μ

QGIS Training Manual

Release 2.14

QGIS Project

08 August 2017

Contents

1	Introduzione al Corso 1.1 Foreword 1.2 Preparazione dei dati dell'esercizio
2	Module: L'Interfaccia12.1Lesson: Una breve introduzione12.2Lesson: Adding your first layer12.3Lesson: Una inroduzione all'Interfaccia1
3	Module: Creazione di una Mappa di Base13.1Lesson: Working with Vector Data13.2Lesson: Simbologia2
4	Module: Classifying Vector Data54.1Lesson: Attribute Data54.2Lesson: The Label Tool54.3Lesson: Classification7
5	Module: Creazione di Mappe95.1Lesson: Using Map Composer95.2Assignment 110
6	Module: Creating Vector Data106.1Lesson: Creating a New Vector Dataset106.2Lesson: Feature Topology116.3Lesson: Forms126.4Lesson: Azioni13
7 8	Module: Vector AnalysisStrumenti di analisi vettoriale147.1Lesson: Reprojecting and Transforming Data147.2Lesson: Vector Analysis157.3Lesson: Network Analysis177.4Lesson: Spatial Statistics18Module: Rasters208.1Lesson: Working with Raster Data208.2Lesson: Changing Raster Symbology21
9	8.3 Lesson: Terrain Analysis 22 Module: Completing the Analysis 23 9.1 Lesson: Raster to Vector Conversion 23 9.2 Lesson: Combining the Analyses 23 9.3 Compito 23

	9.4	Lesson: Supplementary Exercise	35
10	Modu	ule: Plugin 24	19
		Lesson: Installing and Managing Plugins	
		Lesson: Useful QGIS Plugins	
11		ule: Online Resources 20	
		Lesson: Web Mapping Services 20 Lesson: Web Feature Services 27	
	11.2		Z
12	Modu	ule: GRASS 28	31
	12.1	Lesson: GRASS Setup	31
	12.2	Lesson: GRASS Tools)2
12	Mod	ule: Valutazione 30	11
13		Crea una mappa di base	
		Analizza i dati	
		Mappa finale	
14		ule: Applicazioni nel settore forestale 30	
		Lesson: Presentazione del modulo forestale	
		Lesson: Georeferencing a Map 30 Lesson: Digitizing Forest Stands 31	
		Lesson: Updating Forest Stands	
		Lesson: Systematic Sampling Design	
		Lesson: Creating Detailed Maps with the Atlas Tool	
	14.7	Lesson: Calculating the Forest Parameters	58
		Lesson: DEM da dati LiDAR	
	14.9	Lesson: Map Presentation	13
15	Modu	ule: Database Concepts with PostgreSQL 38	31
10		Lesson: Introduction to Databases	
		Lesson: Implementing the Data Model	
		Lesson: Adding Data to the Model	
		Lesson: Queries	
		Lesson: Views	
	15.6	Lesson: Rules	9 8
16	Modu	ule: Spatial Database Concepts with PostGIS 4)1
		Lesson: PostGIS Setup)1
	16.2	Lesson: Simple Feature Model	
		Lesson: Import and Export	
		Lesson: Spatial Queries	
	16.5	Lesson: Geometry Construction	8
17	La gu	uida di Processing di QGIS 42	25
		Introduzione	25
	17.2	An important warning before starting	25
	17.3	Setting-up the processing framework	
	17.4	Running our first algorithm. The toolbox	
	17.5	More algorithms and data types	
	17.6	CRS. Riproiezione	
		Nalaation	
	17.7 17.8	Selection	
	17.8	Running an external algorithm	14
	17.8 17.9	Running an external algorithm	14 19
	17.8 17.9 17.10	Running an external algorithm 44 Il log di processing 44	14 19 50
	17.8 17.9 17.10 17.11 17.12	Running an external algorithm 44 Il log di processing 44 O The raster calculator. No-data values 45	14 19 50 55 59

		First analysis example	
	17.15	Tagliare e unire raster	474
		Analisi idrologica	
	17.17	Starting with the graphical modeler	493
		More complex models	
		Numeric calculations in the modeler	
	17.20	A model within a model	514
	17.21	Interpolazione	515
	17.22	Ancora sull'interpolazione	523
	17.23	Iterative execution of algorithms	529
	17.24	More iterative execution of algorithms	534
	17.25	L'interfaccia per i processi in serie	536
		I modelli nell'interfaccia per i processi in serie	
		Other programs	
		Interpolation and contouring	
		Vector simplification and smoothing	
		Planning a solar farm	
		Use R scripts in Processing	
		Sintassi di R negli script di Processing	
		R Syntax Summary table for Processing	
		Predicting landslides	
	17.541		557
18	Modul	le: Usare i database spaziali in QGIS	559
10		Lesson: Working with Databases in the QGIS Browser	
		Lesson: Using DB Manager to work with Spatial Databases in QGIS	
		Lesson: Lavorare con SpatiaLite in QGIS	
	10.5		515
19	Modul	le: L'Interfaccia	579
		Panoramica	579
	19.2	Lesson: Le dasi di Pvlnon	579
	19.2	Lesson: Le basi di Python	579
20		·	579 581
20	Appen	·	581
20	Appen 20.1	dix: Contributing To This Manual	581 581
20	Appen 20.1 20.2	dix: Contributing To This Manual	581 581 581
20	Appen 20.1 1 20.2 1 20.3 4	dix: Contributing To This Manual	581 581 581 581
20	Appen 20.1 1 20.2 1 20.3 2 20.4 2	dix: Contributing To This Manual 4 Downloading Resources 4 Manual Format 4 Adding a Module 4 Adding a Lesson 4	581 581 581 581 582
20	Appen 20.1 1 20.2 1 20.3 1 20.3 1 20.4 1 20.5 1	dix: Contributing To This Manual a Downloading Resources a Manual Format a Adding a Module a Adding a Lesson a Adding a Section a	581 581 581 581 582 583
20	Appen 20.1 1 20.2 1 20.3 4 20.4 4 20.5 4 20.6 4	dix: Contributing To This Manual a Downloading Resources a Manual Format a Adding a Module a Adding a Lesson a Adding a Section a Add a Conclusion a	581 581 581 582 583 583
20	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2	dix: Contributing To This Manual a Downloading Resources a Manual Format a Adding a Module a Adding a Lesson a Adding a Section a Add a Conclusion a Add a Further Reading Section a	581 581 581 582 583 583 584
20	Appen 20.1 1 20.2 1 20.3 1 20.4 1 20.5 1 20.6 1 20.7 1 20.8 1	dix: Contributing To This Manual 4 Downloading Resources 4 Manual Format 4 Adding a Module 4 Adding a Lesson 4 Adding a Section 4 Add a Conclusion 4 Add a Further Reading Section 4 Add a What's Next Section 4	581 581 581 582 583 584 584 584
20	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2 20.8 2 20.9 1	dix: Contributing To This Manual Image: Contributing To This Manual Downloading Resources Image: Contributing To This Manual Manual Format Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Adding a Section Image: Contributing To This Manual Add a Conclusion Image: Contributing To This Manual Add a Further Reading Section Image: Contributing To This Manual Add a What's Next Section Image: Contributing To This Manual Using Markup Image: Contributing To This Manual	581 581 581 582 583 584 584 584 584
20	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2 20.8 2 20.9 1	dix: Contributing To This Manual 4 Downloading Resources 4 Manual Format 4 Adding a Module 4 Adding a Lesson 4 Adding a Section 4 Add a Conclusion 4 Add a Further Reading Section 4 Add a What's Next Section 4	581 581 581 582 583 584 584 584 584
	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2 20.8 2 20.9 1 20.10 1	dix: Contributing To This Manual 4 Downloading Resources 4 Manual Format 4 Adding a Module 4 Adding a Lesson 4 Adding a Section 4 Add a Conclusion 4 Add a Further Reading Section 4 Add a What's Next Section 4 Using Markup 4 Thank You! 4	581 581 581 582 583 584 584 584 584
	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2 20.8 2 20.9 1 20.10 1	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Lesson # Adding a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! #	581 581 581 582 583 584 584 584 584 584 584 584 584 584
	Appen 20.1 1 20.2 1 20.3 2 20.4 2 20.5 2 20.6 2 20.7 2 20.8 2 20.9 1 20.10 1 Answe 2	dix: Contributing To This Manual Image: Contributing To This Manual Downloading Resources Image: Contributing To This Manual Manual Format Image: Contributing To This Manual Adding a Resources Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Adding a Section Image: Contributing To This Manual Add a Conclusion Image: Contributing To This Manual Add a Further Reading Section Image: Contributing To This Manual Add a What's Next Section Image: Contributing Markup Thank You! Image: Contributing To This Manual Pr Sheet Image: Contributing Your First Layer	581 581 581 582 583 584 584 584 584 584 586 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.10 Answe 21.1 21.2	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Section # Add a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! # Er Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface #	581 581 581 582 582 584 584 584 584 584 586 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.10 Answe 21.1 21.2 21.3	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Lesson # Adding a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! # Exerces # Results For Adding Your First Layer # Results For Morking with Vector Data # Adding Section Data #	581 581 581 582 583 584 584 584 584 584 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.10 Answe 21.1 21.2 21.3 21.4	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! # Exer Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface # Results For Working with Vector Data # Results For Symbology #	581 581 581 582 583 584 584 584 584 584 587 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Module # Adding a Module # Adding a Lesson # Adding a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! # Er Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface # Results For Working with Vector Data # Results For Symbology # Results For Symbology # Results For Attribute Data #	581 581 581 582 583 584 584 584 584 584 587 587 587 587 587 587 588 593
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Lesson # Adding a Section # Add a Conclusion # Add a Further Reading Section # Add a What's Next Section # Using Markup # Thank You! # Er Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface # Results For Symbology # Results For Symbology # Results For The Label Tool #	581 581 581 582 583 584 584 584 584 584 584 587 587 587 587 587 587 588 593
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7	dix: Contributing To This Manual Image: Contributing To This Manual Downloading Resources Image: Contributing To This Manual Manual Format Image: Contributing To This Manual Adding a Resources Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Adding a Lesson Image: Contributing To This Manual Adding a Section Image: Contribute Data Add a What's Next Section Image: Contribute Data Manual For The Label Tool Image: Contribute Data Results For Classification Image: Contribute Data	581 581 581 582 583 584 584 584 584 586 587 587 587 587 587 588 593 594 598
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8	dix: Contributing To This Manual Image: Contributing To This Manual Downloading Resources Image: Contributing To This Manual Manual Format Image: Contributing To This Manual Adding a Resources Image: Contributing To This Manual Adding a Module Image: Contributing To This Manual Add a Conclusion Image: Contributing Contributing Markup Add a What's Next Section Image: Contributing Contrelation Results For Ch	581 581 581 582 583 584 584 584 584 587 587 587 587 587 587 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Lesson # Adding a Lesson # Adding a Section # Add a Conclusion # Add a Conclusion # Add a What's Next Section # Using Markup # Thank You! # tr Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface # Results For Working with Vector Data # Results For Symbology # Results For The Label Tool # Results For Classification # Results For Creating a New Vector Dataset # Results For Vector Analysis #	581 581 581 582 583 584 584 584 584 587 587 587 587 587 588 593 598 599 603
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Section # Add a Conclusion # Add a Vhat's Next Section # Add a What's Next Section # Using Markup # Thank You! # er Sheet # Results For Adding Your First Layer # Results For An Overview of the Interface # Results For Symbology # Results For Symbology # Results For The Label Tool # Results For Classification # Results For Creating a New Vector Dataset # Results For Raster Analysis #	581 581 581 582 583 584 584 584 584 587 587 587 587 588 593 594 598 599 603 601
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.10	dix: Contributing To This Manual # Downloading Resources # Manual Format # Adding a Module # Adding a Module # Adding a Section # Add a Conclusion # Add a Conclusion # Add a Vhat's Next Section # Using Markup # Thank You! # er Sheet # Results For Adding Your First Layer # Results For And Overview of the Interface # Results For Symbology # Results For Antribute Data # Results For The Label Tool # Results For Creating a New Vector Dataset # Results For Creating a New Vector Dat	581 581 581 582 583 584 584 584 584 587 587 587 587 587 587 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.10	dix: Contributing To This Manual g Downloading Resources g Manual Format g Adding a Module g Adding a Lesson g Adding a Lesson g Adding a Section g Add a Conclusion g Add a Further Reading Section g Add a What's Next Section g Using Markup g Thank You! g r Sheet g Results For Adding Your First Layer g Results For An Overview of the Interface g Results For Symbology g Results For Classification g Results For Vector Analysis g Results For Creating a New Vector Dataset g Results For Creating	581 581 581 582 583 584 584 584 584 584 587 587 587 587 587 587 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.10 21.11 21.12	dix: Contributing To This Manual g Downloading Resources g Manual Format g Adding a Module g Adding a Lesson g Adding a Lesson g Adding a Section g Add a Conclusion g Add a Further Reading Section g Add a What's Next Section g Using Markup g Thank You! g er Sheet g Results For Adding Your First Layer g Results For Adding Your First Layer g Results For Morking with Vector Data g Results For Symbology g Results For Creasification g Results For Creating a New Vector Dataset g Results For Creating the Analysis <td< td=""><td>581 581 581 582 583 584 584 584 584 584 587 587 587 587 587 587 587 587 587 587</td></td<>	581 581 581 582 583 584 584 584 584 584 587 587 587 587 587 587 587 587 587 587
	Appen 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.8 20.9 20.10 Answe 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12 21.11 21.11 21.11 21.11	dix: Contributing To This Manual g Downloading Resources g Manual Format g Adding a Module g Adding a Lesson g Adding a Lesson g Adding a Section g Add a Conclusion g Add a Further Reading Section g Add a What's Next Section g Using Markup g Thank You! g r Sheet g Results For Adding Your First Layer g Results For An Overview of the Interface g Results For Symbology g Results For Classification g Results For Vector Analysis g Results For Creating a New Vector Dataset g Results For Creating	581 581 581 582 583 584 584 584 584 587 587 588 593 594 598 603 614 619 625 628 631

21.16 Results For Simple Feature Model	632
22 Indici e tabelle	635

Introduzione al Corso

1.1 Foreword

1.1.1 Background

In 2008 we launched the *Gentle Introduction to GIS*, a completely free, open content resource for people who want to learn about GIS without being overloaded with jargon and new terminology. It was sponsored by the South African government and has been a phenomenal success, with people all over the world writing to us to tell us how they are using the materials to run University Training Courses, teach themselves GIS and so on. The Gentle Introduction is not a software tutorial, but rather aims to be a generic text (although we used QGIS in all examples) for someone learning about GIS. There is also the QGIS manual which provides a detailed functional overview of the QGIS application. However, it is not structured as a tutorial, but rather as a reference guide. At Linfiniti Consulting CC. we frequently run training courses and have realised that a third resource is needed - one that leads the reader sequentially through learning the key aspects of QGIS in a trainer-trainee format - which prompted us to produce this work.

This training manual is intended to provide all the materials needed to run a 5 day course on QGIS, PostgreSQL and PostGIS. The course is structured with content to suit novice, intermediate and advanced users alike and has many exercises complete with annotated answers throughout the text.

1.1.2 License

The Free Quantum GIS Training Manual by Linfiniti Consulting CC. is based on an earlier version from Linfiniti and is licensed under a Creative Commons Attribution 4.0 International. Permissions beyond the scope of this license may be available at below.

We have published this QGIS training manual under a liberal license that allows you to freely copy, modify and redistribute this work. A complete copy of the license is available at the end of this document. In simple terms, the usage guidelines are as follows:

- You may not represent this work as your own work, or remove any authorship text or credits from this work.
- You may not redistribute this work under more restrictive permissions than those under which it was provided to you.
- If you add a substantive portion to the work and contribute it back to the project (at least one complete module) you may add your name to the end of the authors list for this document (which will appear on the front page)
- If you contribute minor changes and corrections you may add yourself to the contributors list below.

- If you translate this document in its entirety, you may add your name to the authors list in the form "Translated by Joe Bloggs".
- If you sponsor a module or lesson, you may request the author to include an acknowledgement in the beginning of each lesson contributed, e.g.:

Nota: This lesson was sponsored by MegaCorp.

- If you are unsure about what you may do under this license, please contact us at office@linfiniti.com and we will advise you if what you intend doing is acceptable.
- If you publish this work under a self publishing site such as http://lulu.com we request that you donate the profits to the QGIS project.
- You may not commercialise this work, except with the expressed permission of the authors. To be clear, by commercialisation we mean that you may not sell for profit, create commercial derivative works (e.g. selling content for use as articles in a magazine). The exception to this is if all the profits are given to the QGIS project. You may (and we encourage you to do so) use this work as a text book when conducting training courses, even if the course itself is commercial in nature. In other words, you are welcome to make money by running a training course that uses this work as a text book, but you may not profit off the sales of the book itself all such profits should be contributed back to QGIS.

1.1.3 Sponsoring Chapters

This work is by no means a complete treatise on all the things you can do with QGIS and we encourage others to add new materials to fill any gaps. Linfiniti Consulting CC. can also create additional materials for you as a commercial service, with the understanding that all such works produced should become part of the core content and be published under the same license.

1.1.4 Autori

- Rüdiger Thiede (rudi@linfiniti.com) Rudi has written the QGIS instructional materials and parts of the PostGIS materials.
- Tim Sutton (tim@linfiniti.com) Tim has overseen and guided the project and co-authored the PostgreSQL and PostGIS parts. Tim also authored the custom sphinx theme used for this manual.
- Horst Düster (horst.duester@kappasys.ch) Horst co-authored the PostgreSQL and PostGIS parts
- Marcelle Sutton (marcelle@linfiniti.com) Marcelle provided proof-reading and editorial advice during the creation of this work.

1.1.5 Individual Contributors

Your name here!

1.1.6 Sponsors

• Cape Peninsula University of Technology

1.1.7 Data

Nota: The sample data used throughout the manual can be downloaded here: https://github.com/qgis/QGIS-Training-Data/archive/QGIS-Training-Data-v1.0.zip. You can save the files in a folder named **exercise_data**.

The sample data that accompanies this resource is freely available and comes from the following sources:

- Streets and Places datasets from OpenStreetMap (http://www.openstreetmap.org/)
- Property boundaries (urban and rural), water bodies from NGI (http://www.ngi.gov.za/)
- SRTM DEM from the CGIAR-CGI (http://srtm.csi.cgiar.org/)

1.1.8 Ultima versione

You can always obtain the latest version of this document by visiting the online version which is part of the QGIS documentation website (http://docs.qgis.org).

Nota: There are links to online and PDF versions of the Documentation and Training manuals.

Tim Sutton, May 2012

1.2 Preparazione dei dati dell'esercizio

I dati di esempio forniti con il Manuale di Formazione fanno riferimento alla città di Swellendam ed al suo intorno. Swellendam si trova a circa 2 ore ad est di Cape Town nel Capo Ovest del Sud Africa. Il dataset contiene i nomi degli elementi sia in Inglese che in Africano.

Chiunque può usare questo dataset senza difficoltà, ma potresti preferire usare dati del tuo paese o della tua città. Se tu scegli di fare così, i tuoi dati georeferenziati verranno usati in tutte le lezioni dal Modulo 3 al Modulo 7.2. In seguito o moduli usano sorgenti di dati più complessi che potrebbero essere o non essere disponibili per la tua regione.

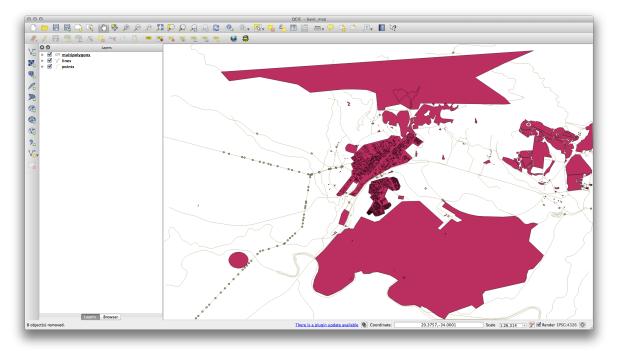
Nota: Questo processo è inteso per organizzatori di corsi o per utenti QGIS con maggiore esperienza, i quali desiderano creare campio di dati georeferenziati per i loro corsi. I dataset predefiniti sono forniti con il Manuale di Formazione, ma puoi seguire queste istruzioni se desideri sostituire i dataset predefiniti.

Nota: I dati campione usati attraverso tutto il manuale possono essere scaricati qui: https://github.com/qgis/QGIS-Training-Data/archive/QGIS-Training-Data-v1.0.zip. Puoi salvare i file in una cartella denominata **exercise_data**.

1.2.1 *F* Try Yourself

Nota: Queste istruzioni presuppongono che tu abbia una buona conoscenza di QGIS e non sono finalizzate ad essere usate come materiale di insegnamento.

Se desideri sostituire i dati predefiniti con i dati georeferenziati del tuo corso, questo può essere facilmente fatto con gli strumenti costruiti in QGIS. La regione che tu scegli di usare dovrebbe avere un buon insieme di aree rurali ed urbane, contenere strade di livello diverso, aree con confini (quali riserve naturali o fattorie) e superfici con acqua, quali corsi d'acqua e fiumi.


- Apri un nuovo progetto QGIS
- Nel menu a cascata *Vector*, seleziona *OpenStreetMap* -> *Download Data*. Tu puoi inserire manualmente le coordinate della regione che vuoi usare, o puoi usare un layer esistente per impostare le coordinate.
- Scegli una posizione per salvare il file .osm risultante e clicca Ok:

O From map c	anvas		
From layer			Å
 Manual 			
-	-33.9757		
20.353		20.5278	
	-34.0877		
Output file			
	'exercis	e_data/osm_data.os	m
		Close	OK

- Puoi aprire il file .osm usando il pulsante *Aggiungi vettore*. Potresti aver bisogno di selezionare *Tutti i files* nella finestra di esplorazione. In alternativa, puoi trascinare il file all'interno della finestra di QGIS.
- Nella finestra di dialogo che si apre, seleziona tutti i layer, *eccetto* i layer other_relations e multilinestrings

_ayer ID	Layer name	Number of features	Geometry type
0	points	Unknown	Point
1	lines	Unknown	LineString
2	multilinestrings	Unknown	MultiLineString
3	multipolygons other_relations	Unknown	MultiPolygon GeometryCollection
Select /	All		Cancel

Questo caricherà tre layer nella tua mappa, i quali sono relativi alle convenzioni di dare i nomi di OSM (potresti aver bisogno di ingrandire/rimpicciolire per vedere i dati vettoriali).

Abbiamo bisogno di estrarre i dati utili da questi layer, di rinominarli e di creare i corrispondenti shapefile:

- Primo, fai doppio clicc ul layer multipolygons per aprire la finestra di dialogo Proprietà del layer.
- Nella scheda Generale, clicca sulla finestra Costruttore di interrogazioni .

Questo layer contiene tre campi i cui dati dovranno essere estratti per essere usati in ogni parte del Manuale di Formazione:

- building
- natural (specificatamente, water)
- landuse

Puoi provare i dati che la tua regione contiene, allo scopo di vedere che tipo di risultati la tua regione produrrà. Se trovi che "landuse" non restituisce nessun risultato, sentiti libero di escluderlo.

Avrai bisogno di scrivere espressioni di filtro per ciascun campo per estrarre i dati di cui abbiamo bisogno. Useremo il campo "building" come esempio qui:

• Inserisci la seguente espressione nell'area di testo: building != "NULL" e clicca *Test* per vedere quanti risultati restituisce l'interrogazione. Se il numero di risultati è piccolo, potresti desiderare di dare uno sguardo alla *Tabella degli Attributi* del layer per vedere quali dati OSM restituisce per la tua regione:

000	🐖 Layer Properties – multipolygons General
🔀 General	▼ Layer info
🐳 Style	Layer name multipolygons displayed as multipolygons
(abc Labels	Laye O O Query Builder
Fields	Data multipolygons Fields Values
≼ Rendering	
두 Display	boundary
Actions	EPS building specify
• Joins	geological historic
💹 Diagrams	land_area
Metadata	Image: marked particular Sample All Image: marked particular Use unfiltered layer
	Max (ind
	Query Builder
	Load Style Save As Default Restore Default Style Save Style 🔻
	Help Apply Cancel OK

• Clicca Ok e vedrai che gli elementi del layer che non sono edifici sono stati rimossi dalla mappa.

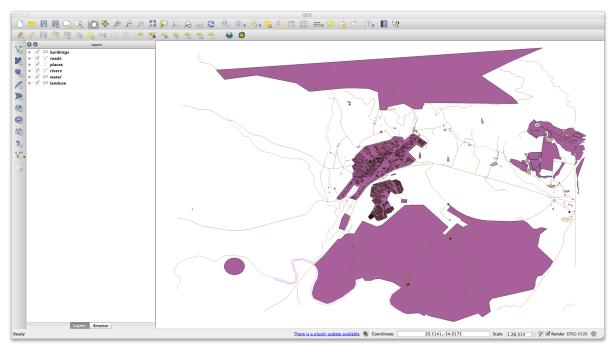
Adesso abbiamo bisogno di salvare i dati risultanti come shapefile perché tu possa usarli durante il corso:

- Clicca con il tasto destro sul layer multipolygons e seleziona Salva Come...
- Assicurati che il tipo di file sia ESRI Shapefile e salva il file nella tua cartella exercise_data, all'interno della cartella chiamata "epsg4326".
- Assicurati che *Nessuna Simbologia* sia selezionato (aggiungeremo la simbologia come parte del corso più avanti).
- Puoi anche selezionare Aggiungi il file salvato alla mappa.

Una volta che il layer *buildings* sia stato aggiunto alla mappa, puoi ripetere il processo per i campi natural e landuse, usando le seguenti espressioni:

Nota: Assicurati che hai pulito il filtro precedente (attraverso la finestra di dialogo *Proprietà del layer*) dal layer *multipolygons*, prima di procedere con la prossima espressione di filtro!

- natural: "natural = 'water"
- landuse: "landuse != 'NULL"


Ciascun dataset risultante dovrebbe essere salvato nella cartella "epsg4326" all'interno della tua nuova cartella exercise_data (cioè "water", "land use").

Dovresti poi estrarre e salvare i seguenti campi dai layer lines e points nelle loro corrispondenti cartelle:

- lines: "highway != 'NULL" per roads, e "waterway != 'NULL" per rivers
- points: "place != 'NULL" per places

Una volta che hai finito di estrarre i dati di cui sopra, puoi eliminare i layers multipolygons, lines e points

Dovresti adesso avere una mappa che assomiglia a qualcosa di questo tipo (la simbologia sarà sicuramente diversa, ma questo va bene):

La cosa importante è che tu abbia 6 layer che combaciano con quelli mostrati sopra e che tutti questi dati abbiano dei dati.

L'ultimo passo consiste nel creare un file spatiallite dal layer landuse, per usarlo durante il corso:

- Clicca con il tasto destro sul layer landuse e seleziona Salva come...
- Seleziona SpatialLite come formato e salva il file come landuse nella cartella "epsg4326".
- Clicca Ok.
- Cancella landuse.shp e i suoi file collegati (se sono stati creati).

1.2.2 *Fry Yourself Crea un DEM SRTM tiff*

Per il Modulo 6 (Creare Dati Vettoriali) e il Modulo 8 (Raster), avrai bisogno di immagini raster (SRTM DEM) che coprano la regione che tu hai selezionato per il tuo corso.

Il sito CGIAR-CG (http://srtm.csi.cgiar.org/) fornisce alcuni DEM SRTM che puoi scaricare da http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp.

Ti serviranno immagini che coprano l'intera regione che hai scelto di usare. Se hai conservato gli stessi dati del manuale di formazione, puoi usare l'estensione mostrata nella figura set_osm_region sopra, altrimenti adatta la tua estensione. Mantieni il formato GeoTiff. Una volta riempito il modulo, clicca sul pulsante *Clicca qui per Iniziare la Ricerca* >> e scarica il(i) file.

Una volta che hai scaricato il file (i files) richiesto, dovranno essere salvati nella cartella exercise_data, all'interno delle sottocartelle raster/SRTM.

1.2.3 **C** Try Yourself Crea un Files tiff di immagine

Nel Modulo 6, la Lezione 1.2 mostra immagini in primo piano di tre campi sportivi di scuole, di cui è stata richiesta la digitalizzazione agli studenti. Avrai perciò bisogno di riprodurre queste immagini usando il tuo nuovo file (s) tiff SRTM DEM. Non c'è l'obbligo di usare campi sportivi scolastici: qualsiasi tipo di tre usi del suolo scolastici possono essere usati (ad esempio diversi edifici scolastici, luoghi di ricreazione o parcheggi).

Come riferimento, le immagini nei dati di esempio sono:

1.2.4 **C** Try Yourself Sostituisci gli Emblemi

Avendo creato il tuo dataset georeferenziato, il passo finale è di sostituire gli emblemi nel file conf.py in modo che i nomi appropriati appariranno nella tua versione locale del Manuale di Formazione.

Gli emblemi che hai bisogno di sostituire sono i seguenti:

- majorUrbanName: corrisponde a "Swellendam". Sostituisci con il nome della città principale della tua regione.
- schoolAreaType1: corrisponde a "athletics field". Sostituisci con il nome del tipo di area scolastica più grande nella tua regione.
- largeLandUseArea: corrisponde a "Bontebok National Park". Sostituisci con il nome del poligono di uso del suolo più grande nella tua regione.
- srtmFileName: corrisponde srtm_41_19.tif. Sostituisci questo con il nome del tuo file SRTM DEM
- localCRS: corrisponde a WGS 84 / UTM 34S. Dovresti sostituire questo con il corretto SR per la tua regione.

Module: L'Interfaccia

2.1 Lesson: Una breve introduzione

Benvenuto al nostro corso! Attraverso i prossimi giorni, vi mostreremo come usare QGIS in modo semplice ed efficiente. Se sei nuovo al GIS, ti diremo di cosa hai bisogno per cominciare. Se invece sei un utente esperto, vedrai come QGIS adempie a tutte le funzioni che ti aspetti da un GIS, ed anche di più!

In questo modulo introduciamo il progetto QGIS e spieghiamo l'interfaccia utente.

Dopo aver completato questa sezione, sarai capace di identificare correttamente gli elementi principali della vista in QGIS e conoscere cosa fa ciascuno di essi e come caricare uno shapefile in QGIS.

Avvertimento: Questo corso include le istruzioni sull'aggiungere, cancellare ed alterare insiemi di dati nel GIS. A questo scopo abbiamo abbiamo preparato dei dataset di lavoro. Prima di usare le tecniche descritte sui tuoi dati, assicurati sempre di aver effettuato un backup!

2.1.1 Come usare questo tutorial

Ogni testo che assomiglia a questo fa riferimento a qualcosa sullo schermo su cui tu puoi cliccare

Testo che *somiglia* \rightarrow *a* \rightarrow *questo* ti guida attraverso i menu

Questo tipo di testo fa riferimento a qualcosa su cui puoi scrivere, come un comando, un percorso o il nome di un file.

2.1.2 Obiettivi graduali del corso

Questo corso si rivolge ad utenti con livelli di esperienza diversa. A seconda di quale categoria tu pensi di appartenere, ti puoi aspettare una serie di risultati diversi. Ogni categoria contiene informazioni che sono essenziali per la successiva, per cui è importante fare tutti gli eserciazi che vi si trovano al tuo livello di esperienza o a quello inferiore al tuo.

Livello di Base

In questa categoria, il corso presuppone che tu abbia poca o nessuna precedente esperienza con la conoscenza teorica sui GIS o riguardo le operazioni di un programma GIS

Un inquadramento teorico limitato verrà fornito per spiegare lo scopo di un'azione che effettuerai nel programma, ma l'enfasi è sull'apprendimento tramite l'azione.

Quando completerai il corso tu avrai una migliore conoscenza delle possibilità del GIS e di come sfruttarne la potenza tramite QGIS

In questa categoria, si presuppone che tu abbia una conoscenza lavorativa e un'esperienza sugli usi quotidiani del GIS.

Seguendo le istruzioni per il livello principiante, ti fornirà un terreno familiare e allo stesso tempo ti renderà consapevole dei casi in cui QGIS fa le cose in modo leggermente differente dagli altri software che tu puoi già aver usato. Imparerai anche ad usare le funzioni di analisi in QGIS.

Quando completerai il corso, dovresti sentirti a tuo agio nell'uso di QGIS in tutte le funzioni di cui hai di solito bisogno da un GIS per l'uso di ogni giorno.

In questa categoria, si assume che tu abbia esperienza con il GIS, abbia conoscenza ed esperienza con le basi di dati spaziali, sappia usare dati su un server remoto, forse che tu sia in grado di scrivere script a scopo analitico, ecc.

Seguire le istruzioni per gli altri due livelli ti aiuterà a familiarizzare con l'approccio che l'interfaccia di QGIS segue, e ti assicurerà di essere capace di accedere alle funzioni di base di cui hai bisogno. Ti verrà mostrato anche come fare uso del sistema di plugin di QGIS, del sistema di accesso ai database e così via.

