccessControl(serverIface)

98 Chapter 21. QGIS Server Python Plugins

PyQGIS developer cookbook, Sürüm 2.14

21.4.3 AccessControl.py

class AccessControl(QgsAccessControlFilter):

def __init__(self, server_iface):
super(QgsAccessControlFilter, self).__init__(server_iface)

def layerFilterExpression(self, layer):
""" Return an additional expression filter """
return super(QgsAccessControlFilter, self).layerFilterExpression(layer)

def layerFilterSubsetString(self, layer):
""" Return an additional subset string (typically SQL) filter """
return super(QgsAccessControlFilter, self).layerFilterSubsetString(layer)

def layerPermissions(self, layer):
""" Return the layer rights """
return super(QgsAccessControlFilter, self).layerPermissions(layer)

def authorizedLayerAttributes(self, layer, attributes):
""" Return the authorised layer attributes """
return super(QgsAccessControlFilter, self).authorizedLayerAttributes(layer, attributes)

def allowToEdit(self, layer, feature):
""" Are we authorise to modify the following geometry """
return super(QgsAccessControlFilter, self).allowToEdit(layer, feature)

def cacheKey(self):
return super(QgsAccessControlFilter, self).cacheKey()

This example gives a full access for everybody.

It’s the role of the plugin to know who is logged on.

On all those methods we have the layer on argument to be able to customise the restriction per layer.

21.4.4 layerFilterExpression

Used to add an Expression to limit the results, e.g.:

def layerFilterExpression(self, layer):
return "$role = ’user’"

To limit on feature where the attribute role is equals to “user”.

21.4.5 layerFilterSubsetString

Same than the previous but use the SubsetString (executed in the database)

def layerFilterSubsetString(self, layer):
return "role = ’user’"

To limit on feature where the attribute role is equals to “user”.

21.4.6 layerPermissions

Limit the access to the layer.

Return an object of type QgsAccessControlFilter.LayerPermissions, who has the properties:

21.4. Access control plugin 99

PyQGIS developer cookbook, Sürüm 2.14

• canRead to see him in the GetCapabilities and have read access.

• canInsert to be able to insert a new feature.

• canUpdate to be able to update a feature.

• candelete to be able to delete a feature.

Example:

def layerPermissions(self, layer):
rights = QgsAccessControlFilter.LayerPermissions()
rights.canRead = True
rights.canRead = rights.canInsert = rights.canUpdate = rights.canDelete = False
return rights

To limit everything on read only access.

21.4.7 authorizedLayerAttributes

Used to limit the visibility of a specific subset of attribute.

The argument attribute return the current set of visible attributes.

Example:

def authorizedLayerAttributes(self, layer, attributes):
return [a for a in attributes if a != "role"]

To hide the ‘role’ attribute.

21.4.8 allowToEdit

This is used to limit the editing on a subset of features.

It is used in the WFS-Transaction protocol.

Example:

def allowToEdit(self, layer, feature):
return feature.attribute(’role’) == ’user’

To be able to edit only feature that has the attribute role with the value user.

21.4.9 cacheKey

QGIS server maintain a cache of the capabilities then to have a cache per role you can return the role in this
method. Or return None to completely disable the cache.

100 Chapter 21. QGIS Server Python Plugins

Dizin

API, 1
attributes

vector layers features, 17

calculating values, 48
categorized symbology renderer, 27
console

Python, 2
coordinate reference systems, 37
custom

renderers, 31
custom applications

running, 4
custom applications; standalone scripts

Python, 3

değişim verisi, 62
değişimverisi.txt, 62
delimited text layers

loading, 10

eklenti katmanları, 72
QgsEklentiKatmanı altsınıfı oluşturma, 73

Eklentiler
apılıp kapatılan katman, 81
bir metodu kısa yolla çağırın, 81
seçili özelliklerin öznitelikler erişimi, 81

eklentiler, 77
belgeleme, 64
değişimverisi.txt, 60, 62
geliştirme, 57
kaynak dosya, 64
kod parçaları, 65
kod yazma, 60
resmi python eklenti kaynağı, 78
yardım sağlama, 64
yazma, 60

environment
PYQGIS_STARTUP, 1

expressions, 48
evaluating, 50
parsing, 50

features
attributes, vector layers, 17
vector layers iterating, 18

vector layers selection, 17
filtering, 48

geometri
access to, 33
construction, 33
handling, 32
predicates and operations, 34