Quando completerai il corso, dovresti essere ben informato sulle operazioni quotidiane di QGIS, tanto quanto sulle funzioni più avanzate.

2.1.3 Perché QGIS?

Poiché l'informazione diventa sempre più consapevole degli aspetti spaziali, non c'è nessuna mancanza di strumenti capaci di soddisfare alcune o le più usate funzioni GIS. Perché si dovrebbe usare QGIS tra tutti gli altri software GIS esistenti?

Queste sono alcune delle ragioni:

- *E' gratuito, come a pranzo*. Installare ed usare il programma QGIS ti costa un totale di zero euro. Non c'è nessuna spesa iniziale, nessuna spesa periodica, niente.
- *It's free, as in liberty.* Sei hai bisogno di funzionalità extra in QGIS, puoi fare di più che sperare che questo venga incluso nella prossima versione. Puoi sponsorizzare lo sviluppo di un elemento, o aggiungerlo se hai familiarità con la programmazione.
- *E' costantemente sviluppato*. Poiché chiunque può aggiungere nuovi elementi o sviluppare quelli esistenti, QGIS non si ferma mai. Lo sviluppo di un nuovo strumento può accadere tanto velocemente quanto ti serve.
- *E' possibile avere un aiuto ed una documentazione ampi*. Se ti sei bloccato su qualcosa, puoi aiutarti con l'ampia documentazione, gli altri utenti di QGIS o anche gli sviluppatori.
- Cross-platform. QGIS può essere installato su MacOS, Windows e Linux.

Ora che sai perché vuoi usare QGIS, possiamo mostrarti come farlo. La prima lezione ti guiderà nella creazione della tua prima mappa su QGIS.

2.2 Lesson: Adding your first layer

We will start the application, and create a basic map to use for examples and exercises.

The goal for this lesson: To get started with an example map.

Nota: Before starting this exercise, QGIS must be installed on your computer. Also, download the training_manual_exercise_data.zip file from the QGIS data downloads area.

Launch QGIS from its desktop shortcut, menu item, etc., depending on how you configured its installation.

Nota: The screenshots for this course were taken in QGIS 2.0 running on MacOS. Depending on your setup, the screens you encounter may well appear somewhat different. However, all the same buttons will still be available, and the instructions will work on any OS. You will need QGIS 2.0 (the latest version at time of writing) to use this course.

Let's get started right away!

2.2.1 Follow Along: Prepare a map

- Open QGIS. You will have a new, blank map.
- Look for the Add Vector Layer button: V_{\Box}
- Click on it to open the following dialog:

	Source type	1-16-5 🗿 隆
//// □ ··· ··· ··· ··· ··· ··· ·········	File Directory Database Proto Encoding System	col
V ₀ Q Q Layers	Source	
Va	Dataset	Browse
M		
9 <u>0</u>	Help Cancel	Open
S23		
δα 9 VG•		
Ver		
Layers Browser		
		Coordinate: 0.39505,0.94485 Scale 1:3,285 ✓ Render EPSG:4326

• Click on the *Browse* button and navigate to the file exercise_data/epsg4326/roads.shp (in your course directory). With this file selected, click *Open*. You will see the original dialog, but with the file path filled in. Click *Open* here as well. The data you specified will now load.

Congratulations! You now have a basic map. Now would be a good time to save your work.

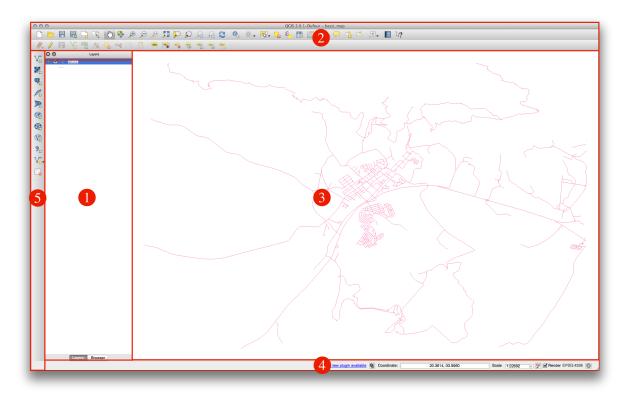
- Click on the *Save As* button:
- Save the map under exercise_data/ and call it basic_map.qgs.

Check your results

2.2.2 In Conclusion

You've learned how to add a layer and create a basic map!

2.2.3 What's Next?


Now you're familiar with the function of the *Add Vector Layer* button, but what about all the others? How does this interface work? Before we go on with the more involved stuff, let's first take a good look at the general layout of the QGIS interface. This is the topic of the next lesson.

2.3 Lesson: Una inroduzione all'Interfaccia

Esploreremo l'interfaccia utente di QGIS in modo che tu avrai familiarità con i menu, le barre degli strumenti, l'area di mappa e la lista dei layer che formano la struttura di base dell'interfaccia.

Obiettivo per questa lezione: Capire le basi dell'interfaccia utente di QGIS

2.3.1 Try Yourself: Le Basi

Gli elementi identificati nella figura sopra sono:

- 1. Lista dei Layer/ Pannello di navigazione
- 2. Strumenti
- 3. Area di mappa
- 4. Barra di Stato
- 5. Barra degli Strumenti Laterale

Nella Lista dei Layer, tu puoi vedere una lista, sempre, ti tutti i layer disponibili.

Espandere gli elementi ridotti (cliccando la freccia o il simbolo più a fianco ad essi) ti fornirà maggiori informazioni sull'aspetto attuale del layer.

Il click con il tasto destro su di un layer ti darà un menu con molte opzioni extra. Userai alcune di esse a breve, per cui dai uno sguardo!

Alcune versioni di QGIS hanno una casella di controllo *Controllo dell'ordine di visualizzazione* separata sotto la lista dei Layer. Non ti preoccupare se non riesci a vederla. Se è presente, che sia spuntata, per ora.

Nota: Un layer vettoriale è un dataset, di solito uno specifico tipo di oggetto, quali delle strade, degli alberi, ecc. Un layer vettoriale può essere fatto di punti, di linee o di poligoni.

Il Browser di QGIS è un pannello in QGIS che ti permette di navigare facilmente nel tuo database. Puoi avere accesso ai file vettoriali comuni (ad es. shapefile ESRI o file MapInfo), alle basi di dati (ad es. PostGIS, Oracle, Spatialite o MSSQL Spatial) e alle connessioni WMS/WFS. Puoi anche vedere i tuoi dati GRASS.

Barre degli strumenti

Your most oft-used sets of tools can be turned into toolbars for basic access. For example, the File toolbar allows you to save, load, print, and start a new project. You can easily customize the interface to see only the tools you use most often, adding or removing toolbars as necessary via the *Settings* \rightarrow *Toolbars* menu.

Even if they are not visible in a toolbar, all of your tools will remain accessible via the menus. For example, if you remove the *File* toolbar (which contains the *Save* button), you can still save your map by clicking on the *Project* menu and then clicking on *Save*.

E' dove la mappa viene visualizzata.

Mostra le tue informazioni relative alla mappa attuale. Ti permette anche di aggiustare la scala della mappa e di vedere le coordinate del cursore del mouse sulla mappa.

Prova ad identificare i quattro elementi elencati sopra sul tuo scermi, senza far riferimento al diagramma sopra. Vedi se riesci ad identificare i loro nomi e le loro funzioni. Diventerai più familiare con questi elementi man mano che li userai nei prossimi giorni.

Controlla i tuoi risultati

Prova a trovare ciascuno di questi strumenti sul tuo schermi. Qual è il loro scopo?

Nota: Se alcuni di questi strumenti non sono visibili sullo schermo, prova ad abilitare alcune barre degli strumenti che al momento sono nascoste. Tieni anche in mente che se non c'è abbastanza spazio sullo schermo, una barra degli strumenti può essere accorciata nascondendo alcuni dei suoi strumenti. Puoi vedere gli strumenti nascosti cliccando sul bottone con la doppia freccia a destra, in ogni barra degli strumenti ridotta.

Controlla i tuoi risultati

2.3.4 What's Next?

Adesso che hai visto come lavora l'interfaccia di QGIS, puoi usare gli strumenti disponibili e cominciare ad apportare miglioramenti alla tua mappa! Questo è l'argomento della prossima lezione.

Module: Creazione di una Mappa di Base

In questo modulo, creerai una mappa di base che sarà usata successivamente come punto di partenza per ulteriori dimostrazioni delle funzionalità di QGIS.

3.1 Lesson: Working with Vector Data

Vector data is arguably the most common kind of data you will find in the daily use of GIS. It describes geographic data in terms of points, that may be connected into lines and polygons. Every object in a vector dataset is called a **feature**, and is associated with data that describes that feature.

The goal for this lesson: To learn about the structure of vector data, and how to load vector datasets into a map.

3.1.1 *Follow Along: Viewing Layer Attributes*

It's important to know that the data you will be working with does not only represent **where** objects are in space, but also tells you **what** those objects are.

From the previous exercise, you should have the *roads* layer loaded in your map. What you can see right now is merely the position of the roads.

To see all the data available to you, with the *roads* layer selected in the Layers panel:

• Click on this button:

It will show you a table with more data about the *roads* layer. This extra data is called *attribute data*. The lines that you can see on your map represent where the roads go; this is the *spatial data*.

These definitions are commonly used in GIS, so it's essential to remember them!

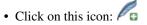
• You may now close the attribute table.

Vector data represents features in terms of points, lines and polygons on a coordinate plane. It is usually used to store discrete features, like roads and city blocks.

3.1.2 *P* Follow Along: Loading Vector Data From Shapefiles

The Shapefile is a specific file format that allows you to store GIS data in an associated group of files. Each layer consists of several files with the same name, but different file types. Shapefiles are easy to send back and forth, and most GIS software can read them.

Refer back to the introductory exercise in the previous section for instructions on how to add vector layers.


Load the data sets from the epsg4326 folder into your map following the same method:

- "places"
- "water"
- "rivers"
- "buildings"

Check your results

3.1.3 *Follow Along: Loading Vector Data From a Database*

Databases allow you to store a large volume of associated data in one file. You may already be familiar with a database management system (DBMS) such as Microsoft Access. GIS applications can also make use of databases. GIS-specific DBMSes (such as PostGIS) have extra functions, because they need to handle spatial data.

(If you're sure you can't see it at all, check that the Manage Layers toolbar is enabled.)

It will give you a new dialog. In this dialog:

- Click the New button.
- In the same epsg4326 folder, you should find the file landuse.sqlite. Select it and click Open.

You will now see the first dialog again. Notice that the dropdown select above the three buttons now reads "landuse.sqlite@...", followed by the path of the database file on your computer.

• Click the *Connect* button. You should see this in the previously empty box:

Connect	New	Delete	
Table ▼ landuse.sq	▲ Type	Geometry colu Sql	
landuse		ON geometry	
Also list tabl	es with no geo ions	metry	

• Click on the landuse layer to select it, then click Add

Nota: Remember to save the map often! The map file doesn't contain any of the data directly, but it remembers which layers you loaded into your map.

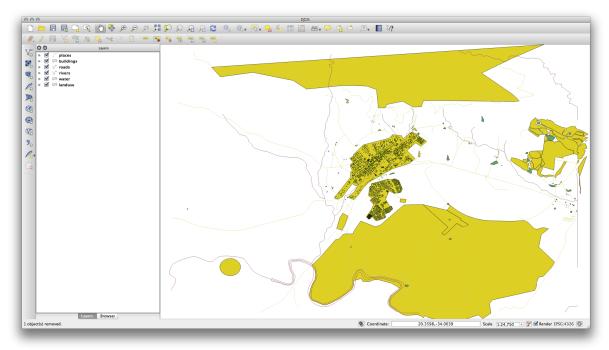
Check your results

3.1.4 Follow Along: Reordering the Layers

The layers in your Layers list are drawn on the map in a certain order. The layer at the bottom of the list is drawn first, and the layer at the top is drawn last. By changing the order that they are shown on the list, you can change the order they are drawn in.

Nota: Depending on the version of QGIS that you are using, you may have a checkbox beneath your Layers list reading *Control rendering order*. This must be checked (switched on) so that moving the layers up and down in the Layers list will bring them to the front or send them to the back in the map. If your version of QGIS doesn't have this option, then it is switched on by default and you don't need to worry about it.

The order in which the layers have been loaded into the map is probably not logical at this stage. It's possible that the road layer is completely hidden because other layers are on top of it.


For example, this layer order...

0	Θ	Layers
►	\checkmark	🏳 landuse
►		° places
►	\checkmark	√° roads
►	\checkmark	🗭 <u>buildings</u>
►	\checkmark	√° rivers
►		🟳 water

... would result in roads and places being hidden as they run *underneath* urban areas.

To resolve this problem:

- Click and drag on a layer in the Layers list.
- Reorder them to look like this:

You'll see that the map now makes more sense visually, with roads and buildings appearing above the land use regions.

3.1.5 In Conclusion

Now you've added all the layers you need from several different sources.

3.1.6 What's Next?

Using the random palette automatically assigned when loading the layers, your current map is probably not easy to read. It would be preferable to assign your own choice of colors and symbols. This is what you'll learn to do in the next lesson.

3.2 Lesson: Simbologia

La simbologia di un layer é il suo aspetto visuale sulla mappa. La forza del GIS rispetto ad altri modi di rappresentare dati con aspetti spaziali é che con il GIS si ha una rappresentazione visuale dinamica dei dati con cui si sta lavorando.

Quindi, l'aspetto visuale della mappa (che dipende dalla simbologia dei singoli layer) é molto importante. L'utente finale delle mappe che si producono deve essere in grado di capire semplicemente cosa la mappa rappresenti. É inoltre molto importante poter essere in grado di esplorare i dati con cui si sta lavorando, ed una buona simbologia aiuta molto.

In altre parole, avere una buona simbologia non é un lusso. Infatti, é essenziale utilizzare il GIS in maniera adeguata e produrre mappe ed informazione che gli utenti siano in grado di utilizzare.

Obiettivo di questa lezione: Essere in grado di creare qualsiasi simbologia si voglia per qualsiasi vettore.

3.2.1 |base| Follow Along: Cambiare i Colori

Per cambiare la simbologia di un layer, aprire le sue Layer Properties. Iniziamo cambiando il colore del layer landuse.

- Click destro sul layer *landuse* nella lista dei layer.
- Selezionare l'elemento *Properties* dal menu che appare.

Nota: Per definizione, é possibile accedere alle proprietá del layer tramite doppio click sul layer nella lista dei layer.

Nella finestra Properties:

• Selezionare la scheda Style all'estrema sinistra:

000		🕺 Layer Properties – landuse Style
🔀 General	 Layer rendering 	
	Layer transparency	
(abc Labels	Layer blending mode	Normal Feature blending mode Normal
Fields		
🞸 Rendering	Single Symbol 💲	
 Display Actions Joins 		Unit Millimeter ‡ Transparency 0%
Diagrams		Color Saved styles
i Metadata	Symbol layers	corners diagonal dotted green land water wine
	۱	Symbol Advanced
	Load Style	Save As Default Restore Default Style Save Style V
	Help Apply	Cancel OK

• Fare click il bottone di selezione colore vicino all'etichetta Color.

Apparirá una finestra di selezione colore standard.

- Selezionare un colore grigio e fare click su OK.
- Fare nuovamente click su *OK* nella finestra *Layer Properties*, e si vedrá il cambiamento di colore applicato al layer.

3.2.2 |base| Try Yourself

Cambiare il layer water in azzurro.

Controllare i risultati

3.2.3 |base| Follow Along: Cambiare la Struttura del Simbolo

Fino ad ora tutto bene, ma c'é di piú sulla simbologia dei layer che il semplice colore. Si vogliono ora eliminare le linee tra differenti aree di uso della terra in modo da rendere la mappa meno visualmente ingombra.

• Aprire la finestra Layer Properties per il layer landuse.

Nella scheda *Style* si potrá vedere lo stesso tipo di finestra di dialogo vista in precedenza. Questa volta peró si fará di piú rispetto ad un veloce cambio di colore.

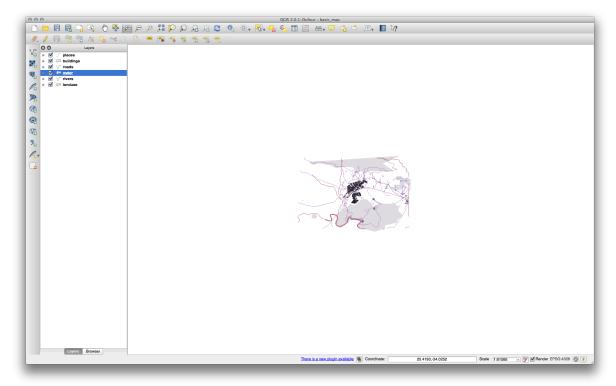
• Nel pannello *Symbol Layers*, si espanda il menu a tendina *Fill* (se necessario) e si selezioni l'opzione *Simple fill*.

	and the second	🕺 🌠 Layer Properties – landu	se Style		
🔀 General	Layer rendering				
	Layer transparency	0		0	
(abc Labels	Layer blending mode	Normal	+ Feature blending mode	Normal	\$
Fields					
🞸 Rendering	Single Symbol \$				
두 Display		Symbol layer ty	/pe Simple f	311	\$
Sctions		Colors	Fill Border		
• Joins		Fill style	Solid		\$
💹 Diagrams	Symbol layers	Border style	Solid Line		÷
🥡 Metadata	Fill	Border width	0.26000	Millimeter	÷
	Simple fill	Offset X,Y	0.00000	A Millimeter	\$
			Data defined propertie		
	Ecad Style	Save As Default	Restore Default Style	Save Style	· · · · · · · · · · · · · · · · · · ·

- Click sul menu a tendina *Border style*. Al momento, dovrebbe mostrare una linea corta e le parole *Solid Line*.
- Cambiarlo con No Pen.
- Click OK.

Adesso il layer landuse non avrá alcuna linea tra le aree.

3.2.4 |base| Try Yourself


- Cambiare nuovamente la simbologia del layer water in modo da avere dei bordi blu scuro.
- Cambiare la simbologia del layer rivers per ottenere una rappresentazione ragionevole delle vie d'acqua.

Controllare i risultati

3.2.5 |medio| Follow Along: Visibilitá Basata sulla Scala

Alcune volte si ha che un layer non sia adatto per una certa scala. Ad esempio, un insieme di dati di tutti i continenti potrebbe avere poco dettaglio, e non molto accurato a livello di strada. Quando ció accade, si vorrebbe poter nascondere l'insieme di dati per le scale inappropriate.

Nel nostro caso, potremmo decidere di nascondere gli edifici dalle viste a piccole scale. Questa mappa, ad esempio ...

... non é molto utile. Gli edifici sono difficili da distinguere a questa scala.

Per abilitare la visualizzazione basata sulla scala:

- Aprire la finestra di dialogo Layer Properties per il layer buildings.
- Attivare la scheda General.
- Enable scale-based rendering by clicking on the checkbox labelled *Scale dependent visibility*:

000	🕺 Layer Properties – buildings General							
🔀 General	▼ Layer info							
	Layer name buildings displayed as buildings							
(abc) Labels	Layer source //Volumes/Drobo/sites/qgis/new_sample_data/epsg4326/buildings.shp							
Fields	Data source encoding System +							
Kendering	▼ Coordinate reference system							
🧭 Display	EPSC:4326 - WCS 84 Specify							
Sections								
• Joins	Create spatial index Update extents							
Diagrams								
🧃 Metadata	▼ 🗹 Scale dependent visibility							
	Maximum (inclusive) Diamonda 1:10 (exclusive) (exclusive) (exclusive) (exclusive)							
	Current							
	✓ Feature subset							
	Query Builder							
	Load Style Save As Default Restore Default Style Save Style 💌							
	Help Apply Cancel OK							

- Change the *Minimum* value to 1:10,000.
- Click OK.

Testare gli effetti di questa operazione facendo zoom in e zoom out sulla mappa, notando quando il layer *buildings* appare e scompare.

Nota: É possibile usare la rotella del mouse per aumentare il livello di zoom. Alternativamente, utilizzare gli strumenti di zoom per fare zoom ad una finestra:


3.2.6 Follow Along: Adding Symbol Layers

Now that you know how to change simple symbology for layers, the next step is to create more complex symbology. QGIS allows you to do this using symbol layers.

• Go back to the *landuse* layer's symbol properties panel (by clicking *Simple fill* in the *Symbol layers* panel).

In this example, the current symbol has no outline (i.e., it uses the No Pen border style).

Select the Fill in the Symbol layers panel. Then click the Add symbol layer button:

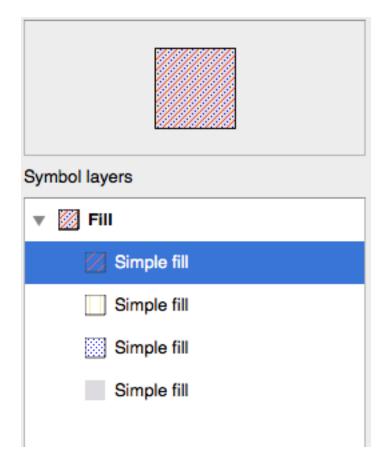
• Click on it and the dialog will change to look somewhat like this:

000		🕺 Layer Propert	ies – Ianduse S	tyle				
🔀 General	Layer rendering							
😻 Style	Layer transparency	0					0	•
(abc Labels	Layer blending mode	Normal	\$ F	eature blendi	ng mode	Normal		\$
Fields								
🎸 Rendering	E Single Symbol 💲							
두 Display		Sym	bol layer type		Simple f	ìll		\$
Actions		Cold			Border			
• Joins		Fills	style	Solid				\$
📴 Diagrams	Symbol layers	Borg	ler style		e			\$
i Metadata	T Fill	Bord	ler width 0.	26000		(*	Millimeter	\$
	Simple fill	Offs	et X,Y 0.	00000	0.00000		Millimeter	\$
	Simple fill			Data de	efined propertie	s		
	Load Style	Save As D	efault	Restore D	efault Style		Save Style	•

(It may appear somewhat different in color, for example, but you're going to change that anyway.)

Now there's a second symbol layer. Being a solid color, it will of course completely hide the previous kind of symbol. Plus, it has a *Solid Line* border style, which we don't want. Clearly this symbol has to be changed.

Nota: It's important not to get confused between a map layer and a symbol layer. A map layer is a vector (or raster) that has been loaded into the map. A symbol layer is part of the symbol used to represent a map layer. This course will usually refer to a map layer as just a layer, but a symbol layer will always be called a symbol layer, to prevent confusion.


With the new Simple Fill layer selected:

- Set the border style to *No Pen*, as before.
- Change the fill style to something other than *Solid* or *No brush*. For example:

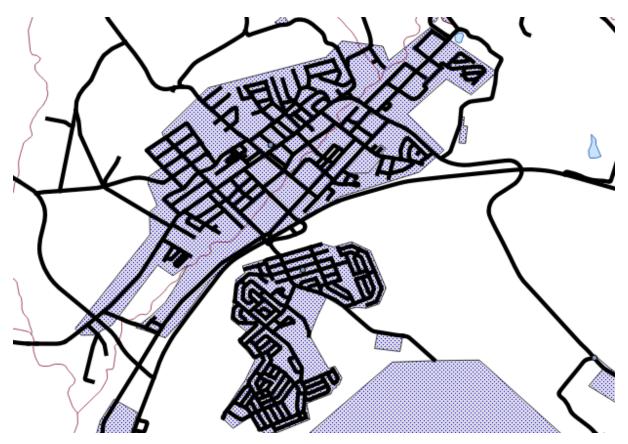
000	🄏 Layer	r Properties – landuse Style	
🔀 General	▼ Layer rendering		_
	Layer transparency	0	•
(abc) Labels	Layer blending mode Normal	l 🗘 Feature blending mode Normal	\$
Fields			
🞸 Rendering	E Single Symbol		
🗭 Display		Symbol layer type Simple fill \$	
Sections		Colors Fill Border	
• Joins		Fill style Dense 6 ¢	
🕅 Diagrams	Symbol layers	Border style Solid Line ‡	
🧃 Metadata	🔻 🧱 Fill	Border width 0.26000 🗘 Millimeter 💠	
	Simple fill	Offset X,Y 0.00000 (+) 0.00000 (+) Millimeter +	
	Simple fill	Data defined properties	
	Load Style Sav	ave As Default Restore Default Style Save Style	•
	Help Apply	Cancel	

• Click OK. Now you can see your results and tweak them as needed.

You can even add multiple extra symbol layers and create a kind of texture for your layer that way.

It's fun! But it probably has too many colors to use in a real map...

• Remembering to zoom in if necessary, create a simple, but not distracting texture for the *buildings* layer using the methods above.


Check your results

3.2.8 Follow Along: Ordering Symbol Levels

When symbol layers are rendered, they are also rendered in a sequence, similar to the way the different map layers are rendered. This means that in some cases, having many symbol layers in one symbol can cause unexpected results.

- Give the roads layer an extra symbol layer (using the method for adding symbol layers demonstrated above).
- Give the base line a Pen width of 0.3, a white color and select Dashed Line from the Pen Style dropdown.
- Give the new, uppermost layer a thickness of 1.3 and ensure that it is a Solid Line.

You'll notice that this happens:

Well that's not what we want at all!

To prevent this from happening, you can sort the symbol levels and thereby control the order in which the different symbol layers are rendered.

To change the order of the symbol layers, select the *Line* layer in the *Symbol layers* panel, then click *Advanced* -> *Symbol levels...* in the bottom right-hand corner of the window. This will open a dialog like this:

will be d	Irawn.		I layers are rende rendering pass th	
	Layer 0	Layer 1	_	
-	0	— 1		

Select *Enable symbol levels*. You can then set the layer ordering of each symbol by entering the corresponding level number. 0 is the bottom layer.

In our case, we want to reverse the ordering, like this:

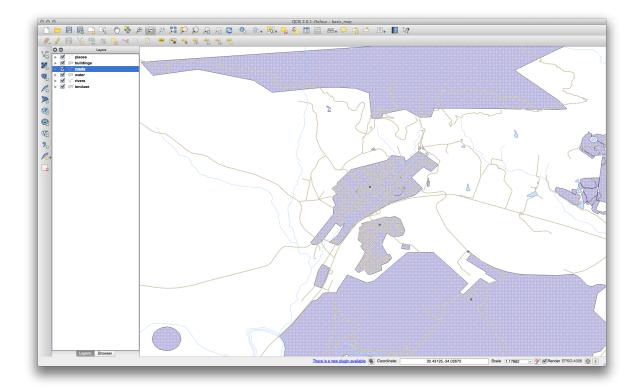
Define the numbers i will be dra	e order in which n the cells de wn.	ch the symbol fine in which	layers are rendered. The rendering pass the layer
l	ayer 0	Layer 1	_
_	1 1	0	

This will render the dashed, white line above the thick black line.

• Click *OK* twice to return to the map.

The map will now look like this:

Also note that the meeting points of roads are now "merged", so that one road is not rendered above another.


When you're done, remember to save the symbol itself so as not to lose your work if you change the symbol again in the future. You can save your current symbol style by clicking the *Save Style* ... button under the *Style* tab of the *Layer Properties* dialog. Generally, you should save as *QGIS Layer Style File*.

Save your style under exercise_data/styles. You can load a previously saved style at any time by clicking the *Load Style* ... button. Before you change a style, keep in mind that any unsaved style you are replacing will be lost.

• Change the appearance of the *roads* layer again.

The roads must be narrow and mid-gray, with a thin, pale yellow outline. Remember that you may need to change the layer rendering order via the *Advanced* \rightarrow *Symbol levels*... dialog.

Check your results

Symbol levels also work for classified layers (i.e., layers having multiple symbols). Since we haven't covered classification yet, you will work with some rudimentary pre-classified data.

- Create a new map and add only the *roads* dataset.
- Apply the style advanced_levels_demo.qml provided in exercise_data/styles.
- Zoom in to the Swellendam area.
- Using symbol layers, ensure that the outlines of layers flow into one another as per the image below:

3.2.11 Follow Along: Symbol layer types

In addition to setting fill colors and using predefined patterns, you can use different symbol layer types entirely. The only type we've been using up to now was the *Simple Fill* type. The more advanced symbol layer types allow you to customize your symbols even further.

Each type of vector (point, line and polygon) has its own set of symbol layer types. First we will look at the types available for points.

Point Symbol Layer Types

- Open your *basic_map* project.
- Change the symbol properties for the *places* layer:

000		Layer Properties – places Style	
🔀 General	Layer rendering		
😻 Style	Layer transparency	0	A V
(abc Labels	Layer blending mode	rmal Feature blending mode Normal	\$
Fields			
🗭 Display	Single Symbol 💠		
Sections		Unit Millimeter +	
• ┥ Joins		Transparency 0%	
🕅 Diagrams		Rotation 0.0°	•
🥡 Metadata	Symbol layers	Saved styles	•
	• Marker		
	 Simple marker 		
		airport arrow capital circle city diamond ellipse	
	~		
		pentagon square star star2 star3 triangle triangle2	
		Symbol Advance	d 🔻
	Load Style	Save As Default Restore Default Style Save Style	•

• You can access the various symbol layer types by selecting the *Simple marker* layer in the *Symbol layers* panel, then click the *Symbol layer type* dropdown:

Single Symbol 🛟	Symbol layer type Colors	e Fill	Ellipse marker Font marker ✓ Simple marker SVG marker Vector Field mark	¢
	Size	2.00000		* Millimeter *
Symbol layers	Outline width	0.00		Millimeter +
Simple marker	Angle	0.00 °		\$
	Offset X,Y	0.00000	0.00000	Millimeter 🛊
	• • •	Data defin	ed properties △ ☆ ☆ û	I > Þ

• Investigate the various options available to you, and choose a symbol with styling you think is appropriate.

• If in doubt, use a round *Simple marker* with a white border and pale green fill, with a *size* of 3, 00 and an *Outline width* of 0.5.

Line Symbol Layer Types

To see the various options available for line data:

• Change the symbol layer type for the *roads* layer's topmost symbol layer to *Marker line*:

ymbol layer type Marker placement		ker line ble line	\$	
 with in on even 	nterval ery verte	3.00 x	•	Millimeter 🛊
on firs	t vertex o t vertex o ntral poin	only		
🗹 Rotate n	narker			
Line offset	0.0000)	(Millimeter +
			0	· · ·

• Select the *Simple marker* layer in the *Symbol layers* panel. Change the symbol properties to match this dialog:

000	🕺 Laye	r Properties - roads Style
🔀 General	▼ Layer rendering	
	Layer transparency	
(abc Labels	Layer blending mode Normal	I Feature blending mode Normal
Fields		
🞸 Rendering	E Single Symbol	
두 Display		Symbol layer type Simple marker \$
Sections		Colors Fill Border
•┥ Joins		
Diagrams	Symbol layers	Size 0.50000 (‡) Millimeter ‡
🧃 Metadata	▼ ···+ Line	Outline style Solid Line +
	🔻 \cdots Marker line	Outline width 0.00 (‡ Millimeter ‡
	▼ · Marker	Angle 0.00 °
	· Simple marker	Offset X,Y 0.00000 (‡) 0.00000 (‡) Millimeter ‡
	— Simple line	Anchor point HCenter \$ VCenter \$
		Data defined properties
	Load Style Sa	ave As Default Restore Default Style Save Style 🔻
	Help Apply	Cancel OK

• Change the interval to 1,00:

000		🕺 Layer P	roperties – roads	Style		
🔀 General	▼ Layer rendering					
	Layer transparency	0				. 0 .
(abc Labels	Layer blending mode	Normal	\$	Feature blending mode	Normal	\$
Fields						
🎸 Rendering	Let Single Symbol 🛟					
Display Actions			Symbol layer type Marker placeme		ker line	\$
• Joins			• with interva		(1) Millimete	er ‡
Diagrams	Symbol layers		 on every ver on last verte 			
🥡 Metadata	▼ Line		 on first verte 	ex only		
	🔻 ┉ Marker line		O on central p	bint		
	 Marker Simple marker Simple line 		✓ Rotate marker Line offset 0.000	000 Data defined prop	A Millime	eter 🛟
	Ecad Style	Save	As Default	Restore Default Style	Save S Cancel	tyle V OK
	Help Apply	_	_	_	Cancel	ОК

• Ensure that the symbol levels are correct (via the *Advanced -> Symbol levels* dialog we used earlier) before applying the style.

Once you have applied the style, take a look at its results on the map. As you can see, these symbols change direction along with the road but don't always bend along with it. This is useful for some purposes, but not for others. If you prefer, you can change the symbol layer in question back to the way it was before.

Polygon Symbol Layer Types

To see the various options available for polygon data:

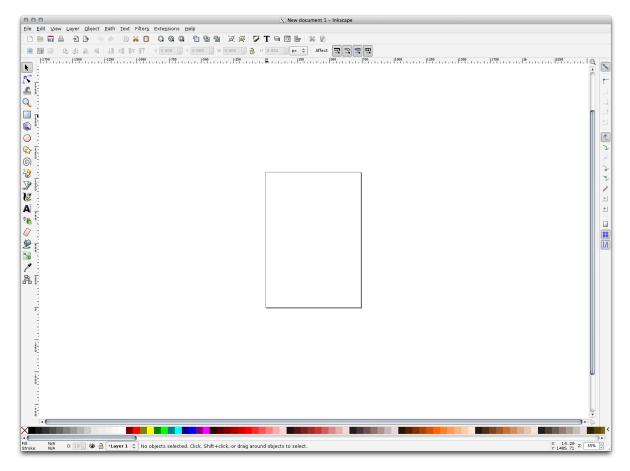
- Change the symbol layer type for the *water* layer, as before for the other layers.
- Investigate what the different options on the list can do.
- Choose one of them that you find suitable.
- If in doubt, use the *Point pattern fill* with the following options:

000		Layer Properties – water Style
🔀 General	Layer rendering	
	Layer transparency	
(abc Labels	Layer blending mode	ormal
Fields		
🞸 Rendering	E Single Symbol 🗘	
두 Display		Symbol layer type Simple marker ‡
Actions	•	Colors Fill Border
• Joins		
🕅 Diagrams	Symbol layers	Size 0.50000 (‡) Millimeter ‡
i Metadata	▼ Fill	Outline style Solid Line +
	▼ Point pattern fill	Outline width 0.00 (1) Millimeter 1)
	▼ · Marker	Angle 0.00 °
	Simple marker	Offset X,Y 0.00000 (‡) 0.00000 (‡) Millimeter ‡
		Anchor point HCenter \$ VCenter \$
		Data defined properties
		2
	Load Style	Save As Default Restore Default Style Save Style V
	Help Apply	Cancel

000	🕺 Layer	Properties – water Style		
🔀 General	▼ Layer rendering			
	Layer transparency			0
(abc Labels	Layer blending mode Normal	÷ Feature l	blending mode	Normal 💠
Fields				
≼ Rendering	E Single Symbol			
🧭 Display		Symbol layer type	Point pat	ttern fill 💠
Sections		Horizontal distance	1.00000	Millimeter \$
• Joins		Vertical distance	1.00000	(*) Millimeter (*)
Diagrams	Symbol layers	Horizontal displacement	0.00000	(‡) Millimeter (‡)
🧃 Metadata	▼ Fill	Vertical displacement	0.00000	() Millimeter ()
	 Point pattern fill 		Data defined properties	
	Marker Simple marker		vata defined properties	5
	Load Style Sav	e As Default Rest	tore Default Style	Save Style 🔻
	Help Apply			Cancel OK

- Add a new symbol layer with a normal *Simple fill*.
- Make it the same light blue with a darker blue border.
- Move it underneath the point pattern symbol layer with the *Move down* button:

000	🏒 Laye	er Properties – wate	er Style			
🔀 General	▼ Layer rendering					
😻 Style	Layer transparency				0	,
(abc Labels	Layer blending mode Norma		Feature blending mode	Normal		÷
Fields						
🞸 Rendering	E Single Symbol					
두 Display		Symbol layer ty	vpe Sin	ple fill		\$
Sections		Colors		rder		
• Joins		Fill style	Solid			\$
💹 Diagrams	Symbol layers	Border style	Solid Line			\$
🥡 Metadata	▼ Fill	Border width	0.26000		Millimeter	\$
	Simple fill	Offset X,Y	0.00000	000	Millimeter	\$
	Point pattern fill		Data defined properties			
	Load Style	ave As Default	Restore Default Styl	2	Save Style	•

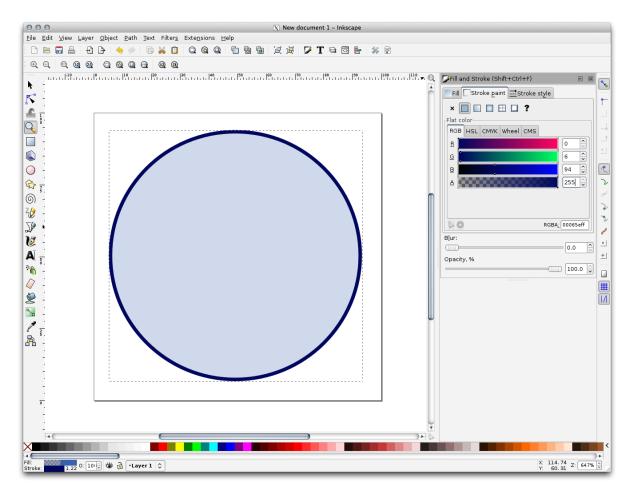

As a result, you have a textured symbol for the water layer, with the added benefit that you can change the size, shape and distance of the individual dots that make up the texture.

3.2.12 Follow Along: Creating a Custom SVG Fill

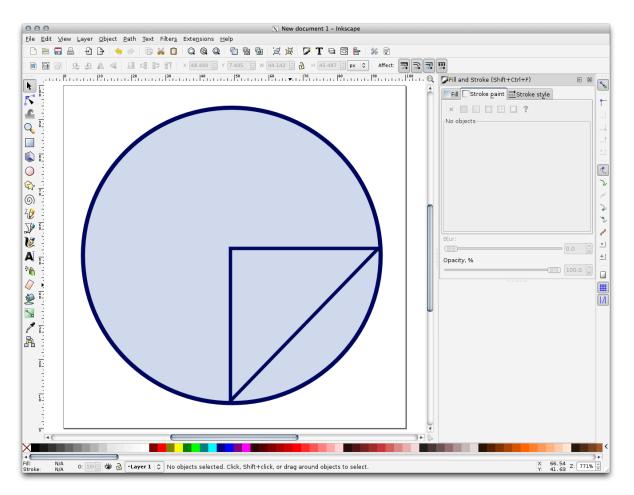
Nota: To do this exercise, you will need to have the free vector editing software Inkscape installed.

• Start the Inkscape program.

You will see the following interface:


You should find this familiar if you have used other vector image editing programs, like Corel.

First, we'll change the canvas to a size appropriate for a small texture.


- Click on the menu item $File \rightarrow Document Properties$. This will give you the Document Properties dialog.
- Change the *Units* to *px*.
- Change the *Width* and *Height* to 100.
- Close the dialog when you are done.
- Click on the menu item $View \rightarrow Zoom \rightarrow Page$ to see the page you are working with.
- Select the *Circle* tool:

000	📉 New document 1 – Inkscape	
<u>Eile E</u> dit ⊻iew Layer <u>O</u> bject <u>P</u> ath <u>T</u> e×t F		
D 🖻 🖬 🖶 🗗 🕒 🔶 🖉 🕷		
	<u>■</u> × 0.000 = Y 0.001 = 3 → H 0.01 = p× 0 Affect = 3 → 3 → 3	
10 -20 -10	. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	120
Normalization Normalization N		
		<u>†</u>
		•
ō l		2
		$\overline{\mathcal{V}}$
		#
		2
		72
24		0 1
V		· ·
		±1
*		
De 10		
S -		
1		
A =		
-		U
8-		
10		
, boot boot		
		Ĭ
	· · · · · · · · · · · · · · · · · · ·	
).
Fill: N/A O: 10 😳 🕸 🔂 •Layer 1 🗘	:] Shift: click to toggle select; drag for rubberband selection; Alt: click to select under; drag to move selected or select by touch $\frac{x_i}{r_i}$	-28.31 Z: 943% ^

- Click and drag on the page to draw an ellipse. To make the ellipse turn into a circle, hold the Ctrl button while you're drawing it.
- Right-click on the circle you just created and open its *Fill and Stroke* options. You can modify its rendering, such as:
 - Change the Fill color to a somehow pale grey-blue,
 - Assign to the border a darker color in Stroke paint tab,
 - And reduce the border thickness under *Stroke style* tab.

- Draw a line using the *Pencil* tool:
 - Click once to start the line. Hold ctrl to make it snap to increments of 15 degrees.
 - Move the pointer horizontally and place a point with a simple click.
 - Click and snap to the vertex of the line and trace a vertical line, ended by a simple click.
 - Now join the two end vertices.
 - Change the color and width of the triangle symbol to match the circle's stroke and move it around as necessary, so that you end up with a symbol like this one:

• If the symbol you get satisfies you, then save it as *landuse_symbol* under the directory that the course is in, under exercise_data/symbols, as SVG file.

In QGIS:

- Open the Layer Properties for the landuse layer.
- In the *Style* tab, change the symbol structure by selecting SVG Fill as *Symbol Layer Type* option, as shown below.
- Click the Browse button to select your SVG image. It's added to the symbol tree and you can now customize its different characteristics (colors, angle, effects, units...).

000		🕺 Layer Properties – landuse Style	
🔀 General	Layer rendering		
😻 Style	Layer transparency	0	
abc Labels	Layer blending mode	Normal Feature blending mode Normal	÷
Fields			
🎸 Rendering	🚡 Single Symbol 🛟		
두 Display		Symbol layer type SVG fill	\$
Sctions			• •
┥ Joins			¢
🕅 Diagrams	Symbol layers	Colors Fill Border	U
 <i>i</i> Metadata <i>v</i> □ Fill <i>v</i> □ SVC fill 	▼ □ Fill		
	🔻 🗌 SVG fill		÷
	▼ — Line	Data defined properties SVG Groups SVG Symbols	
	- Simple line	App Symbols accommoda amenity arrows backgrounds components crosses emergency entertainment food g psicons health landmark money religion po/source/docs/training_manual/exercise_data/symbols/orchard_sym	
	Load Style	Save As Default Restore Default Style Save Style	
	Help Apply	Cancel)K

You may also wish to update the svg layer's border (see below):

000		🕺 Layer Properties – landuse Style	
🔀 General	Layer rendering		
😻 Style	Layer transparency	0	. 0
abe Labels	Layer blending mode	Normal Feature blending mode Normal	\$
Fields			
🎸 Rendering	Let Single Symbol 🕴		
🗭 Display		Symbol layer type Simple line	\$
Sctions		Color	
┥ Joins		Pen width 0.26000	ter ‡
阿 Diagrams	Symbol layers	Offset 0.00000 () Millime	
🧃 Metadata	▼ □ Fill		
	▼ SVG fill	Pen style Solid Line	÷
	🔻 — Line	Cap style Square	* *
	Simple line	Use custom dash pattern Change	
		Dash pattern unit Millimeter	\$
		Draw line only inside polygon	•
		Data defined properties	
	Load Style	Save As Default Restore Default Style Save S	tyle 🔻

Once you validate the dialog, features in landuse layer should now be covered by a set of symbols, showing a texture like the one on the following map. If textures are not visible, you may need to zoom in the map canvas or set in the layer properties a bigger *Texture width*.

3.2.13 In Conclusion

Changing the symbology for the different layers has transformed a collection of vector files into a legible map. Not only can you see what's happening, it's even nice to look at!

3.2.14 Further Reading

Examples of Beautiful Maps

3.2.15 What's Next?

Changing symbols for whole layers is useful, but the information contained within each layer is not yet available to someone reading these maps. What are the streets called? Which administrative regions do certain areas belong to? What are the relative surface areas of the farms? All of this information is still hidden. The next lesson will explain how to represent this data on your map.

```
Nota: Did you remember to save your map recently?
```

Module: Classifying Vector Data

Classifying vector data allows you to assign different symbols to features (different objects in the same layer), depending on their attributes. This allows someone who uses the map to easily see the attributes of various features.

4.1 Lesson: Attribute Data

Up to now, none of the changes we have made to the map have been influenced by the objects that are being shown. In other words, all the land use areas look alike, and all the roads look alike. When looking at the map, the viewers don't know anything about the roads they are seeing; only that there is a road of a certain shape in a certain area.

But the whole strength of GIS is that all the objects that are visible on the map also have attributes. Maps in a GIS aren't just pictures. They represent not only objects in locations, but also information about those objects.

The goal of this lesson: To explore the attribute data of an object and understand what the various data can be useful for.

Open the attribute table for the *places* layer (refer back to the section "*Working with Vector Data*" if necessary). Which field would be the most useful to represent in label form, and why?

Check your results

4.1.2 In Conclusion

You now know how to use the attribute table to see what is actually in the data you're using. Any dataset will only be useful to you if it has the attributes that you care about. If you know which attributes you need, you can quickly decide if you're able to use a given dataset, or if you need to look for another one that has the required attribute data.

4.1.3 What's Next?

Different attributes are useful for different purposes. Some of them can be represented directly as text for the map user to see. You'll learn how to do this in the next lesson.

4.2 Lesson: The Label Tool

Labels can be added to a map to show any information about an object. Any vector layer can have labels associated with it. These labels rely on the attribute data of a layer for their content.

Nota: The *Layer Properties* dialog does have a *Labels* tab, which now offers the same functionality, but for this example we'll use the *Label tool*, accessed via a toolbar button.

The goal for this lesson: To apply useful and good-looking labels to a layer.

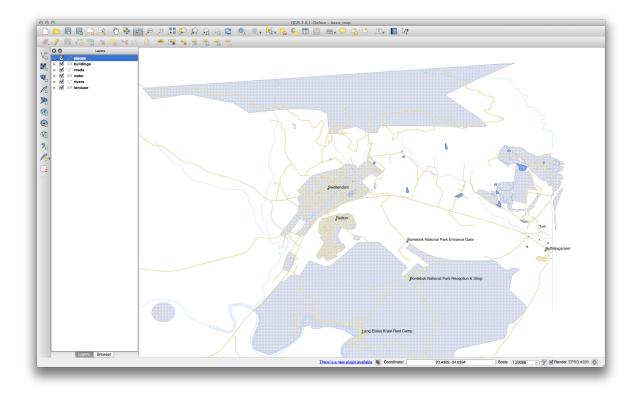
4.2.1 Follow Along: Using Labels

Before being able to access the Label tool, you will need to ensure that it has been activated.

- Go to the menu item $View \rightarrow Toolbars$.
- Ensure that the *Label* item has a check mark next to it. If it doesn't, click on the *Label* item, and it will be activated.
- Click on the *places* layer in the *Layers list*, so that it is highlighted.
- Click on the following toolbar button:

This gives you the Layer labeling settings dialog.

• Check the box next to Label this layer with


You'll need to choose which field in the attributes will be used for the labels. In the previous lesson, you decided that the NAME field was the most suitable one for this purpose.

• Select *name* from the list:

 Text/Buffer samp Lorem Ipsum 			
orem Ipsum		(
abc Text	Text style	~	
^{+ab} _{< c} Formatting abc Buffer	Font	Helvetica	÷) (=,
📛 Background	Style		÷ 🗐
 Shadow Placement Rendering 	Size	U E S E	
	Color	points	
	Transparency	0	0%
	Type case	No change	÷) 🖶
	Spacing	letter 0.0000	
		word 0.0000	

• Click OK.

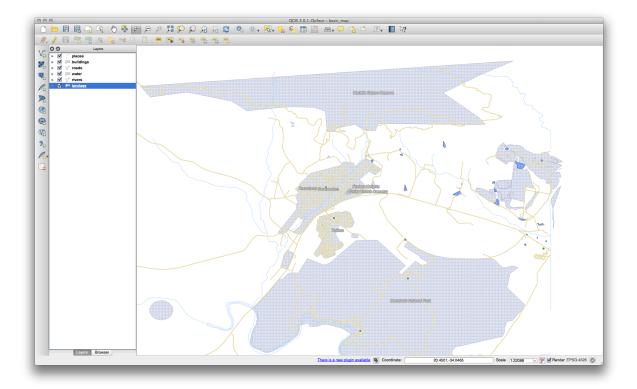
The map should now have labels like this:

4.2.2 Follow Along: Changing Label Options

Depending on the styles you chose for your map in earlier lessons, you'll might find that the labels are not appropriately formatted and either overlap or are too far away from their point markers.

- Open the Label tool again by clicking on its button as before.
- Make sure *Text* is selected in the left-hand options list, then update the text formatting options to match those shown here:

 Text/Buffer samp Lorem (psum) 			(
orem Ipsum		<u>ب</u>	
abc Text	Text style	n	
+ab < c Formatting abc Buffer	Font	Helvetica	÷) (=,
Background	Style		÷ 🖶
 Shadow Placement Rendering 	Size	U € € 13.0000	
	Color		; €, €,
	Transparency	0	0% 🗘 🖶
	Type case	No change	÷ (=,
	Spacing	letter 0.0000	
		word 0.0000	


That's the font problem solved! Now let's look at the problem of the labels overlapping the points, but before we do that, let's take a look at the *Buffer* option.

- Open the Label tool dialog.
- Select *Buffer* from the left-hand options list.
- Select the checkbox next to *Draw text buffer*, then choose options to match those shown here:

Lorem (psum			
Lorem Ipsum		•	
abc Text *abc Formatting Cbo Buffer ● Background ● Shadow * Placement ✓ Rendering	Text buffer ✓ Draw text buffer ← Size 1.0000 mm Color ✓ Color buffer's fil Transparency Pen join style Blend mode Normal	I	

• Click Apply.

You'll see that this adds a colored buffer or border to the place labels, making them easier to pick out on the map:

Now we can address the positioning of the labels in relation to their point markers.

- In the *Label tool* dialog, go to the *Placement* tab.
- Change the value of *Distance* to 2mm and make sure that *Around point* is selected:

Lorem (psum	
Lorem Ipsum	(a)
abc Text ^{*ab} Formatting abe Buffer ● Background ● Shadow • Placement ✓ Rendering	Placement • Around point ○ Offset from point Distance 2.0000 mm

• Click Apply.

You'll see that the labels are no longer overlapping their point markers.

4.2.3 Follow Along: Using Labels Instead of Layer Symbology

In many cases, the location of a point doesn't need to be very specific. For example, most of the points in the *places* layer refer to entire towns or suburbs, and the specific point associated with such features is not that specific on a large scale. In fact, giving a point that is too specific is often confusing for someone reading a map.

To name an example: on a map of the world, the point given for the European Union may be somewhere in Poland, for instance. To someone reading the map, seeing a point labeled *European Union* in Poland, it may seem that the capital of the European Union is therefore in Poland.

So, to prevent this kind of misunderstanding, it's often useful to deactivate the point symbols and replace them completely with labels.

In QGIS, you can do this by changing the position of the labels to be rendered directly over the points they refer to.

- Open the Layer labeling settings dialog for the places layer.
- Select the *Placement* option from the options list.
- Click on the Offset from point button.

This will reveal the Quadrant options	which you can use to	set the position	of the label i	in relation to	the point
marker. In this case, we want the label	to be centered on the	point, so choose t	the center qua	adrant:	

000	🚀 Layer Properties – places Labels
🔀 General	✓ Label this layer with name
Style	▼ Text/Buffer sample
(abc Labels	Lorem Ipsum
Fields	
🗭 Display	Lorem Ipsum
Sections	
Joins	abc Text *abc Placement
Diagrams	Buffer Offset from point
🥡 Metadata	Background Shadow Quadrant and and and and a
	Placement
	Rendering (abg abg abg
	Offset X,Y 0.0000
	Rotation 0.00°
	▼ Data defined
	Coordinate X (E, Y (E)
	Alignment horizontal $\langle \equiv_{\psi} \rangle$ vertical $\langle \equiv_{\psi} \rangle$
	Rotation 🖳 🗹 Preserve data rotation values
	▼ Priority
	Low , , , , High
	Load Style Save As Default Restore Default Style Save Style 🔻
	Help Apply Cancel OK

• Hide the point symbols by editing the layer style as usual, and setting the size of the *Ellipse marker* width and height to 0:

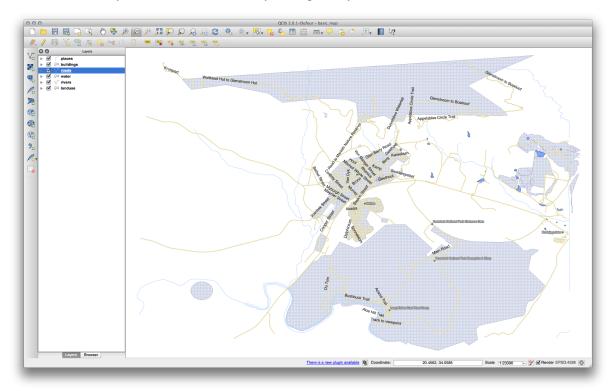
0 0		er Properties – place	25			
💦 General	Style					
Style	 Layer rendering 					
abc Labels	Layer transparency				0	
	Layer blending mode Normal	÷	Feature blending mo	de Norn	nal	
Fields	Layer biending mode	T	T catale biending mo			
Display						
Actions	Single Symbol					
Joins		Symbol layer type	•	Ellipse marker		÷
Diagrams		Colors	Fill	Border		
Metadata		Symbol width	0.000000		Millimeter	
Mondula	Symbol layers		0.00000			÷
	Marker	Outline width	0.000000		Millimeter	÷
	Ellipse marker	Rotation	0.00			÷
		Symbol height	0.000000		Millimeter	¢
		Offset X,Y				
		Uliset A, f	0.00000	0.00000	Millimeter	\$
			Data define	d properties		
	 (*) (*)	0 🗆 +	A			
			Load Style		Save Style	
Restore Default	t Style Save As Default				Cancel	OK

• Click *OK* and you'll see this result:

000		🕺 Layer	Properties – places	Style			
🔆 General	 Layer rendering 						
😻 Style	Layer transparency	\bigcirc					0
abc Labels	Layer blending mode	Normal	* *	Feature blending r	node	Normal	;
Fields							
🏓 Display	🔁 Single Symbol 🛟						
Sections			Symbol layer type		Ellipse ma	rkor	•
┥ Joins			Symbol layer type		Empse ma		÷
💽 Diagrams			Colors	Fill	Border		
🥡 Metadata	Symbol layers		Symbol width	0.000000		Millimeter	÷
	▼ Marker		Outline style	Solid Line			\$
	Ellipse marker		Outline width	0.000000		A Millimeter	\$
			Rotation	0.00			
	~		Symbol height	0.000000		Millimeter	\$
			Offset X,Y	0.00000	0.00000	Millimeter	\$
			Anchor point	HCenter	÷ V	Center	\$
				Data define	d properties.		
			0 = + ,	۵			
	Load Style	Sav	e As Default	Restore Defau	lit Style	Save Sty	le

If you were to zoom out on the map, you would see that some of the labels disappear at larger scales to avoid overlapping. Sometimes this is what you want when dealing with datasets that have many points, but at other times you will lose useful information this way. There is another possibility for handling cases like this, which we'll cover in a later exercise in this lesson.

• Return the label and symbol settings to have a point marker and a label offset of 2.00mm. You may like to adjust the styling of the point marker or labels at this stage.

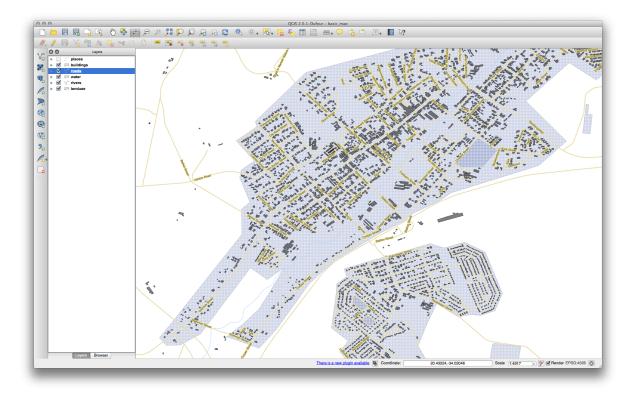

Check your results

- Set the map to the scale 1:100000. You can do this by typing it into the Scale box in the Status Bar.
- Modify your labels to be suitable for viewing at this scale.

Check your results

4.2.5 Follow Along: Labeling Lines

Now that you know how labeling works, there's an additional problem. Points and polygons are easy to label, but what about lines? If you label them the same way as the points, your results would look like this:


We will now reformat the *roads* layer labels so that they are easy to understand.

- Hide the *Places* layer so that it doesn't distract you.
- Activate labels for the *streets* layer as before.
- Set the font *Size* to 10 so that you can see more labels.
- Zoom in on the Swellendam town area.
- In the *Label tool* dialog's *Advanced* tab, choose the following settings:

Lorem Ipsum		1
orem Ipsum	()	_
abc Text ^{*ab} c Formatting abc Buffer ● Background ● Shadow • Placement ✓ Rendering	Placement • Parallel Curved Horizontal Position Above line On line Below line Line orientation dependent position Distance 0.0000 mm ▼ Data defined Coordinate X (, Y (, Y (, V	

You'll probably find that the text styling has used default values and the labels are consequently very hard to read. Set the label text format to have a dark-grey or black Color and a light-yellow buffer.

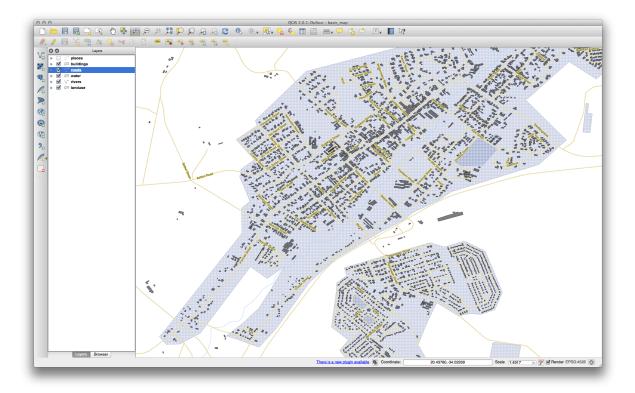
The map will look somewhat like this, depending on scale:

You'll see that some of the road names appear more than once and that's not always necessary. To prevent this from happening:

• In the *Label labelling settings* dialog, choose the *Rendering* option and select the *Merge connected lines to avoid duplicate labels*:

Lorem Ipsum		
Lorem Ipsum	(
abc Text ^{+ab} Formatting abe Buffer ● Background ● Shadow ◆ Placement ✓ Rendering	Rendering Show upside-down labels ● never when rotation defined ● never when rotation defined ● never when rotation defined ● always ▼ Feature options □ Label every part of multi-part features ♥ Merge connected lines to avoid duplicate labels □ Limit number of features to be labeled to 2000 Suppress labeling of features smaller than 0.00 mm ♥ Discourage labels from covering features	(*) (*)

• Click OK


Another useful function is to prevent labels being drawn for features too short to be of notice.

• In the same *Rendering* panel, set the value of *Suppress labeling of features smaller than* ... to 5mm and note the results when you click *Apply*.

Try out different *Placement* settings as well. As we've seen before, the *horizontal* option is not a good idea in this case, so let's try the *curved* option instead.

• Select the Curved option in the Placement panel of the Layer labeling settings dialog.

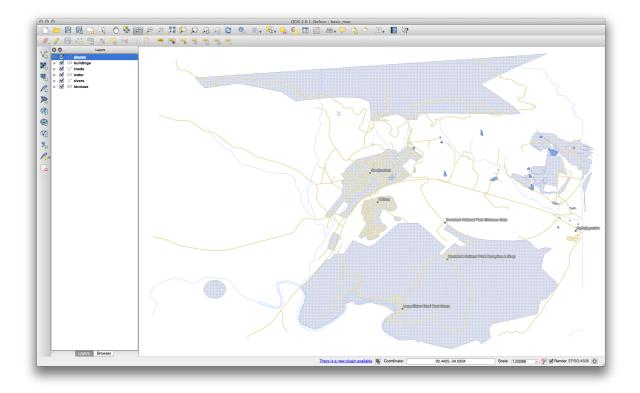
Here's the result:

As you can see, this hides a lot of the labels that were previously visible, because of the difficulty of making some of them follow twisting street lines and still be legible. You can decide which of these options to use, depending on what you think seems more useful or what looks better.

4.2.6 *Follow Along: Data Defined Settings*

- Deactivate labeling for the *Streets* layer.
- Reactivate labeling for the *Places* layer.
- Open the attribute table for *Places* via the button.

It has one fields which is of interest to us now: place which defines the type of urban area for each object. We can use this data to influence the label styles.


- Navigate to the *Text* panel in the *places Labels* panel.
- In the *Italic* dropdown, select Edit... to open the *Expression string builder*:

Search Conditionals Math Conversions Date and Time String Color Geometry Record Fields and Values	Selected Function Help Operators Group This group contains operators e.g + - *
Operators = + - / * ^ II (Expression)
Output preview:	

In the text input, type: "place" = 'town' and click Ok twice:

Search	Selected Function Help
Date and Time	Field
 String Color Geometry Record Fields and Values 	Double click to add field name to expression string. Right-Click on field name to open context menu sample value loading options.
osm_id	Field Values
name barrier highway ref address	'hamlet' 'locality' 'suburb' 'town'
is_in	
place man_made other_tags	Load all unique values Load 10 sample values
Operators	
= + - / * ^	II ()
Expression	
"place" = 'town'	
Output preview: 1	
	Cancel OK

Notice its effects:

4.2.7 *P* Try Yourself Using Data Defined Settings

Nota: We're jumping ahead a bit here to demonstrate some advanced labeling settings. At the advanced level, it's assumed that you'll know what the following means. If you don't, feel free to leave out this section and come back later when you've covered the requisite materials.

- Open the Attribute Table for *places*.
- Enter edit mode by clicking this button:
- Add a new column:

• Configure it like this:

Name	FONT_SIZE
Comment	
Туре	Whole number (integer)
147.00	integer
Width	2
Precision	
	Cancel OK

• Use this to set custom font sizes for each different type of place (i.e., each key in the PLACE field).

Check your results

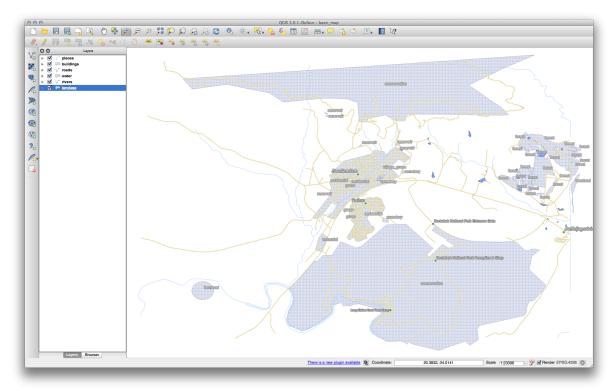
We can't cover every option in this course, but be aware that the *Label tool* has many other useful functions. You can set scale-based rendering, alter the rendering priority for labels in a layer, and set every label option using layer attributes. You can even set the rotation, XY position, and other properties of a label (if you have attribute fields allocated for the purpose), then edit these properties using the tools adjacent to the main *Label tool*:

(abc abc abc abc

(These tools will be active if the required attribute fields exist and you are in edit mode.)

Feel free to explore more possibilities of the labeling system.

4.2.9 In Conclusion


You've learned how to use layer attributes to create dynamic labels. This can make your map a lot more informative and stylish!

4.2.10 What's Next?

Now that you know how attributes can make a visual difference for your map, how about using them to change the symbology of objects themselves? That's the topic for the next lesson!

4.3 Lesson: Classification

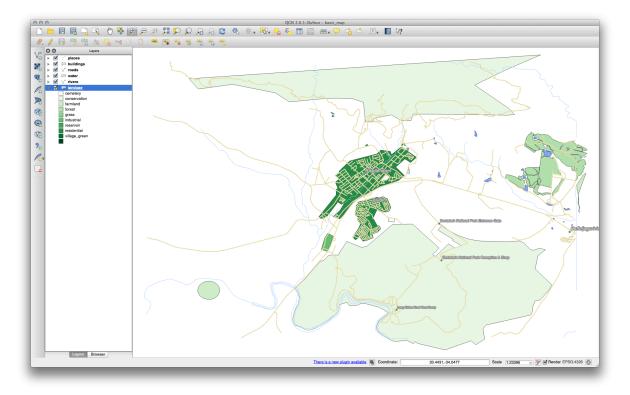
Labels are a good way to communicate information such as the names of individual places, but they can't be used for everything. For example, let's say that someone wants to know what each *landuse* area is used for. Using labels, you'd get this:

This makes the map's labeling difficult to read and even overwhelming if there are numerous different landuse areas on the map.

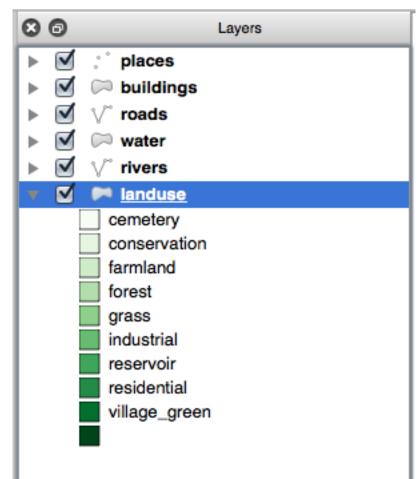
The goal for this lesson: To learn how to classify vector data effectively.