GPX files
loading, 10

graduated symbol renderer, 27

iterating
features, vector layers, 18

kaynak.qrc, 64

loading
delimited text layers, 10
GPX files, 10
MySQL geometries, 10
OGR layers, 9
PostGIS layers, 9
projects, 7
raster layers, 10
SpatiaLite layers, 10
vector layers, 9
WMS raster, 11

map canvas, 38
architecture, 39
embedding, 39
map tools, 40
rubber bands, 41
vertex markers, 41
writing custom canvas items, 43
writing custom map tools, 42

map layer registry, 11
adding a layer, 11

map printing, 44
map rendering, 44

simple, 45
memory provider, 24
metadata, 95
metadata.txt, 95
MySQL geometries

101

PyQGIS developer cookbook, Sürüm 2.14

loading, 10

OGR layers
loading, 9

output
PDF, 48
raster image, 47
using Map Composer, 46

plugins
metadata.txt, 95
releasing, 72
testing, 72

PostGIS layers
loading, 9

projections, 38
projects

loading, 7
PYQGIS_STARTUP

environment, 1
Python

console, 2
custom applications; standalone scripts, 3
developing server plugins, 92
eklentiler geliştirme, 57
plugins, 2
startup, 1
startup.py, 2

querying
raster layers, 15

raster layers
details, 13
loading, 10
querying, 15
refreshing, 15
renderer, 13
using, 11

rasters
multi band, 14
single band, 14

refreshing
raster layers, 15

renderers
custom, 31

running
custom applications, 4

selection
features, vector layers, 17

server plugins
developing, 92
metadata.txt, 95

settings
global, 53
map layer, 54
project, 53
reading, 51

storing, 51
single symbol renderer, 26
spatial index

using, 22
SpatiaLite layers

loading, 10
startup

Python, 1
startup.py

Python, 2
symbol layers

creating custom types, 29
working with, 28

symbology
categorized symbol renderer, 27
graduated symbol renderer, 27
old, 32
single symbol renderer, 26

symbols
working with, 28

vector layers
editing, 20
features attributes, 17
iterating features, 18
loading, 9
selection features, 17
symbology, 25
writing, 23

WMS raster
loading, 11

102 Dizin

	Baslangıç
	Run Python code when QGIS starts
	Python Console
	Python Plugins
	Python Applications

	Loading Projects
	Yüklenen katmanlar
	Vector Layers
	Raster Layers
	Map Layer Registry

	Raster Katmanları kullanma
	Layer Details
	Renderer
	Refreshing Layers
	Query Values

	Vektör Katmanları Kullanma
	Retrieving information about attributes
	Selecting features
	Iterating over Vector Layer
	Modifying Vector Layers
	Modifying Vector Layers with an Editing Buffer
	Using Spatial Index
	Writing Vector Layers
	Memory Provider
	Appearance (Symbology) of Vector Layers
	Further Topics

	Geometri Kullanımı
	Geometry Construction
	Access to Geometry
	Geometry Predicates and Operations

	Projeksiyon Destegi
	Coordinate reference systems
	Projections

	Harita tuvalini kullanma
	Embedding Map Canvas
	Using Map Tools with Canvas
	Rubber Bands and Vertex Markers
	Writing Custom Map Tools
	Writing Custom Map Canvas Items

	Harita Isleme ve Yazdırma
	Simple Rendering
	Rendering layers with different CRS
	Output using Map Composer

	Ifadeler, Filtreleme ve Hesaplama Degerleri
	Parsing Expressions
	Evaluating Expressions
	Examples

	Ayarları okuma ve depolama
	Kullanıcı ile iletisim
	Mesajlar gösteriliyor. :sınıf:'QgsMesajÇubugu'sınıf
	Ilerleme gösteriliyor
	Kaydoluyor

	Python Eklentileri Gelistirme
	Bir eklenti yazma
	Eklenti içerigi
	Dokümantasyon
	Translation

	Yazdırma ve hata ayıklama için IDE ayarları
	A note on configuring your IDE on Windows
	Debugging using Eclipse and PyDev
	Debugging using PDB

	Eklenti Katmanlarının Kullanımı
	QgsEklentiKatmanı Altsınıfı olusturma

	Eski QGIS versiyonları ile uyumluluk
	Plugin menu

	Releasing your plugin
	Metadata ve isimler
	Kod ve yardım
	Resimi python eklenti kaynagı

	Kod Parçacıkları
	Bir metodu anahtar kısa yolla nasıl çagırırsınız
	Katmanları nasıl açıp kaparsınız
	seçili özelliklerin özellik tablosuna nasıl erisilir

	Writing a Processing plugin
	Creating a plugin that adds an algorithm provider
	Creating a plugin that contains a set of processing scripts

	Ag analiz kütüphanesi
	General information
	Building a graph
	Graph analysis

	QGIS Server Python Plugins
	Server Filter Plugins architecture
	Raising exception from a plugin
	Writing a server plugin
	Access control plugin

	Dizin