4.3.1 **Follow Along: Classifying Nominal Data**

- Open the Layer Properties dialog for the landuse layer.
- Go to the Style tab.
- Click on the dropdown that says *Single Symbol* and change it to *Categorized*:


Ceneral Layer rendering Isabels Layer blending mode Normal Peature blending mode Peature blending Peature blending Peatur	000	🕺 Layer Properties – landuse Style
Calabels Layer blending mode Normal Fields Image: Color ramp Rendering Column Image: Color ramp Random colors Image: Color ramp <	🔀 General	▼ Layer rendering
Fields Vendering Column Column Symbol Change Color ramp Random colors Symbol Value Label Classify Add Delete Diagrams Classify Add Delete Diagrams Classify Add Delete Diagrams Classify Add Delete Diagrams Classify Add Delete Delete Diagrams Classify Add Delete Delete Delete Diagrams Classify Add Delete D		Layer transparency
Rendering Display Column Actions Symbol Change Color ramp Random colors Symbol Value Lead Style Lead Style Classify Advanced ▼ Lead Style Save As Default Restore Default Style Save As Default Restore Default Style	(abc Labels	Layer blending mode Normal + Feature blending mode +
Display Column Actions Symbol Change Color ramp Random colors \$ymbol Netadata Symbol Value Load Style Load Style Classify Actions Sumbol Column Color ramp Random colors \$ymbol Change Color ramp Random colors Color ramp Restore Default Style Save As Default Restore Default Style	Fields	
Actions Joins Diagrams Image:	🎸 Rendering	Categorized 🛟
Symbol Change Color ramp Random colors 2 Invert	🗭 Display	Column E
Symbol ▼ Value Label Image: Diagrams Symbol ▼ Value Label Image: Diagrams Image: Diagrams Image: Diagram Image:	Sections	Symbol Change Color ramp Random colors
Classify Add Delete all Load Style Save As Default Restore Default Style Save Style ▼	• Joins	
Classify Add Delete all Join Advanced v Load Style Save As Default Restore Default Style Save Style v	🕅 Diagrams	Symbol Value Laber
Load Style Save As Default Restore Default Style Save Style V	🥡 Metadata	
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		·
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
Load Style Save As Default Restore Default Style Save Style V		
		Classify Add Delete all Join Advanced
		Load Style Save As Default Restore Default Style Save Style 🔻
Help Apply Cancel OK		Help Apply Cancel OK

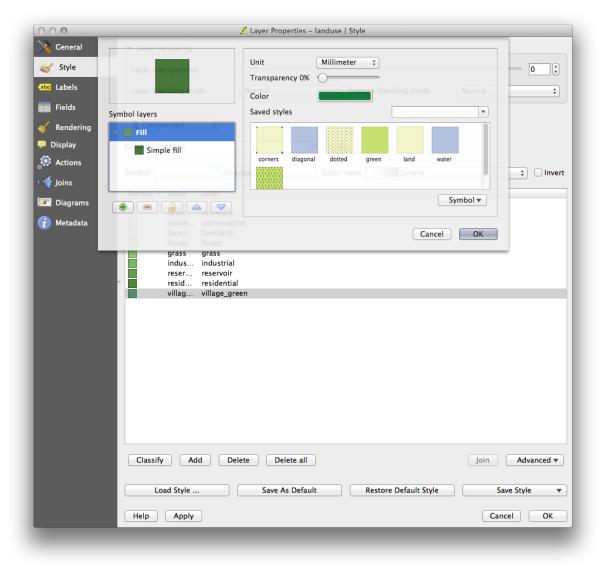
- In the new panel, change the *Column* to *landuse* and the *Color ramp* to *Greens*.
- Click the button labeled *Classify*:


000	🛒 Layer Properties – landuse Style
🔀 General	▼ Layer rendering
😻 Style	Layer transparency
(abc Labels	Layer blending mode Normal + Feature blending mode +
Fields	
≼ Rendering	Categorized
🗭 Display	Column landuse 💌 E
Actions	Symbol Change Color ramp Greens + Invert
• ┥ Joins	Symbol v Value Label
Diagrams	ceme cemetery
i Metadata	conse conservation farml farmland forest forest grass grass indus industrial reser reservoir resid residential villag village_green
	Classify Add Delete all Join Advanced
	Load Style Save As Default Restore Default Style Save Style V
	Help Apply Cancel OK

• Click OK.

You'll see something like this:

• Click the arrow (or plus sign) next to *landuse* in the *Layer list*, you'll see the categories explained:



Now our landuse polygons are appropriately colored and are classified so that areas with the same land use are the same color. You may wish to remove the black border from the *landuse* layer:

- Open Layer Properties, go to the Style tab and select Symbol.
- Change the symbol by removing the border from the *Simple Fill* layer and click *OK*.

You'll see that the landuse polygon outlines have been removed, leaving just our new fill colours for each categorisation.

• If you wish to, you can change the fill color for each landuse area by double-clicking the relevant color block:

Notice that there is one category that's empty:

000	🕺 Layer Properties – landuse Style
🔀 General	▼ Layer rendering
≼ Style	Layer transparency 0
(abc Labels	Layer blending mode Normal + Feature blending mode +
Fields	
🎸 Rendering	Categorized +
🗭 Display	Column landuse v E
Sctions	Symbol Change Color ramp Greens ‡ Invert
• Joins	
💹 Diagrams	Symbol v Value Label
7 Metadata	ceme cemetery conse conservation farml farmland forest forest grass grass indus industrial reser reservoir resid residential villag village_green
	Classify Add Delete Delete all Join Advanced v
	Load Style Save As Default Restore Default Style Save Style 🔻
	Help Apply Cancel OK

This empty category is used to color any objects which do not have a landuse value defined or which have a *NULL* value. It is important to keep this empty category so that areas with a *NULL* value are still represented on the map. You may like to change the color to more obviously represent a blank or *NULL* value.

Remember to save your map now so that you don't lose all your hard-earned changes!

If you're only following the basic-level content, use the knowledge you gained above to classify the *buildings* layer. Set the categorisation against the *building* column and use the *Spectral* color ramp.

Nota: Remember to zoom into an urban area to see the results.

4.3.3 **C** Follow Along: Ratio Classification

There are four types of classification: nominal, ordinal, interval and ratio.

In nominal classification, the categories that objects are classified into are name-based; they have no order. For example: town names, district codes, etc.

In ordinal classification, the categories are arranged in a certain order. For example, world cities are given a rank depending on their importance for world trade, travel, culture, etc.

In interval classification, the numbers are on a scale with positive, negative and zero values. For example: height above/below sea level, temperature above/below freezing (0 degrees Celsius), etc.

In ratio classification, the numbers are on a scale with only positive and zero values. For example: temperature above absolute zero (0 degrees Kelvin), distance from a point, the average amount of traffic on a given street per month, etc.

In the example above, we used nominal classification to assign each farm to the town that it is administered by. Now we will use ratio classification to classify the farms by area.

• Save your landuse symbology (if you want to keep it) by clicking on the *Save Style* ... button in the *Style* dialog.

We're going to reclassify the layer, so existing classes will be lost if not saved.

- Close the Style dialog.
- Open the Attributes Table for the *landuse* layer.

We want to classify the landuse areas by size, but there's a problem: they don't have a size field, so we'll have to make one.

- Enter edit mode by clicking this button:
- Add a new column with this button:
- Set up the dialog that appears, like this:

Name	AREA
Comment	
Туре	Decimal number (double) 🛔
Width	5
Precision	5
	Cancel OK

• Click OK.

The new field will be added (at the far right of the table; you may need to scroll horizontally to see it). However, at the moment it is not populated, it just has a lot of NULL values.

To solve this problem, we'll need to calculate the areas.

• Open the field calculator:

You'll get this dialog:

Only update sele		O Hadata aviating field
Create a new f Output field name	eia	Update existing field
Output field type	Binary object (BLOB)	PKUID ÷
Output field width		•
output liola liiduit		
Function List		
Search		Selected Function Help
Operators		•
 Conditionals Math 		
 Math Conversions 		
Date and Time		
 String Color 		
Geometry		
Record		
Fields and Value	es	
_		
Operators		
= + -	/ * ^ ()	
Expression		
Output preview:		

• Change the values at the top of the dialog to look like this:

000	F	Field calcul	ator	
Only update sele	ected features			
Create a new f	ield		Update existing field	
Output field name				
Output field type	Binary object (BLOB)	÷ (AREA	\$
Output field width	0 Precision 0			

• In the Function List, select Geometry \rightarrow \$area:

		✓ Update existing field
Output field name		
	ect (BLOB)	AREA
Output field width 0	Precision 0	
Function List		Selected Function Help
Search		-
 Conversions Date and Time 		\$area function
String		Returns the area size of the current feature.
 Color Geometry 		Syntax
xat		Sarea
yat \$area	_	Ammunanta
\$length		Arguments
\$perimeter \$x		None
\$y		
Operators		
= + - / * /	N II ()	
Expression		
Dutput preview:		

- Double-click on it so that it appears in the *Expression* field.
- Click OK.

Now your AREA field is populated with values (you may need to click the column header to refresh the data). Save the edits and click *Ok*.

Nota: These areas are in degrees. Later, we will compute them in square meters.

- Open the Layer properties dialog's Style tab.
- Change the classification style from *Categorized* to *Graduated*.
- Change the *Column* to *AREA*:
- Under Color ramp, choose the option New color ramp... to get this dialog:

000	🕺 Layer Properties - Ianduse Style
🔀 General	▼ Layer rendering
😻 Style	Layer transparency 0 🗘
(abc Labels	Layer blending mode Normal + Feature blending mode +
Fields	
🎸 Rendering	Craduated 🗘
🧭 Display	Column AREA T E
Actions	
• Joins	Symbol BrGG Change Classes 5
Diagrams	Color ramp BuPu BuPu Mode Equal Interval +
Metadata	Symbol v V: Greens
	Greys OrRd
	Oranges
	PRGn PIYG
	PuBu
	PuBuGn
	PuOr
	PuRd
	Purples
	RdBu RdCy
	RdPu
	RdYIBu
	RdYIGn
	Reds
	Spectral
	YIGn YIGnBu
	YIOrBr
	VIOrBd
	Classify Random colors Delete all Advanced V
	New color ramp
	Load Style Save As Default Restore Default Style Save Style v
	Help Apply Cancel OK

• Choose *Gradient* (if it's not selected already) and click *OK*. You'll see this:

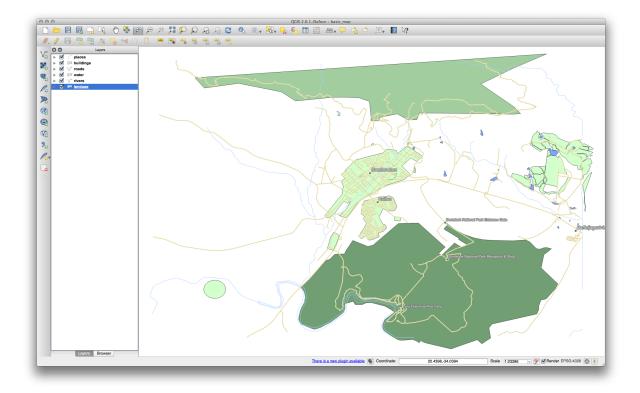
000		🌠 Layer Prop	erties – landuse Style		
Ceneral Style Labels Fields Rendering Display Actions Joins Diagrams Ø Metadata	 ✓ Layer rendering Layer transparen Layer blending m ✓ Craduated Column Symbol Color ramp New Symbol ▼ Value 	Color 1 Color 2 Multiple stops Color Offset (%) Preview Information	Continuous : Add stop Remove stop Cancel OK	node Classes Mode	0 \$ Normal \$ S \$ Equal Interval \$
	Load Style	d class Delete	Delete all s Default Restore Defa	ult Style	Advanced
	Help Apply			_	Cancel OK

You'll be using this to denote area, with small areas as *Color 1* and large areas as *Color 2*.

• Choose appropriate colors.

In the example, the result looks like this:

000		🌠 Layer Prop	oerties – landuse Style		
○ ○ ◇ Ceneral ◇ Style ○ Labels ○ Fields ◇ Rendering ○ Display ◇ Actions ○ Joins ○ Diagrams ⑦ Metadata	Layer rendering Layer transparen Layer blending m Column Symbol Color ramp New Symbol v Value Classify Additional	Color 1 Color 2 Multiple stops Color Offset (%) Preview Information d class Delete	Delete all	Classes Mode	
	Load Style Help Apply	. Save A	s Default Restore Def	ault Style	Save Style Cancel OK


- Click OK.
- Choose a suitable name for the new color ramp.
- Click *OK* after filling in the name.

Now you'll have something like this:

000	🚀 Layer Properties – landuse Style	
🔀 General	▼ Layer rendering	
	Layer transparency	•
(abc) Labels	Layer blending mode Normal + Feature blending mode Normal	\$
Fields		
🞸 Rendering	Craduated 🗧	
두 Display	Column T. E	
Sctions	Symbol Change Classes 5	¢
• Joins	Color ramp new_greens	•
💹 Diagrams		•
(Symbol Value Label 0.000 0.0007 0.0013 0.001 0.0013 0.002 0.002 0.0027 0.0027 0.002 0.0027 0.0033	
	Classify Add class Delete Delete all Advanced	•
	Load Style Save As Default Restore Default Style Save Style	•
	Help Apply Cancel OK	

Leave everything else as-is.

• Click Ok:

4.3.4 Try Yourself Refine the Classification

- Get rid of the lines between the classes.
- Change the values of *Mode* and *Classes* until you get a classification that makes sense.

Check your results

4.3.5 *Follow Along: Rule-based Classification*

It's often useful to combine multiple criteria for a classification, but unfortunately normal classification only takes one attribute into account. That's where rule-based classification comes in handy.

- Open the Layer Properties dialog for the landuse layer.
- Spostati sulla scheda Stile.
- Switch the classification style to Rule-based. You'll get this:

000		🕺 Layer Properties – landuse Style	
🔀 General	 Layer rendering 		
	Layer transparency	0	0
(abc Labels	Layer blending mode	Normal Feature blending mode	Normal \$
Fields			
≼ Rendering	Rule-based \$		
🗭 Display	Label Rule (no fil	Min. scale Max. scale Count Duplicate cou	nt
Sections			
• Joins			
💹 Diagrams			
🥡 Metadata			
	~		
		Refine current rules Count features	Rendering order
	Load Style	Save As Default Restore Default Style	Save Style 🔻
	Help Apply		Cancel OK

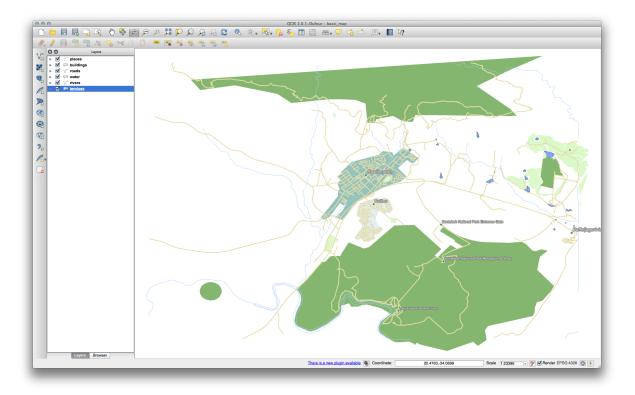
- Click the *Add rule* button: .
- A new dialog then appears.
- Click the ellipsis ... button next to the *Filter* text area.
- Using the query builder that appears, enter the criterion "landuse" = 'residential' AND "name" != ' |majorUrbanName| ', click Ok and choose a pale blue-grey for it and remove the border:

Search Operators Conditionals Math Conversions Date and Time String Color Geometry Record Fields and Values	Selected Function Help Operators Group This group contains operators e.g + - *
Operators + - / * ^ II () Expression -	
"landuse" = 'residential'	
Dutput preview: 0	Cancel OK

000		🕺 Layer Properties – landuse Style	
🔀 General	 Layer rendering 		
	Layer transparency	0	0
(abc Labels	Layer blending mode	Normal Feature blending mode	Normal ‡
Fields			
🎸 Rendering	Rule-based 🗘		
🗭 Display	Label Rule (no fil	Min. scale Max. scale Count Duplicate co	unt
Actions	"landı	ise" = 'residen	
• Joins			
Diagrams			
🧿 Metadata			
	~		
		Refine current rules Count features	Rendering order
	Load Style	Save As Default Restore Default Style	Save Style 🔻
	Help Apply		Cancel OK

- Add a new criterion "landuse" != 'residential' AND "AREA" >= 0.00005 and choose a mid-green color.
- Add another new criterion "name" = ' |majorUrbanName| ' and assign it a darker grey-blue color in order to indicate the town's importance in the region.
- Click and drag this criterion to the top of the list.

These filters are exclusive, in that they collectively exclude some areas on the map (i.e. those which are smaller that 0.00005, are not residential and are not 'Swellendam'). This means that the excluded polygons take the style of the default (*no filter*) category.


We know that the excluded polygons on our map cannot be residential areas, so give the default category a suitable pale green color.

Your dialog should now look like this:

000		🚀 Layer Properties – landuse Style
🔀 General	Layer rendering	
	Layer transparency	0.
(abc Labels	Layer blending mode	Normal Feature blending mode Normal
Fields		
≼ Rendering	Rule-based ‡	
🗭 Display	Label Rule (no fi	Min. scale Max. scale Count Duplicate count
Actions	"nan	ne" = 'Swellendam' duse" = 'residential' AND "name" != 'Swellendam'
• Joins		duse" != 'residential' AND AREA >= 0.00005
Diagrams		
🧿 Metadata		
	~	
		Refine current rules Count features Rendering order
	Load Style	Save As Default Restore Default Style Save Style 🔻
	Help Apply	Cancel OK

• Apply this symbology.

Your map will look something like this:

Now you have a map with Swellendam the most prominent residential area and other non-residential areas colored according to their size.

4.3.6 In Conclusion

Symbology allows us to represent the attributes of a layer in an easy-to-read way. It allows us as well as the map reader to understand the significance of features, using any relevant attributes that we choose. Depending on the problems you face, you'll apply different classification techniques to solve them.

4.3.7 What's Next?

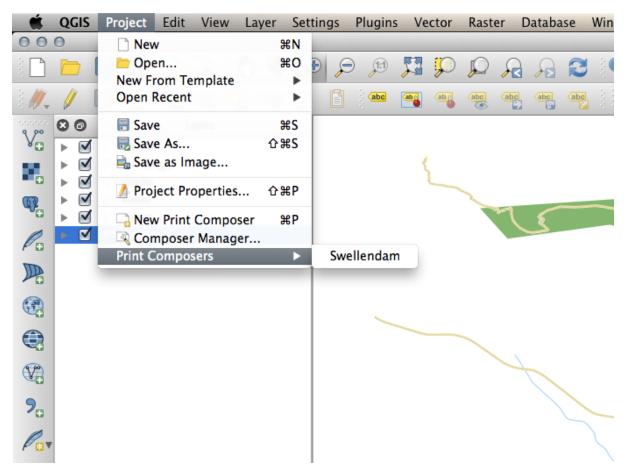
Now we have a nice-looking map, but how are we going to get it out of QGIS and into a format we can print out, or make into an image or PDF? That's the topic of the next lesson!

Module: Creazione di Mappe

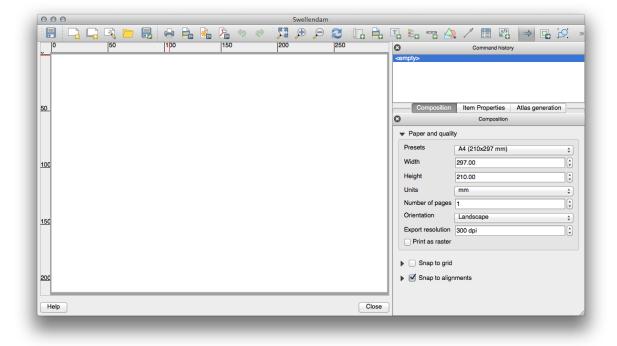
In questo modulo, imparerai ad utilizzare il Compositore di Stampe di QGIS per produrre mappe di qualità con tutte le componenti di mappa necessarie.

5.1 Lesson: Using Map Composer

Now that you've got a map, you need to be able to print it or to export it to a document. The reason is, a GIS map file is not an image. Rather, it saves the state of the GIS program, with references to all the layers, their labels, colors, etc. So for someone who doesn't have the data or the same GIS program (such as QGIS), the map file will be useless. Luckily, QGIS can export its map file to a format that anyone's computer can read, as well as printing out the map if you have a printer connected. Both exporting and printing is handled via the Map Composer.


The goal for this lesson: To use the QGIS Map Composer to create a basic map with all the required settings.

5.1.1 Follow Along: The Composer Manager


QGIS allows you to create multiple maps using the same map file. For this reason, it has a tool called the *Composer Manager*.

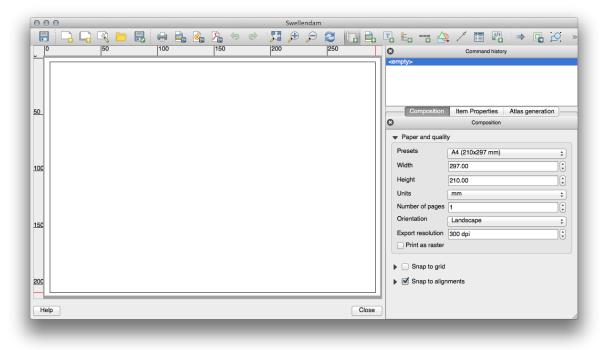
- Click on the *Project* → *Composer Manager* menu entry to open this tool. You'll see a blank *Composer manager* dialog appear.
- Click the Add button and give the new composer the name of Swellendam.
- Click OK.
- Click the *Show* button.

(You could also close the dialog and navigate to a composer via the *File* \rightarrow *Print Composers* menus, as in the image below.)

Whichever route you take to get there, you will now see the Print Composer window:

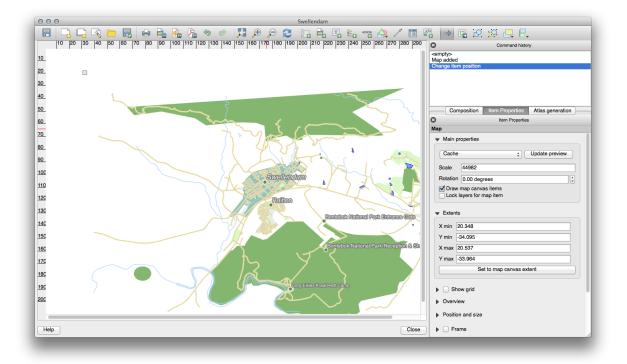
5.1.2 Follow Along: Basic Map Composition

In this example, the composition was already the way we wanted it. Ensure that yours is as well.

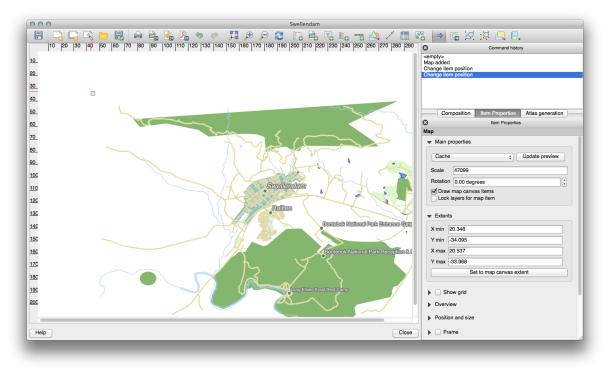

- In the *Print Composer* window, check that the values under *Composition* → *Paper and Quality* are set to the following:
- *Size*: A4 (210x297mm)
- Orientation: Landscape
- Quality: 300dpi

Now you've got the page layout the way you wanted it, but this page is still blank. It clearly lacks a map. Let's fix that!

• Click on the Add New Map button:


With this tool activated, you'll be able to place a map on the page.

• Click and drag a box on the blank page:



The map will appear on the page.

• Move the map by clicking and dragging it around:

• Resize it by clicking and dragging the boxes in the corners:

Nota: Your map may look a lot different, of course! This depends on how your own project is set up. But not to worry! These instructions are general, so they will work the same regardless of what the map itself looks like.

- Be sure to leave margins along the edges, and a space along the top for the title.
- Zoom in and out on the page (but not the map!) by using these buttons:

```
🔍 🕀 🕎
```

• Zoom and pan the map in the main QGIS window. You can also pan the map using the Move item content

When zooming in, the map view will not refresh by itself. This is so that it doesn't waste your time redrawing the map while you're zooming the page to where you want it, but it also means that if you zoom in or out, the map will be at the wrong resolution and will look ugly or unreadable.

• Force the map to refresh by clicking this button:

Remember that the size and position you've given the map doesn't need to be final. You can always come back and change it later if you're not satisfied. For now, you need to ensure that you've saved your work on this map. Because a *Composer* in QGIS is part of the main map file, you'll need to save your main project. Go to the main QGIS window (the one with the *Layers list* and all the other familiar elements you were working with before), and save your project from there as usual.

5.1.3 *Follow Along: Adding a Title*

Now your map is looking good on the page, but your readers/users are not being told what's going on yet. They need some context, which is what you'll provide for them by adding map elements. First, let's add a title.

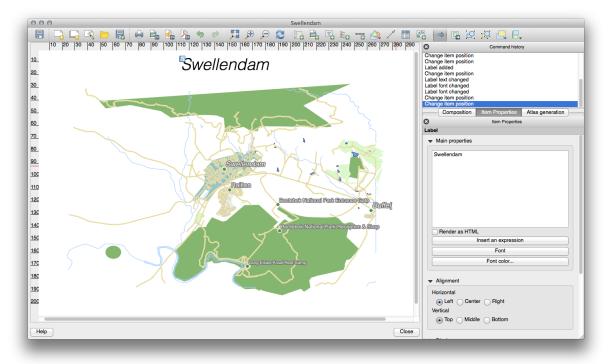
- Click on this button:
- Click on the page, above the map, and a label will appear at the top of the map.
- Resize it and place it in the top center of the page. It can be resized and moved in the same way that you resized and moved the map.

As you move the title, you'll notice that guidelines appear to help you position the title in the center of the page.

However, there is also a tool to help position the title relative to the map (not the page):

- Click the map to select it.
- Hold in shift on your keyboard and click on the label so that both the map and the label are selected.
- Look for the *Align* button and click on the dropdown arrow next to it to reveal the positioning options and click *Align center*:

<u>o</u>	.		
Command	📄 🗧 Align Left		
	🖁 Align Center		
	🚽 Align Right		
	Align Top		
	Hign Center Vertical		
l center	Align Bottom		
l center			
Itom Proportion Atlas constation			

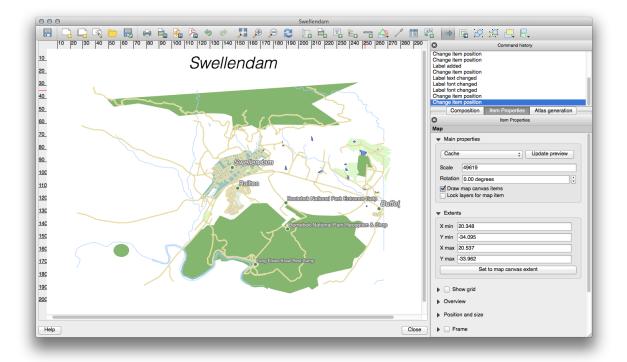

To make sure that you don't accidentally move these elements around now that you've aligned them:

• Right-click on both the map and the label.

A small lock icon will appear in the corner to tell you that an element can't be dragged right now. You can always right-click on an element again to unlock it, though.

Now the label is centered to the map, but not the contents. To center the contents of the label:

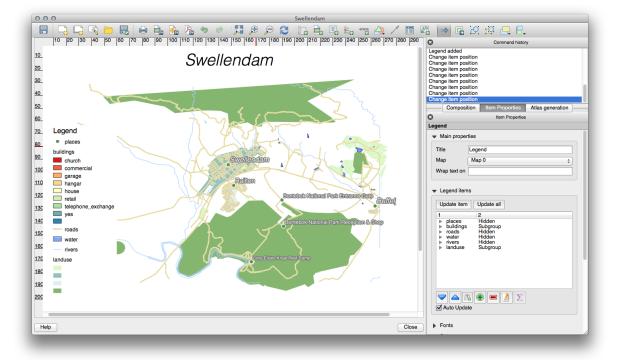
- Select the label by clicking on it.
- Click on the Item Properties tab in the side panel of the Composer window.
- Change the text of the label to "Swellendam":
- Use this interface to set the font and alignment options:


• Choose a large but sensible font (the example will use the default font with a size of 36) and set the *Horizontal Alignment* to *Center*.

You can also change the font color, but it's probably best to keep it black as per the default.

The default setting is not to add a frame to the title's text box. However, if you wish to add a frame, you can do so:

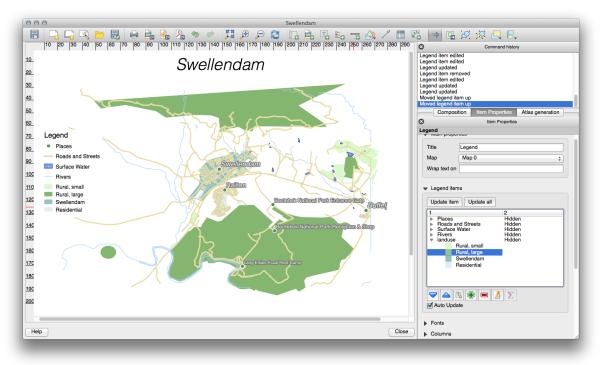
- In the Item Properties tab, scroll down until you see the Frame option.
- Click the Frame checkbox to enable the frame. You can also change the frame's color and width.


In this example, we won't enable the frame, so here is our page so far:

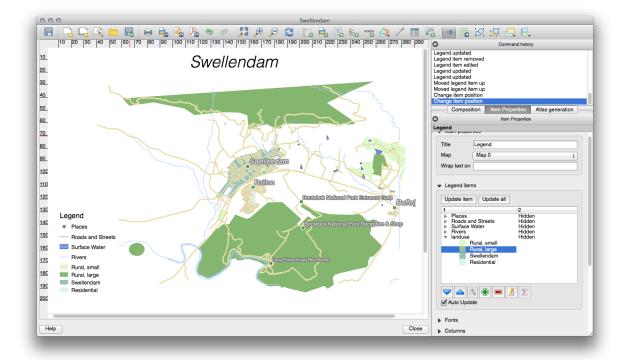
5.1.4 Follow Along: Adding a Legend

The map reader also needs to be able to see what various things on the map actually mean. In some cases, like the place names, this is quite obvious. In other cases, it's more difficult to guess, like the colors of the farms. Let's add a new legend.

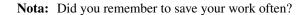
- Click on this button:
- Click on the page to place the legend, and move it to where you want it:


5.1.5 **C** Follow Along: Customizing Legend Items

Not everything on the legend is necessary, so let's remove some unwanted items.


- In the *Item Properties* tab, you'll find the *Legend items* panel.
- Select the *buildings* entry.
- Delete it from the legend by clicking the *minus* button:

You can also rename items.


- Select a layer from the same list.
- Click the *Edit* button:
- Rename the layers to Places, Roads and Streets, Surafce Water, and Rivers.
- Set landuse to *Hidden*, then click the down arrow and edit each category to name them on the legend. You can also reorder the items:

As the legend will likely be widened by the new layer names, you may wish to move and resize the legend and or map. This is the result:

5.1.6 Follow Along: Exporting Your Map

Finally the map is ready for export! You'll see the export buttons near the top left corner of the Composer window:

🖶 🚉 🍓 🍃

The button on the left is the *Print* button, which interfaces with a printer. Since the printer options will differ depending on the model of printer that you're working with, it's probably better to consult the printer manual or a general guide to printing for more information on this topic.

The other three buttons allow you to export the map page to a file. There are three export formats to choose from:

- Export as Image
- Export as SVG
- Export as PDF

Exporting as an image will give you a selection of various common image formats to choose from. This is probably the simplest option, but the image it creates is "dead" and difficult to edit.

The other two options are more common.

If you're sending the map to a cartographer (who may want to edit the map for publication), it's best to export as an SVG. SVG stands for "Scalable Vector Graphic", and can be imported to programs like Inkscape or other vector image editing software.

If you need to send the map to a client, it's most common to use a PDF, because it's easier to set up printing options for a PDF. Some cartographers may prefer PDF as well, if they have a program that allows them to import and edit this format.

For our purposes, we're going to use PDF.

• Click the *Export as PDF* button:

- Choose a save location and a file name as usual.
- Click Save.

5.1.7 In Conclusion

- Close the *Composer* window.
- Save your map.
- Find your exported PDF using your operating system's file manager.
- Open it.
- Bask in its glory.

Congratulations on your first completed QGIS map project!

5.1.8 What's Next?

On the next page, you will be given an assignment to complete. This will allow you to practice the techniques you have learned so far.

5.2 Assignment 1

Open your existing map project and revise it thoroughly. If you have noticed small errors or things you'd have liked to fix earlier, do so now.

While customizing your map, keep asking yourself questions. Is this map easy to read and understand for someone who's unfamiliar with the data? If I saw this map on the Internet, or on a poster, or in a magazine, would it capture my attention? Would I want to read this map if it wasn't mine?

If you're doing this course at a Basic or Intermediate level, read up on techniques from the more advanced sections. If you see something you'd like to do in your map, why not try to implement it?

If this course is being presented to you, the course presenter may require you to submit a final version of your map, exported to PDF, for evaluation. If you're doing this course by yourself, it's recommended that you evaluate your own map using the same criteria. Your map will be evaluated on the overall appearance and symbology of the map itself, as well as the appearance and layout of the map page and elements. Remember that the emphasis for evaluating the appearance of maps will always be *ease of use*. The nicer the map is to look at and the easier it is to understand at a glance, the better.

Happy customizing!

5.2.1 In Conclusion

The first four modules have taught you how to create and style a vector map. In the next four modules, you'll learn how to use QGIS for a complete GIS analysis. This will include creating and editing vector data; analyzing vector data; using and analyzing raster data; and using GIS to solve a problem from start to finish, using both raster and vector data sources.

Module: Creating Vector Data

Creating maps using existing data is just the beginning. In this module, you'll learn how to modify existing vector data and create new datasets entirely.

6.1 Lesson: Creating a New Vector Dataset

The data that you use has to come from somewhere. For most common applications, the data exists already; but the more particular and specialized the project, the less likely it is that the data will already be available. In such cases, you'll need to create your own new data.

The goal for this lesson: To create a new vector dataset.

6.1.1 Follow Along: The Layer Creation Dialog

Before you can add new vector data, you need a vector dataset to add it to. In our case, you'll begin by creating new data entirely, rather than editing an existing dataset. Therefore, you'll need to define your own new dataset first.

You'll need to open the New Vector Layer dialog that will allow you to define a new layer.

• Navigate to and click on the menu entry $Layer \rightarrow New \rightarrow New$ Shapefile Layer.

You'll be presented with the following dialog:

Poi	nt		9	OPolygon	
	326 - WG tribute	S 84		Specify CRS	3
Name					
Туре	Text dat	a			÷
Width	80		Precision		
				📙 Add to attributes list	
Name	1	Type Integer	Width 10	Precision	
				Remove attribut	te
Help	_			Cancel	K_

It's important to decide which kind of dataset you want at this stage. Each different vector layer type is "built differently" in the background, so once you've created the layer, you can't change its type.

For the next exercise, we're going to be creating new features which describe areas. For such features, you'll need to create a polygon dataset.

• Click on the *Polygon* radio button:

O Point	CLine	Polygon	

• •

This has no impact on the rest of the dialog, but it will cause the correct type of geometry to be used when the vector dataset is created.

The next field allows you to specify the Coordinate Reference System, or CRS. A CRS specifies how to describe a point on Earth in terms of coordinates, and because there are many different ways to do this, there are many different CRSs. The CRS of this project is WGS84, so it's already correct by default:

EPSG:4326 - WGS 84	Specify CRS
Now ottribute	

Next there is a collection of fields grouped under *New attribute*. By default, a new layer has only one attribute, the id field (which you should see in the *Attributes list*) below. However, in order for the data you create to be useful, you actually need to say something about the features you'll be creating in this new layer. For our current purposes, it will be enough to add one field called name.

• Replicate the setup below, then click the *Add to attributes list* button:

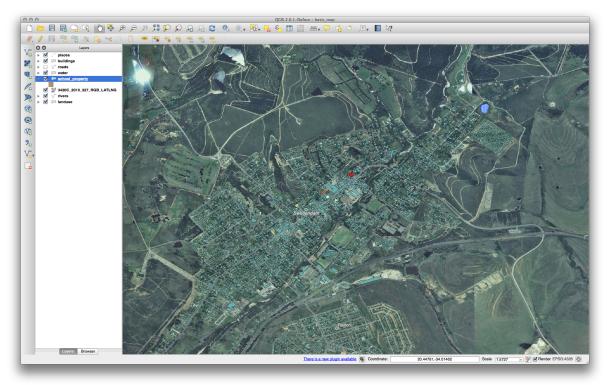
Name	name			
Туре	Text data			÷
Width	80	Precision		
			R Add to attributes list	

• Check that your dialog now looks like this:

Point	⊖ Li	ne	Polygon
PSG:4326 -			Specify CRS
lew attribute)		
Name			
Type Text	t data		÷
Nidth 80		Precision	
		. [R Add to attributes list
		L	
ttributes list			
Name	Туре	Width	Precision
		40	
	Integer	10	
	Integer String	80	
id name			
			Remove attribute
			Remove attribute

- Click *OK*. A save dialog will appear.
- Navigate to the exercise_data directory.
- Save your new layer as school_property.shp.

The new layer should appear in your Layers list.


6.1.2 Follow Along: Data Sources

When you create new data, it obviously has to be about objects that really exist on the ground. Therefore, you'll need to get your information from somewhere.

There are many different ways to obtain data about objects. For example, you could use a GPS to capture points in the real world, then import the data into QGIS afterwards. Or you could survey points using a theodolite, and enter the coordinates manually to create new features. Or you could use the digitizing process to trace objects from remote sensing data, such as satellite imagery or aerial photography.

For our example, you'll be using the digitizing approach. Sample raster datasets are provided, so you'll need to import them as necessary.

- Click on the Add Raster Layer button:
- Navigate to exercise_data/raster/.
- Select the file 3420C_2010_327_RGB_LATLNG.tif.
- Click Open. An image will load into your map.
- Find the new image in the *Layers list*.
- Click and drag it to the bottom of the list so that you can still see your other layers.
- Find and zoom to this area:

Nota: If your *buildings* layer symbology is covering part or all of the raster layer, you can temporarily disable the layer by deselecting it in the *Layers panel*. You may also wish to hide the *roads* symbology if you find it distracting.

You'll be digitizing these three fields:

In order to begin digitizing, you'll need to enter **edit mode**. GIS software commonly requires this to prevent you from accidentally editing or deleting important data. Edit mode is switched on or off individually for each layer.

To enter edit mode for the *school_property* layer:

- Click on the layer in the *Layer list* to select it. (Make very sure that the correct layer is selected, otherwise you'll edit the wrong layer!)
- Click on the *Toggle Editing* button:

If you can't find this button, check that the *Digitizing* toolbar is enabled. There should be a check mark next to the $View \rightarrow Toolbars \rightarrow Digitizing$ menu entry.

As soon as you are in edit mode, you'll see the digitizing tools are now active:

Four other relevant buttons are still inactive, but will become active when we start interacting with our new data:

📑 🕯 🛩 💼

From left to right on the toolbar, they are:

- Save Edits: saves changes made to the layer.
- *Add Feature*: start digitizing a new feature.

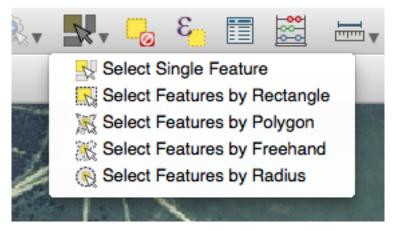
- *Move Feature(s)*: move an entire feature around.
- Node Tool: move only one part of a feature.
- *Delete Selected*: delete the selected feature.
- *Cut Features*: cut the selected feature.
- Copy Features: copy the selected feature.
- Paste Features: paste a cut or copied feature back into the map.

You want to add a new feature.

• Click on the Add Feature button now to begin digitizing our school fields.

You'll notice that your mouse cursor has become a crosshair. This allows you to more accurately place the points you'll be digitizing. Remember that even as you're using the digitizing tool, you can zoom in and out on your map by rolling the mouse wheel, and you can pan around by holding down the mouse wheel and dragging around in the map.

The first feature you'll be digitizing is the athletics field:


- Start digitizing by clicking on a point somewhere along the edge of the field.
- Place more points by clicking further along the edge, until the shape you're drawing completely covers the field.
- After placing your last point, *right-click* to finish drawing the polygon. This will finalize the feature and show you the *Attributes* dialog.
- Fill in the values as below:

id	1	⊠
name	Athletics Field	⊗
		Cancel OK
_		

• Click *OK* and you've created a new feature!

Remember, if you've made a mistake while digitizing a feature, you can always edit it after you're done creating it. If you've made a mistake, continue digitizing until you're done creating the feature as above. Then:

• Select the feature with the *Select Single Feature* tool:

You can use:

- the *Move Feature(s)* tool to move the entire feature,
- the Node Tool to move only one point where you may have miss-clicked,
- Delete Selected to get rid of the feature entirely so you can try again, and

• the $Edit \rightarrow Undo$ menu item or the ctrl + z keyboard shortcut to undo mistakes.

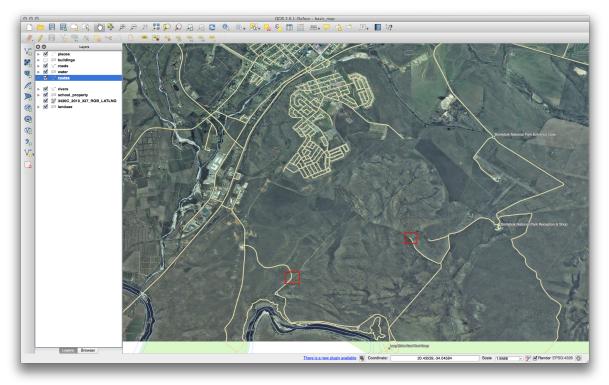
6.1.3 |base| Try Yourself

• Digitize the school itself and the upper field. Use this image to assist you:

Remember that each new feature needs to have a unique id value!

Nota: When you're done adding features to a layer, remember to save your edits and then exit edit mode.

Nota: You can style the fill, outline and label placement and formatting of the *school_property* using techniques learnt in earlier lessons. In our example, we will use a dashed outline of light purple color with no fill.


6.1.4 |base| Try Yourself

- Create a new line feature called routes.shp with attributes id and type. (Use the approach above to guide you.)
- We're going to digitize two routes which are not already marked on the roads layer; one is a path, the other is a track.

Our path runs along the southern edge of the suburb of Railton, starting and ending at marked roads:

Our track is a little further to the south:

One at a time, digitize the path and the track on the *routes* layer. Try to follow the routes as accurately as possible, using points (left-click) at any corners or turns.

When creating each route, give them the type attribute value of path or track.

You'll probably find that only the points are marked; use the *Layer Properties* dialog to add styling to your routes. Feel free to give different styles to the path and track.

Save your edits and toggle *Edit* mode.

Check your results

6.1.5 In Conclusion

Now you know how to create features! This course doesn't cover adding point features, because that's not really necessary once you've worked with more complicated features (lines and polygons). It works exactly the same, except that you only click once where you want the point to be, give it attributes as usual, and then the feature is created.

Knowing how to digitize is important because it's a very common activity in GIS programs.

6.1.6 What's Next?

Features in a GIS layer aren't just pictures, but objects in space. For example, adjacent polygons know where they are in relation to one another. This is called *topology*. In the next lesson you'll see an example of why this can be useful.

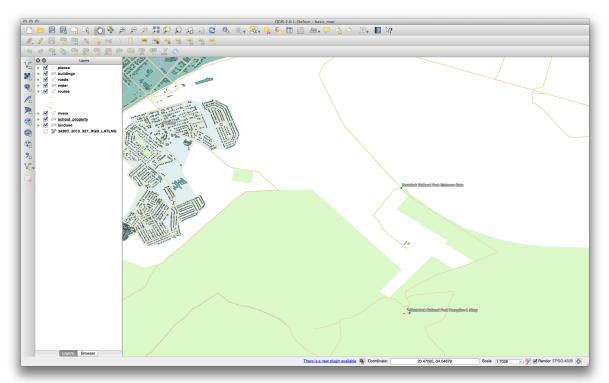
6.2 Lesson: Feature Topology

Topology is a useful aspect of vector data layers, because it minimizes errors such as overlap or gaps.

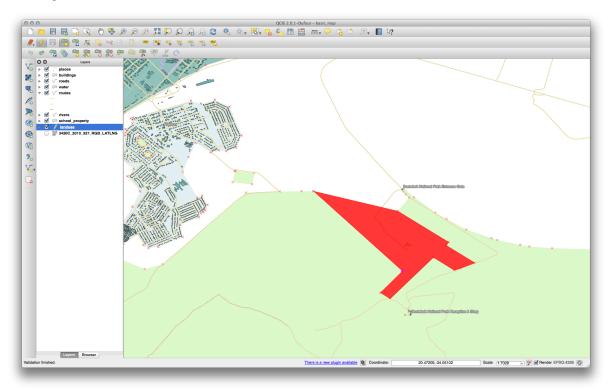
For example: if two features share a border, and you edit the border using topology, then you won't need to edit first one feature, then another, and carefully line up the borders so that they match. Instead, you can edit their shared border and both features will change at the same time.

The goal for this lesson: To understand topology using examples.

6.2.1 Follow Along: Snapping


To make topological editing easier, it's best if you enable snapping. This will allow your mouse cursor to snap to other objects while you digitize. To set snapping options:

- Navigate to the menu entry Settings → Snapping Options....
- Set up your *Snapping options* dialog as shown:

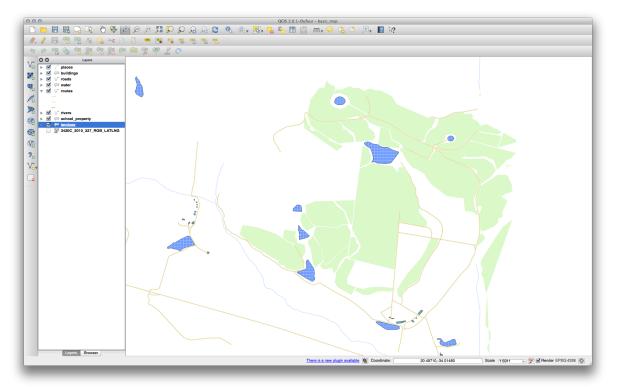

	Layer	Mode	Tolerance	Units	Avoid Int.
	buildings	to vertex and segment \$	0.000000	map units 🛊 🗌	
✓	landuse	to vertex and segment 🝦	4.000000	map units 🝦 🗹	
	places	to vertex and segment 👙	0.000000	map units 🛊	
	rivers	to vertex and segment 👙	0.000000	map units 🛊	
	roads	to vertex and segment	0.000000	map units 💲	
	water	to vertex and segment	0.000000	map units 🛊	
	school_property	to vertex and segment 👙	0.000000	pixels ‡	
		An contact and an and an			
15-0	able tenelogical adition 🗔	Enable snapping on intersection Apple	-		Cancel OK
	able topological editing	Enable snapping on intersection Apply			Cancel

• Ensure that the box in the Avoid Int. column is checked (set to true).

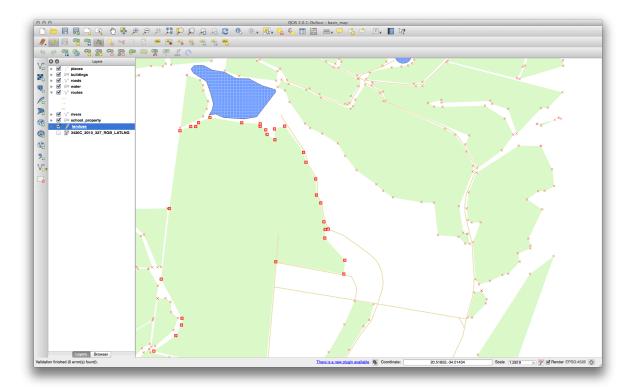
- Click *OK* to save your changes and leave the dialog.
- Enter edit mode with the *landuse* layer selected.
- Check under $View \rightarrow Toolbars$ to make sure that your Advanced Digitizing toolbar is enabled.
- Zoom to this area (enable layers and labels if necessary):

• Digitize this new (fictional) area of the Bontebok National Park:

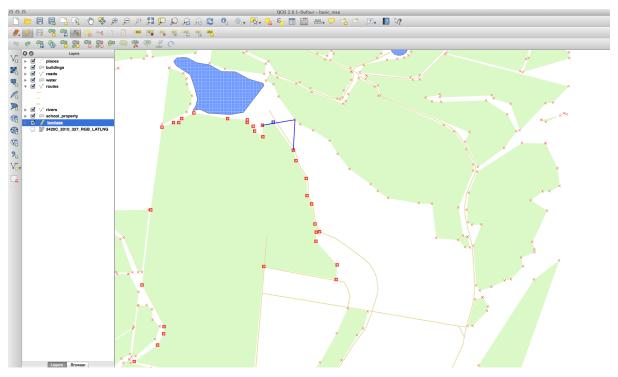
• When prompted, give it a OGC_FID of 999, but feel free to leave the other values unchanged.


If you're careful while digitizing and allow the cursor to snap to the vertices of adjoining farms, you'll notice that there won't be any gaps between your new farm and the existing farms adjacent to it.

• Note the undo/redo tools in the Advanced Digitizing toolbar:

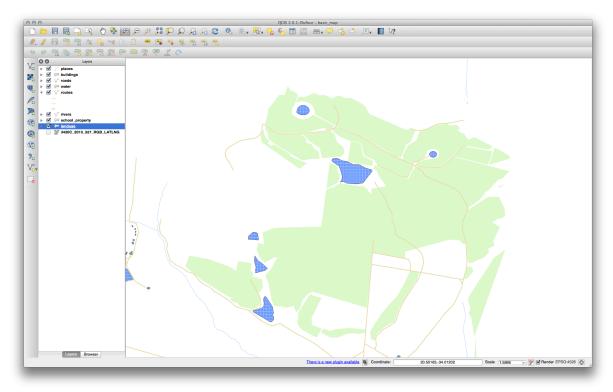

6.2.2 **C** Follow Along: Correct Topological Features

Topology features can sometimes need to be updated. In our example, the *landuse* layer has some complex forest areas which have recently been joined to form one area:



Instead of creating new polygons to join the forest areas, we're going to use the *Node Tool* to edit the existing polygons and join them.

- Enter edit mode, if it isn't active already.
- Select the Node Tool.
- Pick an area of forest, select a corner and move it to an adjoining corner so two forest sections meet:

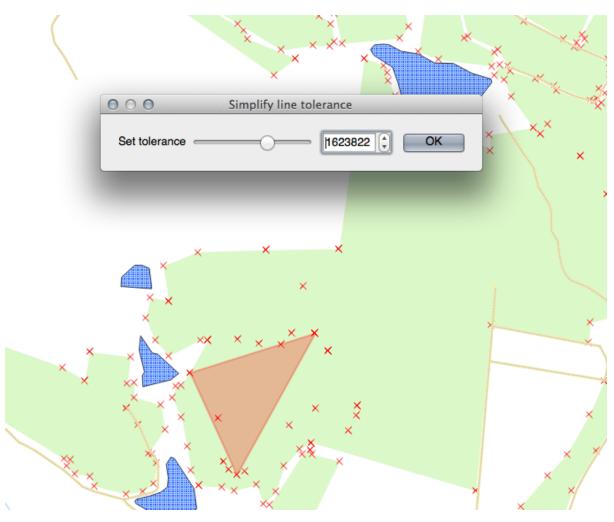

• Click and drag the nodes until they snap into place.

The topologically correct border looks like this:

Go ahead and join a few more areas using the *Node Tool*. You can also use the *Add Feature* tool if it is appropriate. If you are using our example data, you should have a forest area looking something like this:

Don't worry if you have joined more, less or different areas of forest.

6.2.3 **C** Follow Along: Tool: Simplify Feature


This is the *Simplify Feature* tool:

- Click on it to activate it.
- Click on one of the areas which you joined using either the *Node Tool* or *Add Feature* tool. You'll see this dialog:

Set tolerance	р 👌 ОК

• Move the slider from side to side and watch what happens:

This allows you to reduce the amount of nodes in complex features.

• Click Ok

Notice what the tool does to the topology. The simplified polygon is now no longer touching the adjacent polygons as it should. This shows that this tool is better suited to generalizing stand-alone features. The advantage is that it provides you with a simple, intuitive interface for generalization.

Before you go on, set the polygon back to its original state by undoing the last change.

6.2.4 **C** Try Yourself Tool: Add Ring

This is the Add Ring tool:

It allows you to take a hole out of a feature, as long as the hole is bounded on all side by the feature. For example, if you've digitized the outer boundaries of South Africa and you need to add a hole for Lesotho, you'd use this tool.

If you experiment with this tool, you'll notice that the current snapping options prevent you from creating a ring in the middle of the polygon. This would be fine if the area you wished to exclude linked to the polygon's boundaries.

- Disable snapping for the landuse layer via the dialog you used earlier.
- Now try using the Add Ring tool to create a gap in the middle of the Bontebok National Park.
- Delete your new feature by using the *Delete Ring* tool:

Nota: You need to select a corner of the ring in order to delete it.

Check your results

This is the *Add Part* tool:

7

It allows you to create an extra part of the feature, not directly connected to the main feature. For example, if you've digitized the boundaries of mainland South Africa but you haven't yet added the Prince Edward Islands, you'd use this tool to create them.

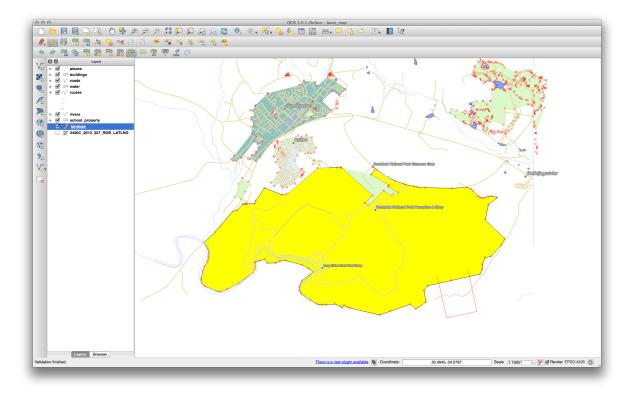
• To use this tool, you must first select the polygon to which you wish to add the part by using the *Select Single Feature* tool:

12

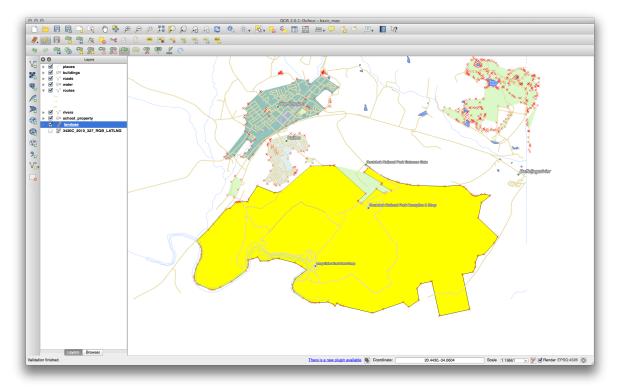
- Now try using the Add Part tool to add an outlying area to the Bontebok National Park.
- Delete your new feature by using the Delete Part tool:

Nota: You need to select a corner of the part in order to delete it.

Check your results

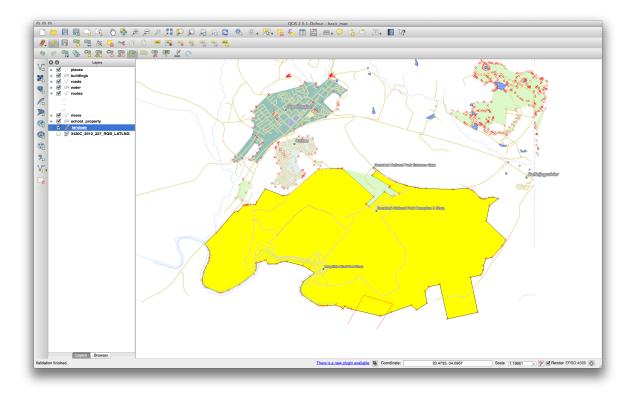


This is the Reshape Features tool:

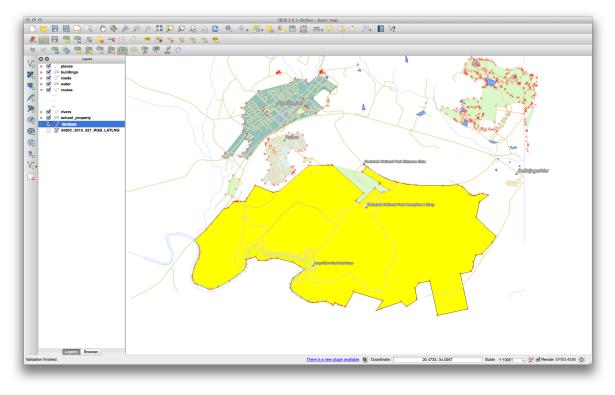

 \sim

It can add a bump to an existing feature. With this tool selected:

- Left-click inside the Bontebok National Park to start drawing a polygon.
- Draw a polygon with three corners, the last of which should be back inside the original polygon, forming an open-sided rectangle.
- Right-click to finish marking points:



This will give a result similar to:

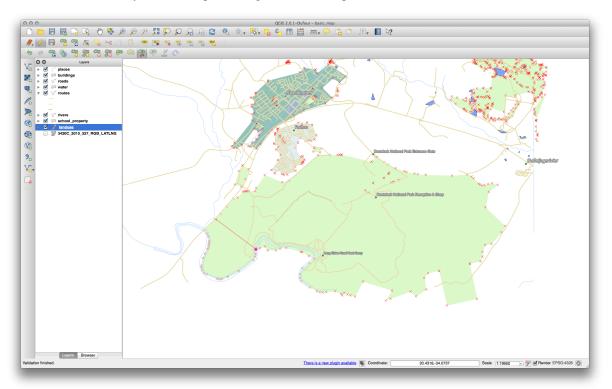


You can do the opposite, too:

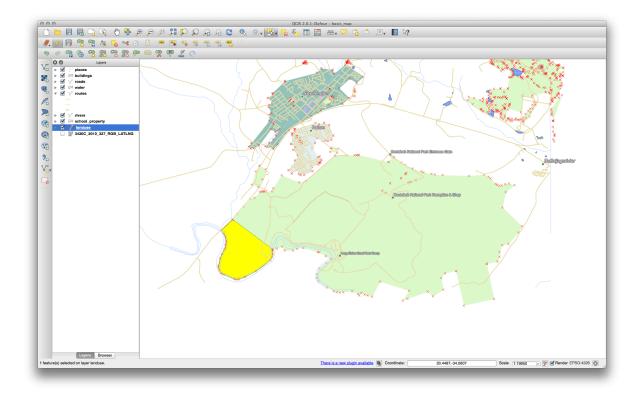
- Click outside the polygon.
- Draw a rectangle into the polygon.
- Right-click outside the polygon again:

The result of the above:

6.2.7 **C** Try Yourself Tool: Split Features


The *Split Features* tool is similar to how you took part of the farm away, except that it doesn't delete either of the two parts. Instead, it keeps them both.

R


• First, re-enable snapping for the *landuse* layer.

We will use the tool to split a corner from the Bontebok National Park.

• Select the *Split Features* tool and click on a vertex to begin drawing a line. Click the vertex on the opposite side of the corner you wish to split and right-click to complete the line:

- At this point, it may seem as if nothing has happened. But remember that your symbology for the landuse layer does not have any border, so the new division line will not be shown.
- Use the Select Single Feature tool to select the corner you just split; the new feature will now be highlighted:

6.2.8 *P* Try Yourself Tool: Merge Features

Now we will re-join the feature you just created to the original polygon:

- Experiment with the Merge Selected Features and Merge Attributes of Selected Features tools.
- Note the differences.

Check your results

6.2.9 In Conclusion

Topology editing is a powerful tool that allows you to create and modify objects quickly and easily, while ensuring that they remain topologically correct.

6.2.10 What's Next?

Now you know how to digitize the shape of the objects easily, but adding in the attributes is still a bit of a headache! Next we'll show you how to use forms so that attribute editing is simpler and more effective.

6.3 Lesson: Forms

When you add new data via digitizing, you're presented with a dialog that lets you fill in the attributes for that feature. However, this dialog is not, by default, very nice to look at. This can cause a usability problem, especially if you have large datasets to create, or if you want other people to help you digitize and they find the default forms to be confusing.

Fortunately, QGIS lets you create your own custom dialogs for a layer. This lesson shows you how.

The goal for this lesson: To create a form for a layer.

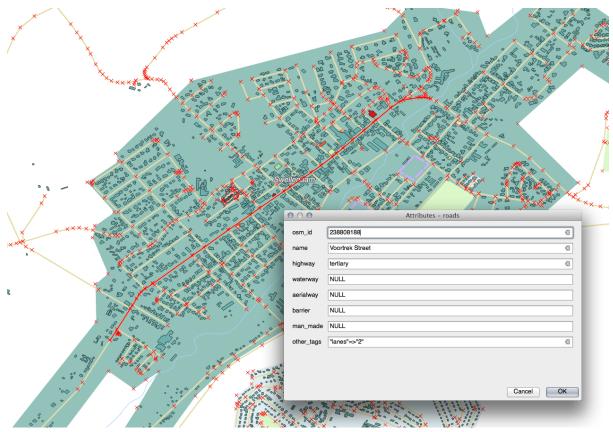
6.3.1 **Follow Along: Using QGIS' Form Design Functionality**

- Select the *roads* layer in the *Layers list*.
- Enter *Edit Mode* as before.
- Open its Attribute Table.
- Right-click on any cell in the table. A short menu will appear, with the only entry being Open form.
- Click on it to see the form that QGIS generates for this layer.

Obviously it would be nice to be able to do this while looking at the map, rather than needing to search for a specific street in the *Attribute Table* all the time.

- Select the roads layer in the Layers list.
- Using the *Identify* tool, click on any street in the map.

- The *Identify Results* panel opens and shows in a tree view the fields values and other general information about the clicked feature.
- At the bottom of the panel, Check the Auto open form checkbox
- Now, click again on any street in the map. Along the previous *Identify Results* dialog, you'll see the now-familiar form:


00	Attributes - roads	
osm_id	47587910	⊗
name	NULL	
highway	unclassified	\otimes
waterway	NULL	
aerialway	NULL	
barrier	NULL	
man_made	NULL	
other_tags	"lanes"=>"2"	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_	Cancel	OK

• Each time you click on a single feature with the *Identify* tool, its form pops-up unless the *Auto open form* is unchecked.

6.3.2 **C** Try Yourself Using the Form to Edit Values

If you are in edit mode, you can use this form to edit a feature's attributes.

- Activate edit mode (if it isn't already activated).
- Using the *Identify* tool, click on the main street running through Swellendam:

- Edit its highway value to be secondary.
- Save your edits.
- Exit edit mode.
- Open the *Attribute Table* and note that the value has been updated in the attributes table and therefore in the source data.

Nota: If you're using the default dataset, you'll find that there is more than one road on this map called Voortrek Street.

6.3.3 **C** Follow Along: Setting Form Field Types

It's nice to edit things using a form, but you still have to enter everything by hand. Fortunately, forms have different kinds of so-called *widgets* that allow you to edit data in various different ways.

- Open the *roads* layer's *Layer Properties*.
- Switch to the *Fields* tab. You'll see this:

🔀 General				Properties – roa				
	Attribute edit	or layout: Auto	generate	\$	Python Init fun	ction		
🟹 Style	▼ Fields							
abc Labels		/						
Fields	Type	Type name	Length	Precision	Comment	Edit widget	Alias V	VMS WFS
🎸 Rendering	QString	String	254	0		Line edit		
🏓 Display	QString	String	254	0		Line edit	1	
Actions	QString	String	254	0		Line edit	1	1
d Joins	QString	String	254	0		Line edit	1	1
Diagrams	QString	String	254	0		Line edit	1	
	QString	String	254	0		Line edit	1	
į Metadata	QString	String	254	0		Line edit	1	2
	QString	String	254	0		Line edit	I	✓
					~			
	Relations			Su	, ppress attribute	form pop-up after	feature creatio	on Default
		d Style	Save	Su e As Default		form pop-up after e Default Style		on Default

- Click on the *Line edit* button in the same row as *man_made* and you'll be given a new dialog.
- Select *Checkbox* in the list of options:

00	Attribute Edit Dialog "hig	hway"	
Line edit	Seditable		
Classification	Label on top		
Range			
Unique values File name	Representation for checked state	1	
Value map	Representation for checked state	·	
Enumeration	Representation for unchecked state	0	
Immutable		<u> </u>	
Hidden			
Checkbox			
Text edit Calendar			
Value relation			
UUID generator			
Photo			
Webview			
Color			
		Cancel	OK

- Click OK.
- Enter edit mode (if the *roads* layer is not already in edit mode.
- Click on the *Identify* tool.
- Click on the same main road you chose earlier.

You'll now see that the *man_made* attribute has a checkbox next to it denoting True (checked) or False (unchecked).

Set a more appropriate form widget for the highway field.

Check your results

6.3.5 *C* Try Yourself Creating Test Data

You can also design your own custom form completely from scratch.

- Create a simple point layer named test-data with two attributes:
 - Name (text)
 - Age (text)

PSG:4	326 - WGS	84		Specify CRS
lew att				
Name				
Гуре	Text data	ı		*
Nidth	80		Precision	
				🔚 Add to attributes list
name		String	80	
Name name		Type String	Width 80	Precision
age				
age				
age		J. J.		
age				
age				
age				Remove attribute

• Capture a few points on your new layer using the digitizing tools so that you have a little data to play with. You should be presented with the default QGIS generated attribute capture form each time you capture a new point.

Nota: You may need to disable Snapping if still enabled from earlier tasks.

name	richard			≪
age	23	 		~
			Cancel	ОК

6.3.6 Follow Along: Creating a New Form

Now we want to create our own custom form for the attribute data capture phase. To do this, you need to have *Qt4 Designer* installed (only needed for the person who creates the forms). It should be provided as part of your course materials, if you're using Windows. You may need to look for it if you're using another OS. In Ubuntu, do the following in the terminal:

Nota: At the time of writing, Qt5 is the latest version available. However, this process specifically requires Qt4 and is not necessarily compatible with Qt5.

sudo apt-get install qt4-designer

... and it should install automatically. Otherwise, look for it in the Software Center.

- Start *Designer* by opening its *Start Menu* entry in Windows (or whatever approach is appropriate in your OS).
- In the dialog that appears, create a new dialog:

000	New Form
 templates/forms Dialog with Buttons Bottom Dialog with Buttons Right Dialog without Buttons Main Window Widget Widgets 	Embedded Design
Show this Dialog on Startup	Close
	UIUSU UIEale

- Look for the Widget Box along the left of your screen (default). It contains an item called Line Edit.
- Click and drag this item into your form. This creates a new *Line Edit* in the form.
- With the new line edit element selected, you'll see its *properties* along the side of your screen (on the right by default):

0	00	Property Editor
Filt	er	
		· · · · · · · · · · · · · · · · · · ·
line	Edit : QLineEdit	
	perty	Value
- V	QObject	
	objectName	lineEdit +
	QWidget	
	enabled	
	geometry	[(80, 40), 113 x 21]
	sizePolicy	[Expanding, Fixed, 0, 0]
	minimumSize	0 x 0
►	maximumSize	16777215 x 16777215
	sizeIncrement	0 x 0
►	baseSize	0 x 0
	palette	Inherited
►	font	A [.Lucida Grande UI, 13]
	cursor) IBeam
	mouseTracking	
	focusPolicy	StrongFocus
	contextMenuPolicy	DefaultContextMenu
	acceptDrops	
•	toolTip	
•	statusTip	
•	whatsThis	
•	accessibleName	
•	accessibleDescrip	
	layoutDirection	LeftToRight
	autoFillBackground	
	styleSheet	
►	locale	English, SouthAfrica
•	inputMethodHints	ImhNone
►	inputMask	
•	text	
	maxLength	32767
	frame	
	echoMode	Normal
	cursorPosition	0
►	alignment	AlignLeft, AlignVCenter
	dragEnabled	
	readOnly	
•	placeholderText	
30	cursorMoveStyle	LogicalMoveStyle Chapter 6. Module: Creating Vector Da

- Set its name to Name.
- Using the same approach, create a new spinbox and set its name to Age.
- Add a *Label* with the text Add a New Person in a bold font (look in the object *properties* to find out how to set this). Alternatively, you may want to set the title of the dialog itself (rather than adding a label).
- Click anywhere in your dialog.
- Find the *Lay Out Vertically* button (in a toolbar along the top edge of the screen, by default). This lays out your dialog automatically.
- Set the dialog's maximum size (in its properties) to 200 (width) by 100 (height).
- Save your new form as exercise_data/forms/add_people.ui.
- When it's done saving, you can close the *Qt4 Designer* program.

6.3.7 Follow Along: Associating the Form with Your Layer

- · Go back to QGIS.
- Double click the *test-data* layer in the legend to access its properties.
- Click on the Fields tab in the Layer Properties dialog.
- In the Attribute editor layout dropdown, select Provide ui-file.
- Click the ellipsis button and choose the add_people.ui file you just created:

000	🕺 Layer Properties - test-data
🔀 General	Attribute editor layout: Provide ui-file Python Init function
😽 Style	▼ Fields Edit UI se_data/forms/add_people.ui
(abc Labels	
Fields	Id A Name Type Type name Length Precision
🞸 Rendering	0 name QString string 80 0
두 Display	1 age QString string 80 0
Actions	
• Joins	
💹 Diagrams	
🥡 Metadata	
	 Relations Suppress attribute form pop-up after feature creation
	Load Style Save As Default Restore Default Style Save Style V
	Help Apply Cancel OK

- Click OK on the Layer Properties dialog.
- Enter edit mode and capture a new point.
- When you do so, you will be presented with your custom dialog (instead of the generic one that QGIS usually creates).
- If you click on one of your points using the *Identify* tool, you can now bring up the form by right clicking in the identify results window and choosing *View Feature Form* from the context menu.
- If you are in edit mode for this layer, that context menu will show *Edit Feature Form* instead, and you can then adjust the attributes in the new form even after initial capture.

6.3.8 In Conclusion

Using forms, you can make life easier for yourself when editing or creating data. By editing widget types or creating an entirely new form from scratch, you can control the experience of someone who digitizes new data for that layer, thereby minimizing misunderstandings and unnecessary errors.

6.3.9 Further Reading

If you completed the advanced section above and have knowledge of Python, you may want to check out this blog entry about creating custom feature forms with Python logic, which allows advanced functions including data validation, autocompletion, etc.

6.3.10 What's Next?

Opening a form on identifying a feature is one of the standard actions that QGIS can perform. However, you can also direct it to perform custom actions that you define. This is the subject of the next lesson.

6.4 Lesson: Azioni

Ora che hai visto un'azione predefinita nella lezione precedente, è il momento di definire le proprie azioni. Un'azione è qualcosa che accade quando si fa clic su una geometria. Puoi aggiungere molte funzionalità in più per la vostra mappa, permettendoti di recuperare ulteriori informazioni su un oggetto. Assegnare azioni può aggiungere una nuova dimensione alla tua mappa!

** Obiettivo di questa lezione: ** Imparare come aggiungere azioni personalizzate.

6.4.1 *Follow Along: Apri un'immagine*

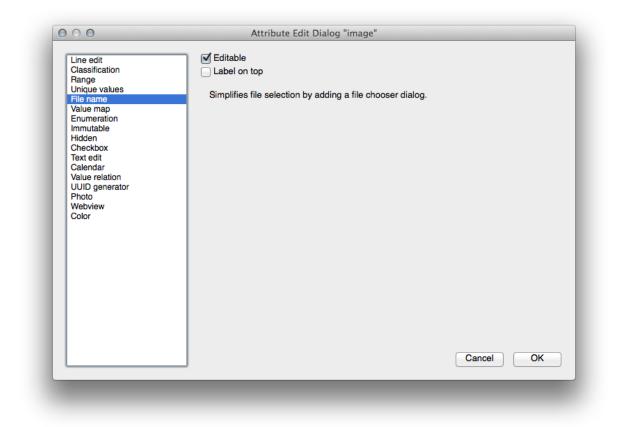
Usa il layer *school_property* che hai creato in precedenza. I materiali del corso comprendono foto di ciascuna delle tre proprietà che hai digitalizzato. Quello che stai facendo è associare ogni proprietà con la sua immagine. Poi creerai un'azione che aprirà l'immagine della proprietà quando si fa clic sulla proprietà.

6.4.2 *Follow Along: Aggiungi un campo per le immagini*

Il layer *school_property* non ha ancora modo di associare un'immagine con una proprietà. Per prima cosa creiamo un campo per questo scopo.

- Apri la finestra Proprietà vettore.
- Spostati sulla scheda Campi.
- Attiva modifica:

000	🕺 Layer Properties – school_property
🔀 General	Attribute editor layout: Provide ui-file Python Init function
🟹 Style	▼ Fields Edit UI se_data/forms/add_people.ui
(abc) Labels	
Fields	Id A Name Type Type name Length Precision
🎸 Rendering	0 id int integer 10 0
🗭 Display	1 name QString string 80 0
🔅 Actions	
• ┥ Joins	
💹 Diagrams	
🥡 Metadata	
	 Relations Suppress attribute form pop-up after feature creation Default +
	Load Style Save As Default Restore Default Style Save Style 🔻
	Help Apply Cancel OK


• Aggiungi una nuova colonna

000				🕺 Layer Propert	ies – school	_property				
🔀 General	Attribute	editor layout	Provide	ui-file	÷ P	ython Init function				
🐳 Style	▼ Fields						Edit UI	se_data/fo	orms/add_people	e.ui
(abc Labels		5 🖊 🖽								
Fields				1						
Kendering	ld ▲	Name id	Type int	Type name	Length 10	Precision 0				
Display	1			integer	80	0				
Actions	1	name	QString	string	80	0				
• .										
• Joins										
💹 Diagrams										
🧑 Metadata										
							<u>^</u>			
				_						
	Relati	ons		<u>^</u>						
					C	ress attribute form		ofter feature	a creation Def	sult t
					Supp	ress attribute form	pop-up	anter reatur	e creation Der	ault ‡
		Load Style		Save As De	efault	Restore Defa	ault Style	e	Save Style	•
	Help	Apply)		_				Cancel	ОК

• Inserisci i seguenti valori:

Name	image
Comment	
Туре	Text (string) +
Width	string
Precision	
	Cancel OK

- Dopo che il campo è stato creato, clicca su :guilabel: *Modifica testo* accanto al nuovo campo.
- Posiziona su Nome file:

- Clicca OK sulla finestra Proprietà vettore dialog.
- Usa il Informazione elementi cliccando su una delle tre geometrie del layer school_property.

Dal momento che sei ancora in modalità di modifica, la finestra dovrebbe essere attiva e simile a questa:

id	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
name	school_campus	≪
image	NULL	
		Cancel OK

- Clicca il bottone di selezione (il ... vicino al campo *image*).
- Seleziona il percorso per la tua immagine. Le immagini sono in exercise_data / school_property_photos / e hanno lo stesso nome degli oggetti a cui sono associati.
- Click OK.
- In questa maniera associa tutte le immagini con gli oggetti corretti.
- Salva le modifiche ed esci da modalità modifica.

6.4.3 Follow Along: Creare un'azione

- Apri la scheda Azioni per il layer school_property.
- Nel pannello Proprietà azioni, inserisci le parole: kbd:Show Image nel campo Nome:

000		🕺 Layer Properties –	school_property	
🔀 General	 Action list 			
🟹 Style	Туре	Name	Action	Capture
(abc Labels				
Fields				
Kendering				
Display				
Actions				
Joins				
Diagrams				
🧃 Metadata				Add default actions
	 Action properties 			
	C Type Generic			Capture output
	Name Show Image			
	Action			`
	Insert expression	n osm_id		Insert field
				Add to action list Update selected action
	Load Style	Save As Defau	lt Resto	ore Default Style Save Style 🔻
	Help Apply			Cancel OK
1.1				

Cosa fare dopo varia a seconda del sistema operativo:

Windows

• Clicca Type sulla tendina e scegli Apri.

Ubuntu Linux

• Sotto Azione, scrivi eog per Gnome Image Viewer, o scrivi display' per usare ImageMagick. Ricordati di inserire uno spazio dopo il comando!

MacOS

- Clicca *Type* sulla tendina e scegli *Mac*.
- Sotto Azione, scrivi apri. Ricordati di inserire uno spazio dopo il comando!

Continua a scrivere il comando

Vuoi aprire l'immagine, e QGIS sa dove è. Tutto ciò che devi fare è dire a Azioni dove è l'immagine.

• Seleziona dalla lista image.

Action	n properties			
Туре	Mac		*	Capture output
Name	Show Image			
Action	open [% "image" %]			
		id		
		name		
	Insert expression	√ image		Insert field
		Add to action lis	t Updat	te selected action

- Clicca su :guilabel: *Inserirsci campo*. QGIS aggiungerà la frase :kbd: [%" *immagine*"%] nel campo :guilabel: *Azione*.
- Clicca su Aggiungi alla lilsta azioni.
- Clicca OK sulla finestra Proprietà vettore dialog.

Ora testa la nuova azione:

- Clicca sul layer school_property del Layer panel per evidenziarlo.
- Trova l'icona guilabel: *Run feature action* (sulla stessa barra degli strumenti, di :guilabel: 'Apri tabella attributi'):

Q

- Clicca sulla freccia in basso a destra di questo pulsante. Fino ad ora c'è solo un'azione definita per questo livello, che è quella che avete appena creato.
- Clicca il pulsante per attivare lo strumento.
- Utilizzando questo strumento, clicca su uno dei tre oggetti della scuola.
- Verrà aperta l'immagine di quell'oggetto.

6.4.4 **Follow Along: Cercare in internet**

Stai guardando la mappa e vuoi sapere di più sulla zona relativa ad un'szienda. Supponi di non sapere nulla della zona in questione e desideri trovare informazioni di carattere generale su di essa. Il tuo primo impulso, se si considera che si sta utilizzando un computer in questo momento, sarebbe probabilmente di inserire in Google il nome della zona. Allora dì a QGIS di farlo automaticamente per te!

• Aprire la tabella attributi per il layer landuse.

Userai il campo :kbd: name per ciascuna delle nostre aree dell'uso del suolo per la ricerca di Google.

- Chiudi la tabella attributi
- Torna a Azioni nella finestra Proprietà vettore.
- Nel campo Proprietà azioni \rightarrow Nome, scrivi Google search.

Cosa fare dopo varia a seconda del sistema operativo:

Windows

• Sotto: guilabel:*Tipo*, scegli *Apri*. Questo dirà a Windows di aprire un indirizzo Internet nel browser predefinito, ad esempio Internet Explorer.

Ubuntu Linux

• Sotto: guilabel:*Azione*, scrivi xdg-open. Questo dirà a Ubuntu di aprire un indirizzo Internet nel browser predefinito, come Chrome o Firefox.

MacOS

• Sotto: guilabel: *Azione*, scrivi open. Questo dirà a MacOs di aprire un indirizzo Internet nel browser predefinito, come Safari.

Continua a scrivere il comando

Qualunque sia il comando che usasti in precedenza, è necessario dire l'indirizzo Internet. Vuoi usare Google per la ricerca di una frase automaticamente.

Di solito quando usi Google, inserisi la frase di ricerca nella barra di ricerca di Google. Ma in questo caso, vuoi che il tuo computer faccia questo per te. Il modo in cui dici a Google per la ricerca di qualcosa (se non vuoi utilizzare direttamente la barra di ricerca) è dare al navigatore Internet l'indirizzo http://www.google.com/search?q=SEARCH_PHRASE, dove SEARCH_PHRASE è ciò che desideri cercare. Dal momento che non sai ancora quale frase cercare, limitati a immettere la prima parte (senza la frase di ricerca).

• Nel campo Azione scrivi http://www.google.com/search?q=. Ricordarti di aggiungere uno spazio dopo il tuo comando iniziale prima di scriverci questo!

Ora vuoi che QGIS dica al navigatore di indicare a Google di cercare il valore di nome per qualsiasi oggetto su cui potresti cliccare.

- Selaziona il campo *noame*.
- Clicca Inserisci campo:

000	🎺 Lay	er Properties – landuse	
🔀 General	▼ Action list		
😻 Style	Type Name	Action	Capture
(abc) Labels			
Fields			
🎸 Rendering			
🗭 Display			
Actions			
• Joins			
🔯 Diagrams			
🥡 Metadata			
			Add default actions
	 Action properties 		
	Generic		÷ Capture output
	Name Google Search	(
	Action open http://www.google.com	//search/q=	
	Insert expression	ame	Insert field
			Add to action list Update selected action
	Load Style	Save As Default Restore	e Default Style Save Style 🔻
	Help Apply		Cancel OK

Questo dirà a QGIS di aggiungere la prossima frase.

Type	Mac
Name	Google Search
Action	open http://www.google.com/search?q=[% "name" %]

Ciò significa che QGIS sta per aprire il navigatore a cui manderà l'indirizzo http://www.google.com/search?q=[% "nome" %]. But [% "nome" %] dice a QGIS di utilizzare il contenuto del campo nome come la frase da cercare.

Quindi, se, per esempio, l'area di uso del suolo che clicchi è nominata :kbd: *Marloth Nature Reserve*, allora QGISmanderà al navigatore http://www.google.com/search?q=Marloth%20Nature%20Reserve, che attiverà Google, che a sua volta cercherà "Marloth Nature Reserve".

- Se non l'hai ancora fatto, configura come spiegato sopra.
- Clicca su Aggiungi alla lilsta azioni. La nuova azione apparirà nella lista seguente.
- Clicca OK sulla finestra Proprietà vettore dialog.

Ora testa la nuova azione:

- Con il layer landuse attivo nella Layer panel, clicca sul pulsante Run feature action.
- Clicca su qualsiasi area di uso del suolo sulla mappa. Il tuo navigator si aprirà e si avvierà automaticamente una ricerca su Google per la città registrata come quella della zona name.

Nota: Se l'azione non funziona, controlla che tutto sia stato inserito correttamente; errori di battitura sono comuni con questo tipo di lavoro!

6.4.5 *Follow Along: Apri un sito direttamente in QGIS*

Sopra, hai visto come aprire una pagina web in un navigatore esterno. Con questo approccio ci sono alcune lacune su eventuali dipendenze sconosciute - avrà l'utente finale il software necessario per eseguire l'azione sul loro sistema? Come hai visto, se non si sa quale sistema operativo che verrà utilizzato, non sisa il tipo di comandi di base per lo stesso tipo di azione. Con alcune versioni del sistema operativo, i comandi per aprire il navigatore potrebbero non funzionare affatto. Questo potrebbe essere un problema insormontabile.

Tuttavia, QGIS usa l'incredibilmente potente e versatile libreria Qt4. Inoltre, le azioni QGIS può essere arbitrario, tokennizate (cioè con informazioni variabili in base al contenuto di un campo di attributo) comandi Python!

Ora vedrai come utilizzare un'azione python per mostrare un sito. E' la stessa idea per l'apertura di un sito in un navigatore esterno, ma non richiede nessunnavigatore sul sistema dell'utente in quanto utilizza la classe Qt4 QWebView (che è un widget basato su HTML WebKit) per visualizzare il contenuto di una finestra.

Invece di Google, usa Wikipedia. Così l'URL da richiedere sarà simile a questa:

http://wikipedia.org/wiki/SEARCH_PHRASE

Per creare l'azione sul layer

- Apri la finestra Proprietà vettore e vai sulla scheda Azioni.
- Configura una nuova azione usando le seguenti proprietà:
 - Tipo: Python
 - Nome: Wikipedia

```
- Azione (tutto in una riga): from PyQt4.QtCore import QUrl; from
PyQt4.QtWebKit import QWebView; myWV = QWebView(None);
myWV.load(QUrl('http://wikipedia.org/wiki/[% "nome" %]'));
myWV.show()
```

000		X	Layer Properties -	- landuse			
🔀 General	Action list						
😽 Style	Type	Na	me	Action		Captur	e
(abc Labels	Mac	Google Search		open http://www.g			
Fields							
Kendering							
🧭 Display							
Actions							
• Joins							
Diagrams							
🧑 Metadata							
							Add default actions
	 Action proper 	ties					
<u> </u>	Type Pythor	1					Capture output
	Name Wikiped	ia					
	Action from Py OWebV	Qt4.QtCore import iew(None);myWV.lo	t QUrl; from PyQt4 ad(OUrl('http://w	4.QtWebKit impo ikipedia.org/wi	ort QWebView; n ki/[% "name" %]'))	nyWV =): mvWV.show()	
	4.1001	,			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	
	Inse	t expression	OGC_FID				Insert field
					Add to a	stion list	Jpdate selected action
					Add to at		puate selected action
	Load St	/le	Save As Defa	ult	Restore Default	Style	Save Style 🔻
	Help Ap	ply					Cancel OK

Ci sono un paio di cose da dire:

- Tutto il codice Python è in una sola riga con punti e virgola che separano i comandi (al posto di a capo)
- [% "nome" %] sarà sostituito dal valore di attributo reale quando viene richiamato l'azione (come prima).
- Il codice crea semplicemente una nuova istanza QWebView, imposta l'URL, e quindi chiam show () su di esso per renderlo visibile come una finestra sul desktop dell'utente.

Nota che questo è un esempio un po 'forzato'. Python lavora con indentazione semanticamente significante, così separare le cose con un punto e virgola non è il modo migliore per scriverlo. Così, nel mondo reale, devi essere più propenso a importare la logica da un modulo Python e quindi chiamare una funzione con un attributo campo come parametro.

Potresti ugualmente utilizzare il metodo per visualizzare un'immagine senza richiedere che l'utente abbia un particolare visualizzatore di immagini sul suo sistema.

• Prova a usare i metodi descritti in precedenza per caricare una pagina di Wikipedia utilizzando l'azione Wikipedia appena creata.

6.4.6 In Conclusion

Le azioni consentono di dare alla tua carta funzionalità extra, utile per l'utente finale che vede la stessa mappa in QGIS. A causa del fatto che è possibile utilizzare i comandi della shell per qualsiasi sistema operativo, così come

Python, ci sono pochi limiti delle funzioni che potresti incorporare!

6.4.7 What's Next?

Useremo il: kbd: name campo per ciascuna delle nostre aree dell'uso del suolo per la ricerca di Google.

Module: Vector AnalysisStrumenti di analisi vettoriale

Now that you have edited a few features, you must want to know what else one can do with them. Having features with attributes is nice, but when all is said and done, this doesn't really tell you anything that a normal, non-GIS map can't.

The key advantage of a GIS is this: a GIS can answer questions.

For the next three modules, we'll endeavor to answer a *research question* using GIS functions. For example, you are an estate agent and you are looking for a residential property in Swellendam for clients who have the following criteria:

- 1. It needs to be in Swellendam.
- 2. It must be within reasonable driving distance of a school (say 1km).
- 3. It must be more than 100m squared in size.
- 4. Closer than 50m to a main road.
- 5. Closer than 500m to a restaurant.

Within the next few modules, we'll harness the power of GIS analysis tools to locate suitable farm properties for this new residential development.

7.1 Lesson: Reprojecting and Transforming Data

Let's talk about Coordinate Reference Systems (CRSs) again. We've touched on this briefly before, but haven't discussed what it means practically.

The goal for this lesson: To reproject and transform vector datasets.

7.1.1 **Follow Along: Projections**

The CRS that all the data as well as the map itself are in right now is called WGS84. This is a very common Geographic Coordinate System (GCS) for representing data. But there's a problem, as we will see.

- Save your current map.
- Then open the map of the world which you'll find under exercise_data/world/world.qgs.
- Zoom in to South Africa by using the Zoom In tool.
- Try setting a scale in the *Scale* field, which is in the *Status Bar* along the bottom of the screen. While over South Africa, set this value to 1:5000000 (one to five million).
- Pan around the map while keeping an eye on the Scale field.

Notice the scale changing? That's because you're moving away from the one point that you zoomed into at 1:5000000, which was at the center of your screen. All around that point, the scale is different.

To understand why, think about a globe of the Earth. It has lines running along it from North to South. These longitude lines are far apart at the equator, but they meet at the poles.

In a GCS, you're working on this sphere, but your screen is flat. When you try to represent the sphere on a flat surface, distortion occurs, similar to what would happen if you cut open a tennis ball and tried to flatten it out. What this means on a map is that the longitude lines stay equally far apart from each other, even at the poles (where they are supposed to meet). This means that, as you travel away from the equator on your map, the scale of the objects that you see gets larger and larger. What this means for us, practically, is that there is no constant scale on our map!

To solve this, let's use a Projected Coordinate System (PCS) instead. A PCS "projects" or converts the data in a way that makes allowance for the scale change and corrects it. Therefore, to keep the scale constant, we should reproject our data to use a PCS.

7.1.2 Follow Along: "On the Fly" Reprojection

QGIS allows you to reproject data "on the fly". What this means is that even if the data itself is in another CRS, QGIS can project it as if it were in a CRS of your choice.

• To enable "on the fly" projection, click on the *CRS Status* button in the *Status Bar* along the bottom of the QGIS window:

- In the dialog that appears, check the box next to Enable 'on the fly' CRS transformation.
- Type the word global into the *Filter* field. One CRS (*NSIDC EASE-Grid Global*) should appear in the list below.
- Click on the NSIDC EASE-Grid Global to select it, then click OK.
- Notice how the shape of South Africa changes. All projections work by changing the apparent shapes of objects on Earth.
- Zoom in to a scale of 1:5000000 again, as before.
- Pan around the map.
- Notice how the scale stays the same!

"On the fly" reprojection is also used for combining datasets that are in different CRSs.

- Deactivate "on the fly" re-projection again:
 - Click on the CRS Status button again.
 - Un-check the Enable 'on the fly' CRS transformation box.
 - Clicking OK.
- In QGIS 2.0, the 'on the fly' reprojection is automatically activated when layers with different CRSs are loaded in the map. To understand what 'on the fly' reprojection does, deactivate this automatic setting:
 - Go to *Settings* \rightarrow *Options*...
 - On the left panel of the dialog, select CRS.
 - Un-check Automatically enable 'on the fly' reprojection if layers have different CRS.
 - Click OK.
- Add another vector layer to your map which has the data for South Africa only. You'll find it as exercise_data/world/RSA.shp.

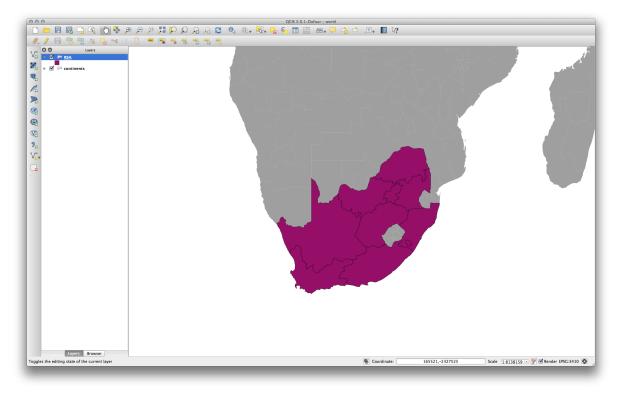
What do you notice?

The layer isn't visible! But that's easy to fix, right?

- Right-click on the RSA layer in the Layers list.
- Select Zoom to Layer Extent.

OK, so now we see South Africa... but where is the rest of the world?

It turns out that we can zoom between these two layers, but we can't ever see them at the same time. That's because their Coordinate Reference Systems are so different. The *continents* dataset is in *degrees*, but the *RSA* dataset is in *meters*. So, let's say that a given point in Cape Town in the *RSA* dataset is about 4 100 000 meters away from the equator. But in the *continents* dataset, that same point is about 33.9 degrees away from the equator.


This is the same distance - but QGIS doesn't know that. You haven't told it to reproject the data. So as far as it's concerned, the version of South Africa that we see in the *RSA* dataset has Cape Town at the correct distance of $4 \, 100 \, 000$ meters from the equator. But in the *continents* dataset, Cape Town is only 33.9 *meters* away from the equator! You can see why this is a problem.

QGIS doesn't know where Cape Town is *supposed* to be - that's what the data should be telling it. If the data tells QGIS that Cape Town is 34 meters away from the equator and that South Africa is only about 12 meters from north to south, then that is what QGIS will draw.

To correct this:

- Click on the CRS Status button again and switch Enable 'on the fly' CRS transformation on again as before.
- Zoom to the extents of the RSA dataset.

Now, because they're made to project in the same CRS, the two datasets fit perfectly:

When combining data from different sources, it's important to remember that they might not be in the same CRS. "On the fly" reprojection helps you to display them together.

Before you go on, you probably want to have the 'on the fly' reprojection to be automatically activated whenever you open datasets having different CRS:

- Open again Settings \rightarrow Options... and select CRS.
- Activate Automatically enable 'on the fly' reprojection if layers have different CRS.

7.1.3 Follow Along: Saving a Dataset to Another CRS

Remember when you calculated areas for the buildings in the *Classification* lesson? You did it so that you could classify the buildings according to area.

- Open your usual map again (containing the Swellendam data).
- Open the attribute table for the *buildings* layer.
- Scroll to the right until you see the AREA field.

Notice how the areas are all very small; probably zero. This is because these areas are given in degrees - the data isn't in a Projected Coordinate System. In order to calculate the area for the farms in square meters, the data has to be in square meters as well. So, we'll need to reproject it.

But it won't help to just use 'on the fly' reprojection. 'On the fly' does what it says - it doesn't change the data, it just reprojects the layers as they appear on the map. To truly reproject the data itself, you need to export it to a new file using a new projection.

- Right-click on the *buildings* layer in the *Layers list*.
- Select Save As... in the menu that appears. You will be shown the Save vector layer as... dialog.
- Click on the *Browse* button next to the *Save as* field.
- Navigate to exercise_data/ and specify the name of the new layer as buildings_reprojected.shp.
- Leave the *Encoding* unchanged.
- Change the value of the Layer CRS dropdown to Selected CRS.
- Click the *Browse* button beneath the dropdown.
- The CRS Selector dialog will now appear.
- In its *Filter* field, search for 34S.
- Choose WGS 84 / UTM zone 34S from the list.
- Leave the Symbology export unchanged.

The Save vector layer as... dialog now looks like this:

Format	ESRI Shapefile	
Save as		
mes/Drobo/sites/qgis/bu	ildings_reprojected.shp	Browse
Encoding	System	
CRS	Selected CRS	
WGS 84 / UTM zone 34S		Browse
Symbology export		No symbology
Scale	1:50000	
○ Skip attribute creation ✓ Add saved file to map		
Skip attribute creation Add saved file to map	More Options >>	
	More Options >>	

• Click OK.

• Start a new map and load the reprojected layer you just created.

Refer back to the lesson on *Classification* to remember how you calculated areas.

• Update (or add) the AREA field by running the same expression as before:

🗹 Create a new fiel	d	Update existing field
Output field name]
-		osm_id +
Output field width		
Function List		Selected Function Help
Search		Selected Function help
Date and Time		\$area function
String		Returns the area size of the current feature.
ColorGeometry		Syntax
xat		
yat		\$area
\$area		Arguments
\$length \$perimeter		None
Operators		
= + - /	* ^ ()	
Expression		
\$area		
Output preview: 3	4454046.8178711	
Help		Cancel

This will add an AREA field with the size of each building in square meters

• To calculate the area in another unit of measurement, for example hectares, use the AREA field to create a second column:

🗹 Create a new field	Update existing field
Output field name AREA_HA	
Output field type Decimal n	umber (real) 🛟 osm_id 💠
Output field width 10	Precision 3
Function List	
Search	Selected Function Help
leisure	Field
neisure man_made	
military	Double click to add field name to expression string.
natural	Right-Click on field name to open context menu sample
office	Field Values
place	
shop	
sport tourism	
other_tags	
AREA	Load all unique values Load 10 sample values
Operators	
= + - / * ^	
Expression	
"AREA" * 0.0001	
Output preview: 3445.40468	178711
Help	Cancel OK

Look at the new values in your attribute table. This is much more useful, as people actually quote building size in meters, not in degrees. This is why it's a good idea to reproject your data, if necessary, before calculating areas, distances, and other values that are dependent on the spatial properties of the layer.

7.1.4 Follow Along: Creating Your Own Projection

There are many more projections than just those included in QGIS by default. You can also create your own projections.

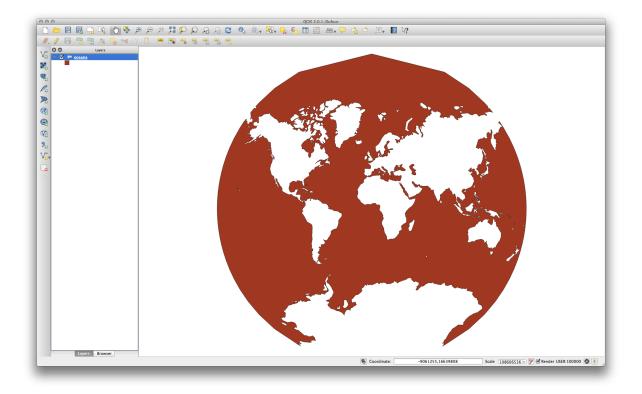
- Start a new map.
- Load the world/oceans.shp dataset.
- Go to *Settings* \rightarrow *Custom CRS*... and you'll see this dialog:

			at for specifying	j a CRS.
Name	Parameters	5		
Add	new CRS			Remove
Name:				
Paramet	ers:			
	opy ng CRS			
est				
oordinate xample by	where both the	lat/long and the ap). Then press	transformed r the calculate b	e creating. Enter a esult are known (fo utton to see if the
Geog	graphic / WGS84	ł	1	Destination CRS
North				
last				
		Calculat	e	

• Click on the Add new CRS button to create a new projection.

An interesting projection to use is called Van der Grinten I.

• Enter its name in the *Name* field.


This projection represents the Earth on a circular field instead of a rectangular one, as most other projections do.

• For its parameters, use the following string:

```
+proj=vandg +lon_0=0 +x_0=0 +y_0=0 +R_A +a=6371000 +b=6371000 +units=m +no_defs
```

	0	m to the proj4 format		
Name new Cl	Paran	neters		
Ad	d new CRS			Remove
Name:		Van der Grinten I		
Paramet	ers:	+proj=vandg +lon_0	=0 + x = 0 + 1	- x 0 = 0 + R A
С	ору	+a=6371000 +b=63		
existing CRS		+no_defs		
Fest				
Use the tex	t boxes be	low to test the CRS de	finition you are	e creating. Enter a
coordinate	where both	the lat/long and the	transformed re	esult are known (fo
		f a map). Then press t creating is accurate.	ne calculate b	utton to see if the
	, graphic / W		C	Destination CRS
North				
East				
		Calculate		

- Click OK.
- Enable "on the fly" reprojection.
- Choose your newly defined projection (search for its name in the *Filter* field).
- On applying this projection, the map will be reprojected thus:

7.1.5 In Conclusion

Different projections are useful for different purposes. By choosing the correct projection, you can ensure that the features on your map are being represented accurately.

7.1.6 Further Reading

Materials for the Advanced section of this lesson were taken from this article.

Further information on Coordinate Reference Systems is available here.

7.1.7 What's Next?

In the next lesson you'll learn how to analyze vector data using QGIS' various vector analysis tools.

7.2 Lesson: Vector Analysis

Vector data can also be analyzed to reveal how different features interact with each other in space. There are many different analysis-related functions in GIS, so we won't go through them all. Rather, we'll pose a question and try to solve it using the tools that QGIS provides.

The goal for this lesson: To ask a question and solve it using analysis tools.

Before we start, it would be useful to give a brief overview of a process that can be used to solve any GIS problem. The way to go about it is:

- 1. State the Problem
- 2. Get the Data
- 3. Analyze the Problem
- 4. Present the Results

Let's start off the process by deciding on a problem to solve. For example, you are an estate agent and you are looking for a residential property in Swellendam for clients who have the following criteria:

- 1. It needs to be in Swellendam.
- 2. It must be within reasonable driving distance of a school (say 1km).
- 3. It must be more than 100m squared in size.
- 4. Closer than 50m to a main road.
- 5. Closer than 500m to a restaurant.

To answer these questions, we're going to need the following data:

- 1. The residential properties (buildings) in the area.
- 2. The roads in and around the town.
- 3. The location of schools and restaurants.
- 4. The size of buildings.

All of this data is available through OSM and you should find that the dataset you have been using throughout this manual can also be used for this lesson. However, in order to ensure we have the complete data, we will re-download the data from OSM using QGIS' built-in OSM download tool.

Nota: Although OSM downloads have consistent data fields, the coverage and detail does vary. If you find that your chosen region does not contain information on restaurants, for example, you may need to chose a different region.

7.2.4 Pollow Along: Start a Project

- Start a new QGIS project.
- Use the OpenStreetMap data download tool found in the *Vector* → *OpenStreetMap* menu to download the data for your chosen region.
- Save the data as osm_data.osm in your exercise_data folder.
- Note that the *osm* format is a type of vector data. Add this data as a vector layer as usually *Layer* → *Add vector layer...*, browse to the new osm_data.osm file you just downloaded. You may need to select *Show All Files* as the file format.
- Select osm_data.osm and click Open
- Nella finestra di dialogo che si apre, seleziona tutti i layer, *eccetto* i layer other_relations e multilinestrings

_ayer ID	Layer name	Number of features	Geometry type	
0	points	Unknown	Point	
1	lines	Unknown	LineString	
2	multilinestrings	Unknown	MultiLineString	
3	multipolygons	Unknown	MultiPolygon GeometryCollection	
Select A	All		Cancel	ОК

This will import the OSM data as separate layers into your map.

The data you just downloaded from OSM is in a geographic coordinate system, WGS84, which uses latitude and longitude coordinates, as you know from the previous lesson. You also learnt that to calculate distances in meters, we need to work with a projected coordinate system. Start by setting your project's coordinate system to a suitable *CRS* for your data, in the case of Swellendam, *WGS 84 / UTM zone 34S*:

- Open the Project Properties dialog, select CRS and filter the list to find WGS 84 / UTM zone 34S.
- Click OK.

We now need to extract the information we need from the OSM dataset. We need to end up with layers representing all the houses, schools, restaurants and roads in the region. That information is inside the *multipolygons* layer and can be extracted using the information in its *Attribute Table*. We'll start with the schools layer:

- Right-click on the *multipolygons* layer in the Layers list and open the Layer Properties.
- Go to the *General* menu.
- Under Feature subset click on the [Query Builder] button to open the Query builder dialog.
- In the *Fields* list on the left of this dialog until you see the field amenity.
- Click on it once.
- Click the *All* button underneath the *Values* list:

Now we need to tell QGIS to only show us the polygons where the value of amenity is equal to school.

- Double-click the word amenity in the *Fields* list.
- Watch what happens in the *Provider specific filter expression* field below:

000	💋 Layer Properties – multipolygons General	
🗙 General 👻	▼ Layer info	
😽 Style	Layer name multipolygons displayed as multipolygons	
(abc Labels	Lay O O O Query Builder	
Fields	Dat multipolygons Fields Values	
Kendering	aeroway parking	
	Commentity place_of_worship	
	EPS barrier pub Spec	:ify
Joins	boundary restaurant retirement_home	
Diagrams	craft school Sample All	
👔 Metadata 🗸 🔻	nistoric Ulsa unfiltered laver	
	Ma (inc ♥ Operators = < > LIKE % IN NOT IN < = >= != ILIKE AND OR NOT Provider specific filter expression "amenity" = school" Help Test Clear Cancel OK	•
	Query B	uilder
	Load Style Save As Default Restore Default Style Save Style	•
	Help Apply Cancel	ОК

The word "amenity" has appeared. To build the rest of the query:

- Click the = button (under *Operators*).
- Double-click the value school in the Values list.
- Click OK twice.

This will filter OSM's multipolygons layer to only show the schools in your region. You can now either:

- Rename the filtered OSM layer to schools and re-import the multipolygons layer from $\texttt{osm_data.osm}, OR$
- Duplicate the filtered layer, rename the copy, clear the Query Builder and create your new query in the *Query Builder*.

7.2.5 **C** Try Yourself Extract Required Layers from OSM

Using the above technique, use the Query Builder tool to extract the remaining data from OSM to create the following layers:

- roads (from OSM's lines layer)
- restaurants (from OSM's multipolygons layer)

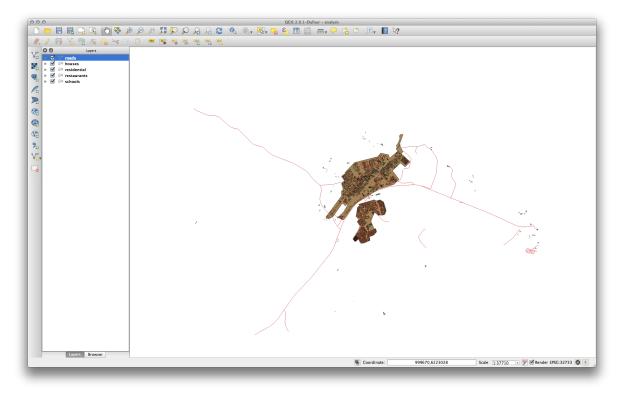
• houses (from OSM's multipolygons layer)

You may wish to re-use the roads. shp layer you created in earlier lessons.

Check your results

- Save your map under *exercise_data*, as analysis.ggs (this map will be used in future modules).
- In your operating system's file manager, create a new folder under *exercise_data* and call it residential_development. This is where you'll save the datasets that will be the results of the analysis functions.

7.2.6 **C** Try Yourself Find important roads


Some of the roads in OSM's dataset are listed as unclassified, tracks, path and footway. We want to exclude these from our roads dataset.

• Open the Query Builder for the roads layer, click Clear and build the following query:

```
"highway" != 'NULL' AND "highway" != 'unclassified' AND "highway" !=
'track' AND "highway" != 'path' AND "highway" != 'footway'
```

You can either use the approach above, where you double-clicked values and clicked buttons, or you can copy and paste the command above.

This should immediately reduce the number of roads on your map:

7.2.7 **C** Try Yourself Convert Layers' CRS

Because we are going to be measuring distances within our layers, we need to change the layers' CRS. To do this, we need to select each layer in turn, save the layer to a new shapefile with our new projection, then import that new layer into our map.

Nota: In this example, we are using the WGS 84 / UTM zone 34S CRS, but you may use a UTM CRS which is

more appropriate for your region.

- Right click the roads layer in the Layers panel.
- Click Save as...
- In the Save Vector As dialog, choose the following settings and click *Ok* (making sure you select Add saved file to map):

	Save vector layer as	
Format	ESRI Shapefile +	
Save as	po/sites/qgis/roads_34S.shp Browse	
Encoding	System +	
	Selected CRS \$	
CRS	WGS 84 / UTM zone 34S Browse	
Symbology export	No symbology +	
Scale	1:50000	
OGR creation opti	ons	
Data source		
Layer		
Skip attribute		

The new shapefile will be created and the resulting layer added to your map.

Nota: If you don't have activated *Enable 'on the fly' CRS transformation* or the *Automatically enable 'on the fly' reprojection if layers have different CRS* settings (see previous lesson), you might not be able to see the new layers you just added to the map. In this case, you can focus the map on any of the layers by right click on any layer and click *Zoom to layer extent*, or just enable any of the mentioned 'on the fly' options.

• Remove the old roads layer.

Repeat this process for each layer, creating a new shapefile and layer with "_34S" appended to the original name and removing each of the old layers.

Once you have completed the process for each layer, right click on any layer and click *Zoom to layer extent* to focus the map to the area of interest.

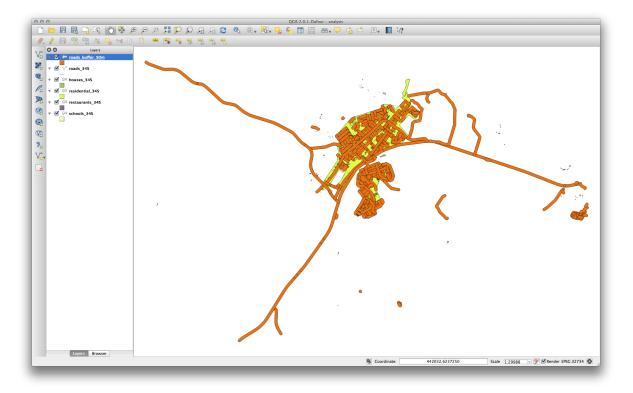
Now that we have converted OSM's data to a UTM projection, we can begin our calculations.

7.2.8 Follow Along: Analyzing the Problem: Distances From Schools and Roads

QGIS allows you to calculate distances from any vector object.

- Make sure that only the *roads_34S* and *houses_34S* layers are visible, to simplify the map while you're working.
- Click on the *Vector* \rightarrow *Geoprocessing Tools* \rightarrow *Buffer*(*s*) tool:

This gives you a new dialog.

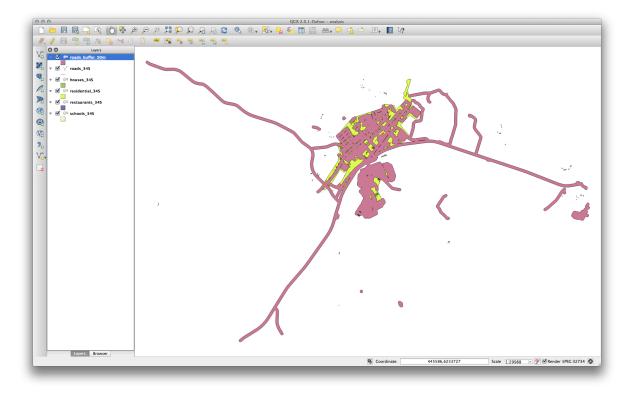

• Set it up like this:

roads_buffer_50m	\$
Use only selected featu	ures
Segments to approximate	5
 Buffer distance 	50
O Buffer distance field	
osm_id	* *
Dissolve buffer results	
Output shapefile	
umes/Drobo/sites/qgis/	roads_buffer_50m.shp Browse

The *Buffer distance* is in meters because our input dataset is in a Projected Coordinate System that uses meter as its basic measurement unit. This is why we needed to use projected data.

- Save the resulting layer under exercise_data/residential_development/ as roads_buffer_50m.shp.
- Click *OK* and it will create the buffer.
- When it asks you if it should "add the new layer to the TOC", click *Yes.* ("TOC" stands for "Table of Contents", by which it means the *Layers list*).
- Close the *Buffer(s)* dialog.

Now your map will look something like this:


If your new layer is at the top of the Layers list, it will probably obscure much of your map, but this gives us all the areas in your region which are within 50m of a road.

However, you'll notice that there are distinct areas within our buffer, which correspond to all the individual roads. To get rid of this problem, remove the layer and re-create the buffer using the settings shown here:

roads_34S	*
Use only selected fe	atures
Segments to approxima	ate 5
 Buffer distance 	50
O Buffer distance field	ł
osm_id	Å T
🗹 Dissolve buffer resu	lts
Output shapefile	
lumes/Drobo/sites/qgi	s/roads_buffer_50m.shp Browse
	Close OK

- Note that we're now checking the *Dissolve buffer results* box.
- Save the output under the same name as before (click *Yes* when it asks your permission to overwrite the old one).
- Click *OK* and close the *Buffer(s)* dialog again.

Once you've added the layer to the Layers list, it will look like this:

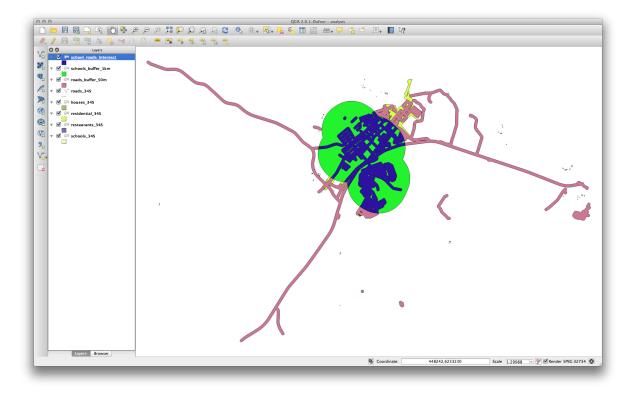
Now there are no unnecessary subdivisions.

7.2.9 **P** Try Yourself Distance from schools

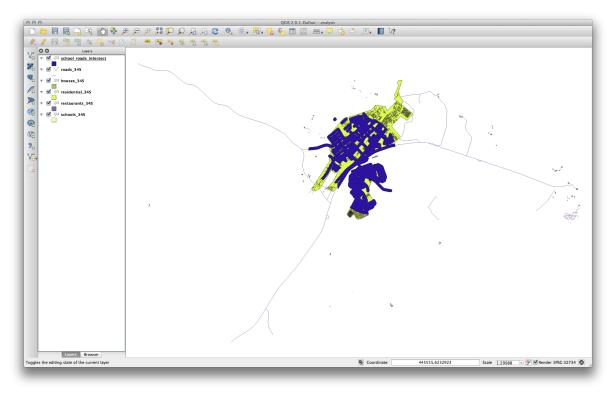
• Use the same approach as above and create a buffer for your schools.

It needs to be 1 km in radius, and saved under the usual directory as schools_buffer_1km.shp.

Check your results



Now we have areas where the road is 50 meters away and there's a school within 1 km (direct line, not by road). But obviously, we only want the areas where both of these criteria are satisfied. To do that, we'll need to use the *Intersect* tool. Find it under *Vector* \rightarrow *Geoprocessing Tools* \rightarrow *Intersect*. Set it up like this:

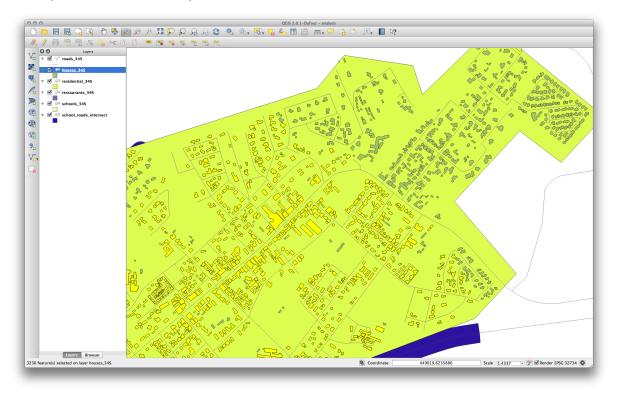

Input vector layer	
schools_buffer_1kr	n ‡
Use only selected	features
Intersect layer	
roads_buffer_50m	\$
Use only selected	features
Output shapefile	
bo/sites/qgis/schoo	l_roads_intersect.shp Browse
	Close OK

The two input layers are the two buffers; the save location is as usual; and the file name is road_school_buffers_intersect.shp. Once it's set up like this, click *OK* and add the layer to the *Layers list* when prompted.

In the image below, the blue areas show us where both distance criteria are satisfied at once!

You may remove the two buffer layers and only keep the one that shows where they overlap, since that's what we really wanted to know in the first place:

7.2.11 Follow Along: Select the Buildings


Now you've got the area that the buildings must overlap. Next, you want to select the buildings in that area.

• Click on the menu entry Vector \rightarrow Research Tools \rightarrow Select by location. A dialog will appear.

• Set it up like this:

*
*
Close OK

- Click *OK*, then *Close*.
- You'll probably find that not much seems to have changed. If so, move the school_roads_intersect layer to the bottom of the layers list, then zoom in:

The buildings highlighted in yellow are those which match our criteria and are selected, while the buildings in green are those which do not. We can now save the selected buildings as a new layer.

- Right-click on the *houses_34S* layer in the *Layers list*.
- Select Save Selection As....
- Set the dialog up like this:

Format	ESRI Shapefile	
Save as	gis/well_located_houses.shp Browse	
Encoding	System \$	
CRS	Layer CRS #	
CRS	WGS 84 / UTM zone 34S Browse	
Symbology expo	ort No symbology	
Scale	1:50000	
OGR creation o	ptions	
Data source		
Data source Layer		

- The file name is well_located_houses.shp.
- Click OK.

Now you have the selection as a separate layer and can remove the houses_34S layer.

7.2.12 Try Yourself Further Filter our Buildings

We now have a layer which shows us all the buildings within 1km of a school and within 50m of a road. We now need to reduce that selection to only show buildings which are within 500m of a restaurant.

Using the processes described above, create a new layer called <code>houses_restaurants_500m</code> which further filters your well_located_houses layer to show only those which are within 500m of a restaurant.

Check your results

7.2.13 Follow Along: Select Buildings of the Right Size

To see which buildings are the correct size (more than 100 square meters), we first need to calculate their size.

- Open the attribute table for the *houses_restaurants_500m* layer.
- Enter edit mode and open the field calculator.
- Set it up like this:

Create a new field Output field name ARE/		Update existing field
Output field width 10	Precision 3	
Function List		Colored Security Hole
Search		Selected Function Help
▶ Color		\$area function
Geometry		Returns the area size of the current feature.
xat		
yat		Syntax
\$area		Şarea
\$length \$perimeter		Arguments
\$x		Arguments
\$y		None
Operators		
= + - / *	∧ ()	
Expression		
Sarea		
Output preview: 3642.	21533203125	

- If you can't find AREA in the list, try creating a new field as you did in the previous lesson of this module.
- Click OK.
- Scroll to the right of the attribute table; your AREA field now has areas in metres for all the buildings in your *houses_restaurants_500m* layer.
- Click the edit mode button again to finish editing, and save your edits when prompted.
- Build a query as earlier in this lesson:

000	缓 Layer Properties – houses_resta	aurants_500m
🔀 General 💌 La	yer info	
😽 Style 🛛 Laye	er name houses_restaurants_500m	displayed as houses_restaurants_500m
(abc) Labels Lay	O O O Query Buil	der
Fields Dat		
Kendering		alues
Rendering Display	man_made military	
	natural office	Specify
Actions	place	specifying
• 📢 Joins	shop sport	
🐖 Diagrams	tourism AREA	Sample All
🧃 Metadata 🛛 🔽 🗆		Use unfiltered layer
Max (inc	▼ Operators	•
(inc		NOT IN
	<= >= != ILIKE AND OR	NOT
▼ Fe		
	Provider specific filter expression	
	"AREA" >= 100	
	Help Test Clear	Cancel OK
		Query Builder
	Load Style Save As Default	Restore Default Style Save Style
Не	lp Apply	Cancel OK

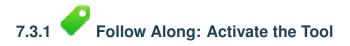
• Click *OK*. Your map should now only show you those buildings which match our starting criteria and which are more than 100m squared in size.

7.2.14 |base| Try Yourself

• Save your solution as a new layer, using the approach you learned above for doing so. The file should be saved under the usual directory, with the name solution.shp.

7.2.15 In Conclusion

Using the GIS problem-solving approach together with QGIS vector analysis tools, you were able to solve a problem with multiple criteria quickly and easily.


7.2.16 What's Next?

In the next lesson, we'll look at how to calculate the shortest distance along the road from one point to another.

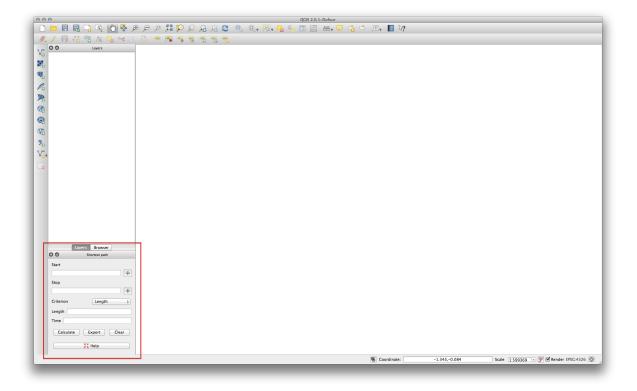
7.3 Lesson: Network Analysis

Calculating the shortest distance between two points is a commonly cited use for GIS. QGIS ships with this tool, but it's not visible by default. In this brief lesson, we'll show you what you need to get started.

The goal for this lesson: To activate, configure and use the Road Graph plugin.

QGIS has many plugins that add to its basic functions. Many of these plugins are so useful that they ship along with the program straight out of the box. They're still hidden by default, though. So in order to use them, you need to activate them first.

To activate the *Road Graph* plugin:


- Start the *Plugin Manager* by clicking on the QGIS main window's menu item *Plugins* → *Manage and Install Plugins...* A dialog appears.
- Select the plugin like this:

• Click *Close* on the *Plugin Manager* dialog.

Nota: If you do not see the plugin in your interface, go to $View \rightarrow Panels$ and ensure that *Shortest path* has a check mark next to it.

This panel will appear in your interface:

7.3.2 **Follow Along: Configure the Tool**

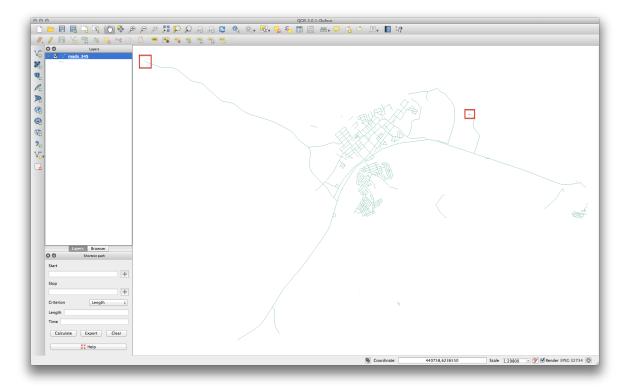
To have a layer to calculate on, first save your current map. If you haven't already done so, save your roads_34S layer to a shapefile by right-clicking the layer and selecting *Save as...* Create a new map and load this layer into it.

Since so many different configurations are possible when analyzing networks, the plugin doesn't assume anything before you've set it up. This means that it won't do anything at all if you don't set it up first.

- Click on the menu item Vector \rightarrow Road graph \rightarrow settings. A dialog will appear.
- Make sure it's set up like this (use defaults unless otherwise specified):

Time unit	hour ‡
Distance unit	kilometer ‡
Topology tolerance	0.00000
Transportation laye	Default settings
Layer	roads_34S ‡
Direction field	Always use default 💲
Value for forward direction	
Value for reverse direction	
Value two-way direction	
Speed field Always use d	efault ‡ km/h ‡
Help	Cancel OK

- *Time unit: hour*
- Distance unit: kilometer
- Layer: roads_34S
- Speed field: Always use default / km/h


Time unit	hour \$
Distance unit	kilometer *
Topology tolerance	0.00000
Transportation la	ayer Default settings
Direction	Two-way direction \$
Cost	Line lengths
Speed	60
Help	Cancel OK

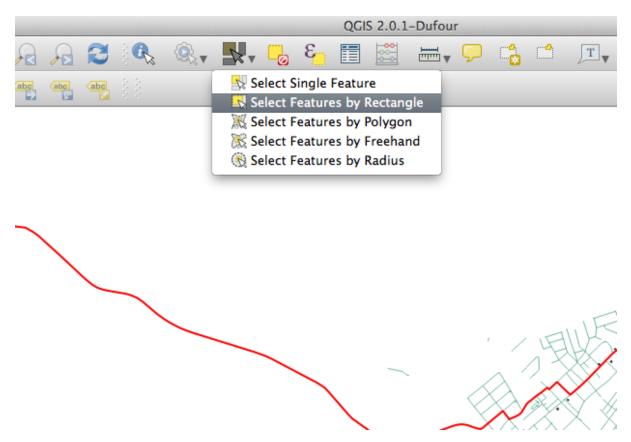
• Direction: Two-way direction

• Speed: 60

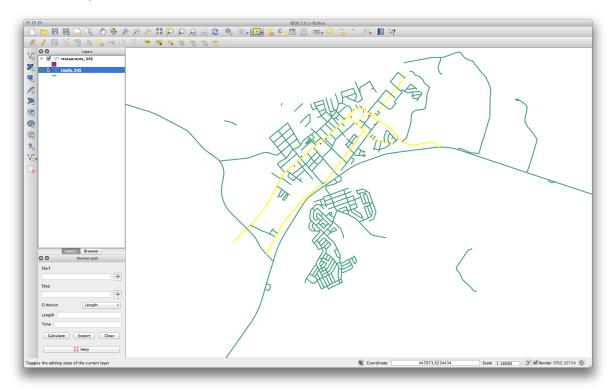
Find two points, on roads, on your map. They do not need to have any significance, but they should be connected by roads and separated by a reasonable distance:

• In the plugin panel, click on the *Capture Point* button next to the *Start* field:

	Layers	Browser	
80	Sh	ortest path	
Start			
			*
Stop			
Stop			
			*
Criterion		Length	\$
Length			
Time			
Time			
Calculat	te E	xport	Clear
		Help	


- Click on your chosen start point.
- Use the Capture Point button next to the Stop field and capture your chosen end point.
- Click on the *Calculate* button to see the solution:

	000	QCIS 2.0.1-Dufour
	🔄 🗅 🖿 🖶 🖶 🕞 🔍 🖑 🌻 🖉	2 月 2 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日
Stort Stort Stop # Stop # Official S2954:06 # Official S2554 # Criterio Length # Criterio Langth * Time 0.253403h *	Vo Luen Vo vo Vo vo	
Image: State 446425,6234090 Scale 129800 > Ø Ø Render EFSG.32734 Ø	Stortest path Start (r440601,6.23795e=06) Stop (r62154,6.23602e=06) (r16eion Criterion Length 100 Calculate Export Calculate	
Image: Scondinate: 444625,6234090 Scale T.29800 > Ø Ø mender 195532714 Ø		


7.3.4 Follow Along: Using Criteria

Nota: Section developed by Linfiniti and S Motala (Cape Peninsula University of Technology)

- Add your restaurants_34S layer to the map (extract it from your analyis map if necessary).
- Open the attribute table for the *roads_34S* layer and enter edit mode.
- Add a new column with the name SPEED, and give it the type Whole number (integer) with a width of 3.
- In the main window, activate the *Select Features by Rectangle* tool:

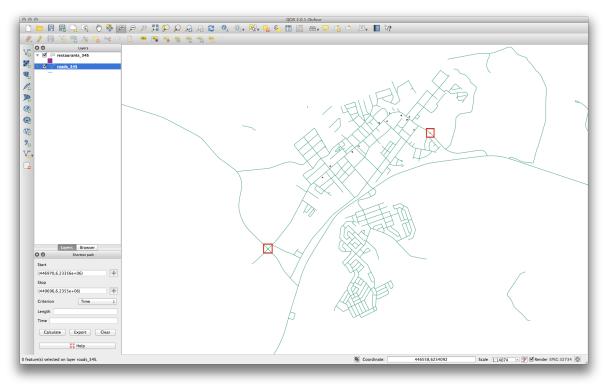
• Select any main roads in urban - but not residential - areas:

(To select more than one road, hold the ctrl button and drag a box across any road that you want to include in the selection.)

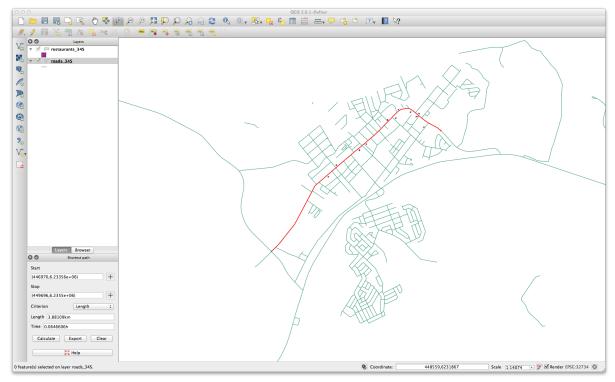
• In the attribute table, select *Show selected features*.

0 (0 0					Att	tribute table – roa	ads_34S :: Features	s total: 302, filt
/		E	5 😵	۹	1. 1. 2				
	osm_id 🔻	name	highway	waterway	aerialway	barrier	man_made	other_tags	SPEED
22	183010770	Cooper Street	residential	NULL	NULL	NULL	NULL	"lanes"=>"	NULL
26	183080638	Kerk Street	residential	NULL	NULL	NULL	NULL	"name:af"=	NULL
29	183080642	Swellengrebel	tertiary	NULL	NULL	NULL	NULL	"lanes"=>"2"	NULL
277	238808188	Voortrek St	secondary	NULL	NULL	NULL	0	"lanes"=>"2"	NULL
281	238992238	Cooper Street	residential	NULL	NULL	NULL	NULL	"surface"=	NULL
286	238992244	Somerset St	residential	NULL	NULL	NULL	NULL	"lanes"=>"	NULL
	37608761	Berg	residential	NULL	NULL	NULL	NULL	"maxspeed"	NULL
1	4937372	Voortrek St	tertiary	NULL	NULL	NULL	NULL	"lanes"=>"	NULL
57	55692509	Cooper Street	residential	NULL	NULL	NULL	NULL	NULL	NULL
64	55692517	Kerk Street	residential	NULL	NULL	NULL	NULL	"surface"=	NULL
70	59406669	NULL	residential	NULL	NULL	NULL	NULL	NULL	NULL
91	100187237	NULL	service	NULL	NULL	NULL	NULL	NULL	NULL
92	101398165	NULL	trunk	NULL	NULL	NULL	NULL	"bridge"=>"	NULL
93	101398171	NULL	trunk	NULL	NULL	NULL	NULL	"maxspeed"	NULL
94	169449294	Rhenius	residential	NULL	NULL	NULL	NULL	NULL	NULL
95	169451631	De Mist Street	residential	NULL	NULL	NULL	NULL	"oneway"=	NULL
96	170968185	Bontebok St	residential	NULL	NULL	NULL	NULL	"access"=>	NULL
97	172750608	NULL	service	NULL	NULL	NULL	NULL	"service"=>	NULL
98	177153014	NULL	residential	NULL	NULL	NULL	NULL	NULL	NULL
99	177153015	NULL	service	NULL	NULL	NULL	NULL	NULL	NULL
100	177153016	Akasia	residential	NULL	NULL	NULL	NULL	NULL	NULL
101	177153017	NULL	residential	NULL	NULL	NULL	NULL	NULL	NULL
102	177153018	NULL	residential	NULL	NULL	NULL	NULL	NULL	NULL
7 5	Show All Features 🚽								
- h	Show All Feat	tures				*	× / /	` X	$\langle \rangle \rangle$
	Show Selecte	d Features					$-\chi/\chi$	7	
6	Show Feature	es Visible On M	lap				$\sim \times 1$		72.5
6	Show Edited	and New Featu	res						KKXX 1
	olumn Filter		•				1	2	KV)/XX
	Advanced Fil	ter (Expression) % F						<u>/// ft</u>
_		Y					/		KXCXX IT

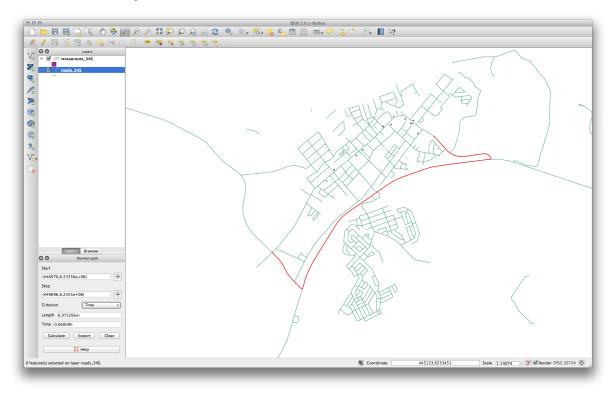
• Set the SPEED value for all the selected streets to 60:


0	00					Att	ribute table - roa	ads_34S :: Feature	s total: 302, filte
1	6	ε 🧖	2 🖌 🖉	P	16 16 🖾				
-									SPEED
	osm_id ▼ 183010770	name Cooper Street	highway	waterway NULL	aerialway NULL	barrier NULL	man_made NULL	other_tags "lanes"=>"	SPEED 60
	183080638	Kerk Street	residential	NULL	NULL	NULL	NULL	"name:af"=	60
	183080642	Swellengrebel		NULL	NULL	NULL	NULL	"lanes"=>"2"	60
	238808188	Voortrek St		NULL	NULL	NULL		"lanes"=>"2"	60
	238992238	Cooper Street		NULL	NULL	NULL	NULL	"surface"=	60
	238992244	Somerset St		NULL	NULL	NULL		"lanes"=>"	60
	37608761	Berg	residential	NULL	NULL	NULL	NULL	"maxspeed"	60
	4937372	Voortrek St	tertiary					"lanes"->"	60
57	55692509	Cooper Street	residential						60
	55692517	Kerk Street	residential					"surface"=	60
70	59406669	NULL	residential	NULL	NULL	NULL	NULL	NULL	60
8	Show Selected Feat	ures _v							

In context, this means that you're setting the speed limit on those roads to 60 km/h.


• Select any highways or major roads outside urban areas:

- Set the SPEED value for all the selected streets to 120.
- Close the attribute table, save your edits, and exit edit mode.
- Check the *Vector* → *Road graph* → *Road graph settings* to ensure that it's set up as explained previously in this lesson, but with the *Speed* value set to the SPEED field you just created.
- In the Shortest path panel, click the Start point button.
- Set the starting point on a minor road on one side of Swellendam and the end point on a major road on the other side of town:



- In the Criterion drop-down list in the Shortest path panel, select Length.
- Click *Calculate*. The route will be calculated for the shortest distance:

Notice the values of Length and Time in the Shortest path panel.

- Set the *Criterion* to *Time*.
- Click *Calculate* again. The route will be calculated for the shortest time:

You can switch back and forth between these criteria, recalculating each time, and note the changes in the *Length* and *Time* taken. Remember that the assumption being made to arrive at the time taken to travel a route does not

account for acceleration, and assumes that you will be traveling at the speed limit at all times. In a real situation, you may want to split roads into smaller sections and note the average or expected speed in each section, rather than the speed limit.

If, on clicking *Calculate*, you see an error stating that a path could not be found, make sure that the roads you digitized actually meet each other. If they're not quite touching, either fix them by modifying the features, or set the *Topology tolerance* in the plugin's settings. If they're passing over each other without intersecting, use the *Split features* tool to "split" roads at their intersections:

R

Remember that the Split features tool only works in edit mode on selected features, though!

You might also find that the shortest route is also the quickest if this error is returned.

7.3.5 In Conclusion

Now you know how to use the Road Graph plugin to solve shortest-path problems.

7.3.6 What's Next?

Next you'll see how to run spatial statistics algorithms on vector datasets.

7.4 Lesson: Spatial Statistics

Nota: Lesson developed by Linfiniti and S Motala (Cape Peninsula University of Technology)

Spatial statistics allow you to analyze and understand what is going on in a given vector dataset. QGIS includes several standard tools for statistical analysis which prove useful in this regard.

The goal for this lesson: To know how to use QGIS' spatial statistics tools.

7.4.1 Follow Along: Create a Test Dataset

In order to get a point dataset to work with, we'll create a random set of points.

To do so, you'll need a polygon dataset defining the extents of the area you want to create the points in.

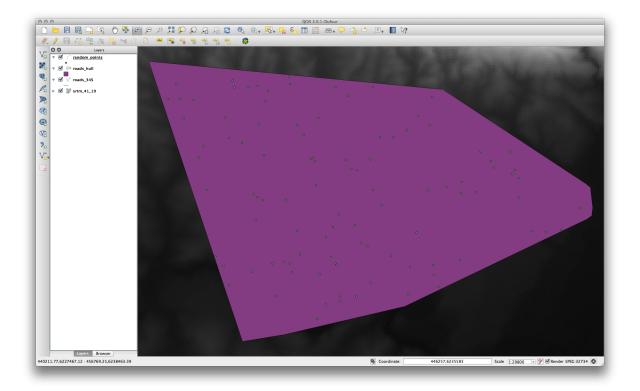
We'll use the area covered by streets.

- Create a new empty map.
- Add your roads_34S layer, as well as the srtm_41_19.tif raster (elevation data) found in exercise_data/raster/SRTM/.

Nota: You might find that your SRTM DEM layer has a different CRS to that of the roads layer. If so, you can reproject either the roads or DEM layer using techniques learnt earlier in this module.

• Use the *Convex hull(s)* tool (available under *Vector* → *Geoprocessing Tools*) to generate an area enclosing all the roads:

roads_33S	ected features
 Create single 	e minimum convex hull
Create conv	ex hulls based on input field
ТҮРЕ	4
Output shapefil	e
ц	;/roads_hull.shp Browse
्रा Add result to	


- Save the output under exercise_data/spatial_statistics/ as roads_hull.shp.
- Check Add result to canvas option to add the output to the TOC (Layers list).

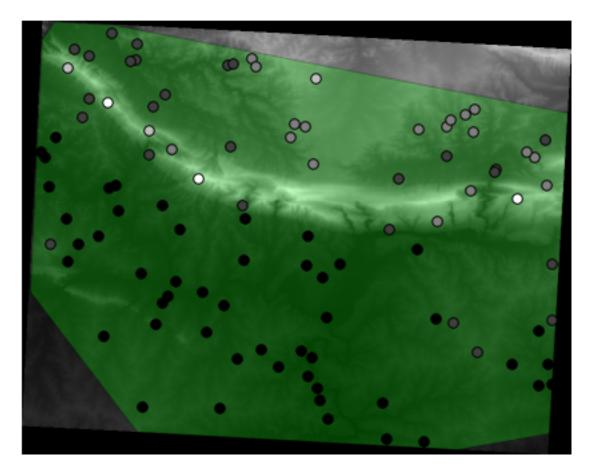
Creating random points

• Create random points in this area using the tool at *Vector* \rightarrow *Research Tools* \rightarrow *Random points*:

Sample Size			
Unstratified Sampli	ng Design ((Entire layer)	
 Use this number 	r of points	100	¢
Stratified Sampling	Design (Ind	dividual poly	gons)
OUse this number	r of points	1	A V
OUse this density	of points	0.0001	(Å)
OUse value from i	nput field		A T
utput Shapefile	andom_poi	nts.shp	Browse
Add result to canva	as		

- Save the output under exercise_data/spatial_statistics/ as random_points.shp.
- Check Add result to canvas option to add the output to the TOC (Layers list).

Sampling the data


- To create a sample dataset from the raster, you'll need to use the *Point sampling tool* plugin.
- Refer ahead to the module on plugins if necessary.
- Search for the phrase point sampling in the *Plugin* -> *Manage and Install Plugins...* and you will find the plugin.
- As soon as it has been activated with the *Plugin Manager*, you will find the tool under *Plugins* \rightarrow *Analyses* \rightarrow *Point sampling tool*:

Laver o	ontaining sampling points:
rando	om_points ÷
Layers	with fields/bands to get values from:
roads_	hull : NAME (polygon)
	hull : ONEWAY (polygon)
	hull : LANES (polygon)
	hull : area (polygon)
	hull : perim (polygon)
	1_19 : Band 1 (raster)
Output	t point vector layer:
Ir	/random_samples.shp Browse
✓ Ac	dd created layer to the TOC
atus:	
atus.	

- Select *random_points* as the layer containing sampling points, and the SRTM raster as the band to get values from.
- Make sure that "Add created layer to the TOC" is checked.
- Save the output under exercise_data/spatial_statistics/ as random_samples.shp.

Now you can check the sampled data from the raster file in the attributes table of the *random_samples* layer, they will be in a column named srtm_41_19.tif.

A possible sample layer is shown here:

The sample points are classified by their value such that darker points are at a lower altitude. You'll be using this sample layer for the rest of the statistical exercises.

7.4.2 Follow Along: Basic Statistics

Now get the basic statistics for this layer.

- Click on the *Vector* \rightarrow *Analysis Tools* \rightarrow *Basic statistics* menu entry.
- In the dialog that appears, specify the *random_samples* layer as the source.
- Make sure that the *Target field* is set to srtm_41_19.tif which is the field you will calculate statistics for.
- Click OK. You'll get results like this:

random_samples	
Use only selected features Target field	
srtm_41_19	
tatistics output	
Parameter	Value
Mean	341.41
StdDev	246.158692514
Sum	34141.0
Min	58.0
Max	1145.0
N	100.0
cv	0.721006099744
Number of unique values	94
Range	1087.0
Median	256.0
Press Ctrl+C to copy results to the clipboard	

Nota: You can copy and paste the results into a spreadsheet. The data uses a (colon :) separator.

	A	В
1	Mean	343.9
2	StdDev	254.4824748
3	Sum	34390
4	Min	34
5	Max	1226
6	Ν	100
7	CV	0.739989749
8	Number of unique valu•	91
9	Range	1192
10	Median	269

• Close the plugin dialog when done.

To understand the statistics above, refer to this definition list:

Mean The mean (average) value is simply the sum of the values divided by the amount of values.

StdDev The standard deviation. Gives an indication of how closely the values are clustered around the mean. The smaller the standard deviation, the closer values tend to be to the mean.

Sum All the values added together.

Min The minimum value.

Max The maximum value.

N The amount of samples/values.

CV The spatial covariance of the dataset.

- **Number of unique values** The number of values that are unique across this dataset. If there are 90 unique values in a dataset with N=100, then the 10 remaining values are the same as one or more of each other.
- Range The difference between the minimum and maximum values.
- **Median** If you arrange all the values from least to greatest, the middle value (or the average of the two middle values, if N is an even number) is the median of the values.

7.4.3 Follow Along: Compute a Distance Matrix

- Create a new point layer in the same projection as the other datasets (WGS 84 / UTM 34S).
- Enter edit mode and digitize three point somewhere among the other points.
- Alternatively, use the same random point generation method as before, but specify only three points.
- Save your new layer as distance_points.shp.

To generate a distance matrix using these points:

- Open the tool *Vector* \rightarrow *Analysis Tools* \rightarrow *Distance matrix*.
- Select the *distance_points* layer as the input layer, and the *random_samples* layer as the target layer.
- Set it up like this:

nput point layer		
distance_points		÷
nput unique ID fie	d	
id		÷
Target point layer		
distance_points		÷
Target unique ID fi	eld	
id		÷
Output matrix typ	e	
🔵 Linear (N*k x 🗄	3) distance matrix	
🔵 Standard (N x	T) distance matrix	
• Summary dista	nce matrix (mean, std. dev.,	min, max)
🗹 Use only the n	earest (k) target points 1	•
Output distance ma	trix	
	i/distance_matrix.csv	Browse
	Close	ОК

- Save the result as distance_matrix.csv.
- Click *OK* to generate the distance matrix.
- Open it in a spreadsheet program to see the results. Here is an example:

InputID	MEAN	STDDEV	MIN	MAX
3	0.195448627921	0	0.195448627921	0.195448627921
2	0.174928758638	0	0.174928758638	0.174928758638
1	0.174928758638	0	0.174928758638	0.174928758638

7.4.4 Follow Along: Nearest Neighbor Analysis

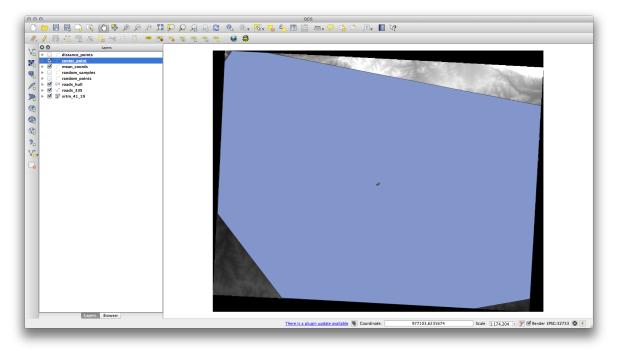
To do a nearest neighbor analysis:

- Click on the menu item Vector \rightarrow Analysis Tools \rightarrow Nearest neighbor analysis.
- In the dialog that appears, select the *random_samples* layer and click OK.
- The results will appear in the dialog's text window, for example:

random_samples	≜ ▼
Vearest neighbour statistics Parameter	Value
Observed mean distance	2690.47429422
Expected mean distance	2765.6230938
Nearest neighbour index	0.972827533967
N	100
ress Ctrl+C to copy results to the clipboard	
	Close OK

Nota: You can copy and paste the results into a spreadsheet. The data uses a (colon :) separator.

7.4.5 **Follow Along: Mean Coordinates**

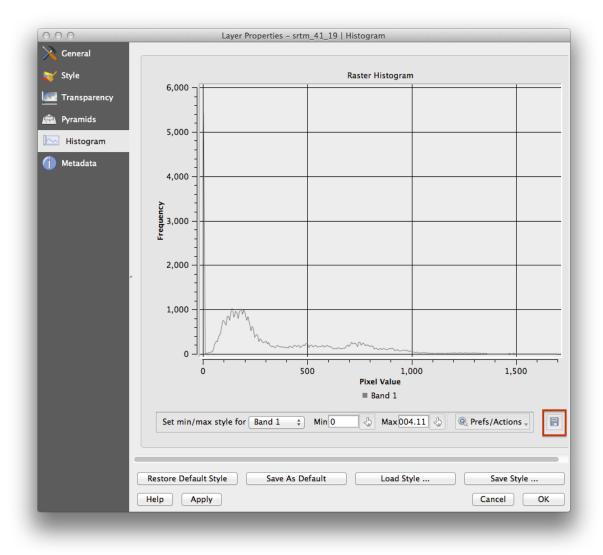

To get the mean coordinates of a dataset:

- Click on the *Vector* \rightarrow *Analysis Tools* \rightarrow *Mean coordinate(s)* menu item.
- In the dialog that appears, specify *random_samples* as the input layer, but leave the optional choices unchanged.
- Specify the output layer as mean_coords.shp.
- Click OK.
- Add the layer to the *Layers list* when prompted.

Let's compare this to the central coordinate of the polygon that was used to create the random sample.

- Click on the Vector \rightarrow Geometry Tools \rightarrow Polygon centroids menu item.
- In the dialog that appears, select *roads_hull* as the input layer.
- Save the result as center_point.
- Add it to the *Layers list* when prompted.

As you can see from the example below, the mean coordinates and the center of the study area (in orange) don't necessarily coincide:



7.4.6 **Follow Along: Image Histograms**

The histogram of a dataset shows the distribution of its values. The simplest way to demonstrate this in QGIS is via the image histogram, available in the *Layer Properties* dialog of any image layer.

- In your Layers list, right-click on the SRTM DEM layer.
- · Select Properties.
- Choose the tab *Histogram*. You may need to click on the *Compute Histogram* button to generate the graphic. You will see a graph describing the frequency of values in the image.

• You can export it as an image:

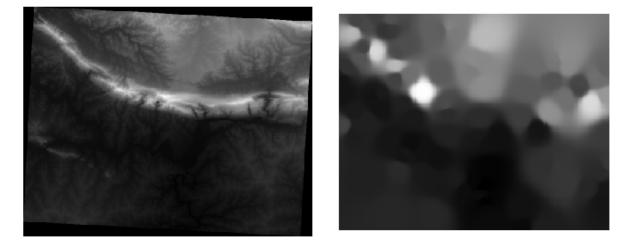
• Select the Metadata tab, you can see more detailed information inside the Properties box.

The mean value is 332.8, and the maximum value is 1699! But those values don't show up on the histogram. Why not? It's because there are so few of them, compared to the abundance of pixels with values below the mean. That's also why the histogram extends so far to the right, even though there is no visible red line marking the frequency of values higher than about 250.

Therefore, keep in mind that a histogram shows you the distribution of values, and not all values are necessarily visible on the graph.

• (You may now close Layer Properties.)

7.4.7 Pollow Along: Spatial Interpolation

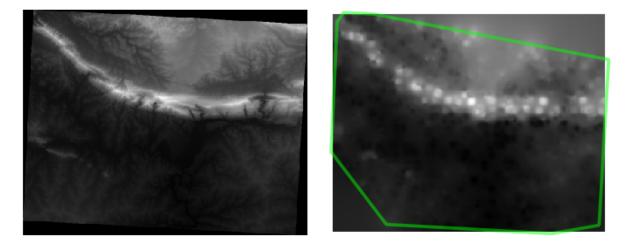

Let's say you have a collection of sample points from which you would like to extrapolate data. For example, you might have access to the *random_samples* dataset we created earlier, and would like to have some idea of what the terrain looks like.

To start, launch the *Grid (Interpolation)* tool by clicking on the *Raster* \rightarrow *Analysis* \rightarrow *Grid (Interpolation)* menu item.

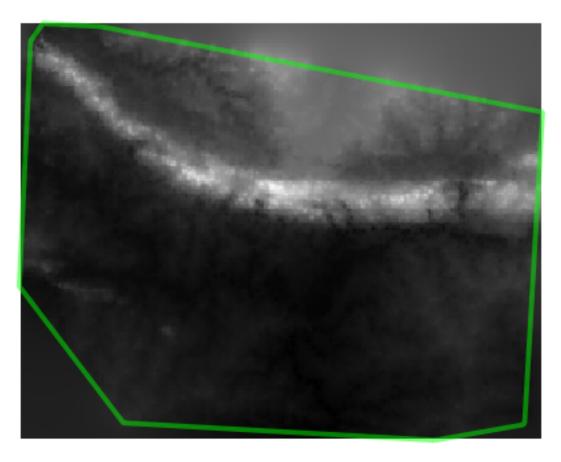
• In the Input file field, select random_samples.

- Check the *Z Field* box, and select the field srtm_41_19.
- Set the *Output file* location to exercise_data/spatial_statistics/interpolation.tif.
- Check the *Algorithm* box and select *Inverse distance to a power*.
- Set the *Power* to 5.0 and the *Smoothing* to 2.0. Leave the other values as-is.
- Check the Load into canvas when finished box and click OK.
- When it's done, click *OK* on the dialog that says Process completed, click *OK* on the dialog showing feedback information (if it has appeared), and click *Close* on the *Grid (Interpolation)* dialog.

Here's a comparison of the original dataset (left) to the one constructed from our sample points (right). Yours may look different due to the random nature of the location of the sample points.



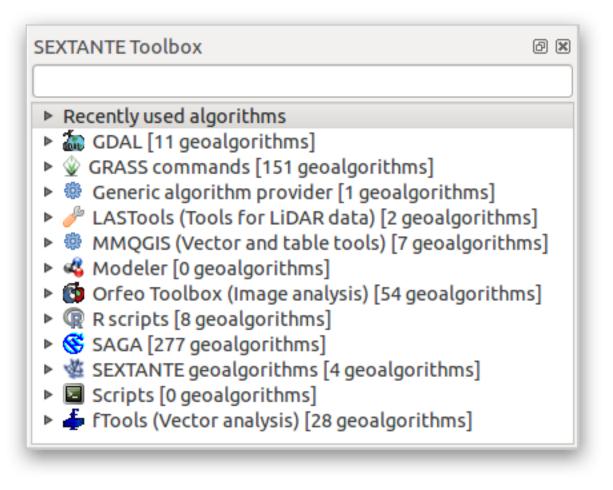
As you can see, 100 sample points aren't really enough to get a detailed impression of the terrain. It gives a very general idea, but it can be misleading as well. For example, in the image above, it is not clear that there is a high, unbroken mountain running from east to west; rather, the image seems to show a valley, with high peaks to the west. Just using visual inspection, we can see that the sample dataset is not representative of the terrain.


- Use the processes shown above to create a new set of 1000 random points.
- Use these points to sample the original DEM.
- Use the *Grid* (*Interpolation*) tool on this new dataset as above.
- Set the output filename to interpolation_1000.tif, with *Power* and *Smoothing* set to 5.0 and 2.0, respectively.

The results (depending on the positioning of your random points) will look more or less like this:

The border shows the *roads_hull* layer (which represents the boundary of the random sample points) to explain the sudden lack of detail beyond its edges. This is a much better representation of the terrain, due to the much greater density of sample points.

Here is an example of what it looks like with 10 000 sample points:



Nota: It's not recommended that you try doing this with 10 000 sample points if you are not working on a fast computer, as the size of the sample dataset requires a lot of processing time.

7.4.9 Follow Along: Additional Spatial Analysis Tools

Originally a separate project and then accessible as a plugin, the SEXTANTE software has been added to QGIS as a core function from version 2.0. You can find it as a new QGIS menu with its new name *Processing* from where you can access a rich toolbox of spatial analysis tools allows you to access various plugin tools from within a single interface.

• Activate this set of tools by enabling the *Processing* \rightarrow *Toolbox* menu entry. The toolbox looks like this:

You will probably see it docked in QGIS to the right of the map. Note that the tools listed here are links to the actual tools. Some of them are SEXTANTE's own algorithms and others are links to tools that are accessed from external applications such as GRASS, SAGA or the Orfeo Toolbox. This external applications are installed with QGIS so you are already able to make use of them. In case you need to change the configuration of the Processing tools or, for example, you need to update to a new version of one of the external applications, you can access its setting from *Processing* \rightarrow *Options and configurations*.

7.4.10 Follow Along: Spatial Point Pattern Analysis

For a simple indication of the spatial distribution of points in the *random_samples* dataset, we can make use of SAGA's *Spatial Point Pattern Analysis* tool via the *Processing Toolbox* you just opened.

- In the Processing Toolbox, search for this tool Spatial Point Pattern Analysis.
- Double-click on it to open its dialog.

Installing SAGA

Nota: If SAGA is not installed on your system, the plugin's dialog will inform you that the dependency is missing. If this is not the case, you can skip these steps.

On Windows

Included in your course materials you will find the SAGA installer for Windows.

• Start the program and follow its instructions to install SAGA on your Windows system. Take note of the path you are installing it under!

Once you have installed SAGA, you'll need to configure SEXTANTE to find the path it was installed under.

- Click on the menu entry Analysis \rightarrow SAGA options and configuration.
- In the dialog that appears, expand the SAGA item and look for SAGA folder. Its value will be blank.
- In this space, insert the path where you installed SAGA.

On Ubuntu

- Search for *SAGA GIS* in the *Software Center*, or enter the phrase sudo apt-get install saga-gis in your terminal. (You may first need to add a SAGA repository to your sources.)
- QGIS will find SAGA automatically, although you may need to restart QGIS if it doesn't work straight away.

On Mac

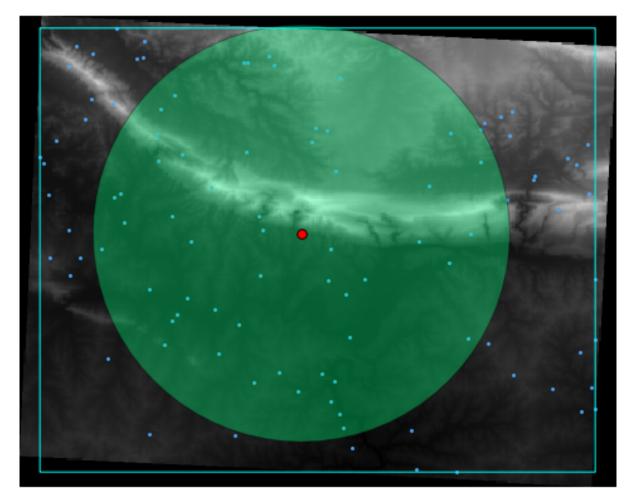
Homebrew users can install SAGA with this command:

• brew install saga-core

If you do not use Homebrew, please follow the instructions here:

http://sourceforge.net/apps/trac/saga-gis/wiki/Compiling%20SAGA%20on%20Mac%20OS%20X

After installing


Now that you have installed and configured SAGA, its functions will become accessible to you.

Using SAGA

- Open the SAGA dialog.
- SAGA produces three outputs, and so will require three output paths.
- Save these three outputs under exercise_data/spatial_statistics/, using whatever file names you find appropriate.

🦸 Spatial Point Pattern Analysis		×
Points		
random_samples	▼	9
Vertex Distance [Degree]		
5		
Mean Centre		
ents/exercise_data/spatial_statistics/sppa_mean	_center.shp	
Standard Distance		
cuments/exercise_data/spatial_statistics/sppa_s	std_dist.shp	
Bounding Box		
Documents/exercise_data/spatial_statistics/spp	a_bbox.shp	
0%		
	ОК	Cancel

The output will look like this (the symbology was changed for this example):

The red dot is the mean center; the large circle is the standard distance, which gives an indication of how closely the points are distributed around the mean center; and the rectangle is the bounding box, describing the smallest possible rectangle which will still enclose all the points.

7.4.11 Follow Along: Minimum Distance Analysis

Often, the output of an algorithm will not be a shapefile, but rather a table summarizing the statistical properties of a dataset. One of these is the *Minimum Distance Analysis* tool.

• Find this tool in the Processing Toolbox as Minimum Distance Analysis.

It does not require any other input besides specifying the vector point dataset to be analyzed.

- Choose the *random_points* dataset.
- Click OK. On completion, a DBF table will appear in the Layers list.
- Select it, then open its attribute table. Although the figures may vary, your results will be in this format:

	NAME 🗸	VALUE
0	Mean Average	2823.45817848
1	Minimum	424.0860061
2	Maximum	9773.35250512
3	Standard Deviation	1662.40681133
4	Duplicates	0

7.4.12 In Conclusion

QGIS allows many possibilities for analyzing the spatial statistical properties of datasets.

7.4.13 What's Next?

Now that we've covered vector analysis, why not see what can be done with rasters? That's what we'll do in the next module!

Module: Rasters

We've used rasters for digitizing before, but raster data can also be used directly. In this module, you'll see how it's done in QGIS.

8.1 Lesson: Working with Raster Data

Raster data is quite different from vector data. Vector data has discrete features constructed out of vertices, and perhaps connected with lines and/or areas. Raster data, however, is like any image. Although it may portray various properties of objects in the real world, these objects don't exist as separate objects; rather, they are represented using pixels of various different color values.

During this module you're going to use raster data to supplement your existing GIS analysis.

The goal for this lesson: To learn how to work with raster data in the QGIS environment.

8.1.1 **Follow Along: Loading Raster Data**

- Open your analysis.qgs map (which you should have created and saved during the previous module).
- Deactivate all the layers except the *solution* and *important_roads* layers.
- Click on the Load Raster Layer button:

The Load Raster Layer dialog will open. The data for this project is in exercise_data/raster.

• Either load them all in separately, or hold down ctrl and click on all four of them in turn, then open them at the same time.

The first thing you'll notice is that nothing seems to be happening in your map. Are the rasters not loading? Well, there they are in the *Layers list*, so obviously they did load. The problem is that they're not in the same projection. Luckily, we've already seen what to do in this situation.

- Select *Project -> Project Properties* in the menu:
- Select *CRS* tab in the menu:
- Enable "on the fly" reprojection.
- Set it to the same projection as the rest of your data (WGS 84 / UTM zone 33S).
- Click OK.

The rasters should fit nicely:

There we have it - four aerial photographs covering our whole study area.

8.1.2 *Follow Along: Create a Virtual Raster*

Now as you can see from this, your solution layer lies across all four photographs. What this means is that you're going to have to work with four rasters all the time. That's not ideal; it would be better to have one file for one (composite) image, right?

Luckily, QGIS allows you to do exactly this, and without needing to actually create a new raster file, which could take up a lot of space. Instead, you can create a *Virtual Raster*. This is also often called a *Catalog*, which explains its function. It's not really a new raster. Rather, it's a way to organize your existing rasters into one catalog: one file for easy access.

To make a catalog:

- Click on the menu item Raster \rightarrow Miscellaneous \rightarrow Build Virtual Raster (Catalog).
- In the dialog that appears, check the box next to Use visible raster layers for input.
- Enter exercise_data/residential_development as the output location.
- Enter aerial_photos.vrt as the file name.
- Check the Load into canvas when finished button.

Notice the text field below. What this dialog is actually doing is that it's writing that text for you. It's a long command that QGIS is going to run.

Nota: Keep in mind that the command text is editable, so you can customize the command further if preferred. Search online for the initial command (in this case, gdalbuildvrt) for help on the syntax.

• Click *OK* to run the command.

Input files	t directory instead of files
input mes	
Output file	aerial_photos.vrt Select
Resolution	Average \$
Source No D	ata 0
Separate	
Allow project	ion difference
🗹 Load into canva	as when finished
gdalbuildvrt	/QGIS-
Documentation/so e_data/residentia	ource/docs/training_manual/exercis

It may take a while to complete. When it's done, it will tell you so with a message box.

- Click *OK* to chase the message away.
- Click *Close* on the *Build Virtual Raster (Catalog)* dialog. (Don't click *OK* again, otherwise it's going to start running that command again.)

- You can now remove the original four rasters from the Layers list.
- If necessary, click and drag the new *aerial_photos* raster catalog layer to the bottom of the *Layers list* so that the other activated layers become visible.

8.1.3 *F* Transforming Raster Data

The above methods allow you to virtually merge datasets using a catalog, and to reproject them "on the fly". However, if you are setting up data that you'll be using for quite a while, it may be more efficient to create new rasters that are already merged and reprojected. This improves performance while using the rasters in a map, but it may take some time to set up initially.

Reprojecting rasters

• Click on the menu item $Raster \rightarrow Projections \rightarrow Warp$ (*Reproject*).

Note that this tool features a handy batch option for reprojecting the contents of whole directories. You can also reproject virtual rasters (catalogs), as well as enabling a multithreaded processing mode.

Input file	•	Select
Output file		Select
Source SRS	ESPG:7030	Select
Target SRS		Select
Resampling method	Near	*
No data values	0	
Mask layer	v	Select
Memory used for caching	20MB	A V
Resize		
Width 3000	Height 3000	A V
Use multithreaded warping	ed	
dalwarp -s_srs ESPG:7030 exercise_data/residential_devo	elopment/aerial_photos.vrt	

Merging rasters

• Click on the menu item $Raster \rightarrow Miscellaneous \rightarrow Merge$.

You can choose to process entire directories instead of single files, giving you a very useful built-in batch processing capability. You can specify a virtual raster as input file, too, and all of the rasters that it consists of will be processed.

You can also add your own command line options using the *Creation Options* checkbox and list. This only applies if you have knowledge of the GDAL library's operation.

000	Merge	
Choose input d	irectory instead o	files
Input files		Select
Output file		Select
🗌 No data value	0	
		U
Layer stack Use intersected	extent	
	lor table from the	first image
Creation Opt	ons	
Profile Default		*
Name	Value	+ -
		Validate
		Help
🗹 Load into canvas	when finished	
gdal_merge.py		1
Help	Clo	OK OK

8.1.4 In Conclusion

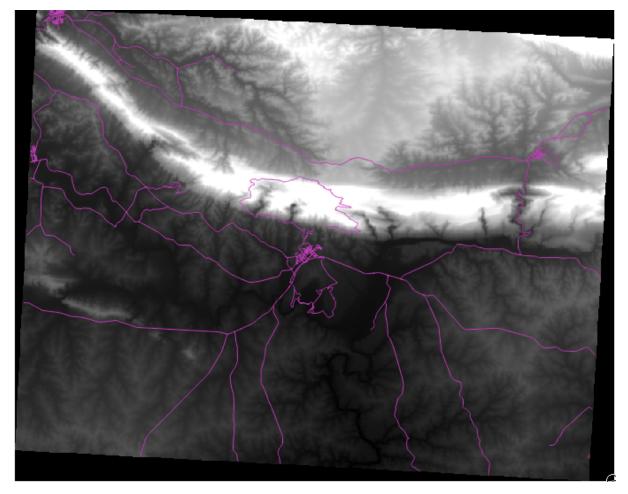
QGIS makes it easy to include raster data into your existing projects.

8.1.5 What's Next?

Next, we'll use raster data that isn't aerial imagery, and see how symbolization is useful in the case of rasters as well.

8.2 Lesson: Changing Raster Symbology

Non tutti i raster sono fotografie aeree. Ci sono molte altre forme di dati raster e in questi casiè essenziale rappresentare i dati correttamente per renderli significativi e utili.


Obiettivo: modificare la simbologia del raster.

8.2.1 |base| Try Yourself

- Inizia con la mappa preparata nel precedente esercizio: analysis.qgs.
- Usa il pulsante Aggiungi raster per caricare il nuovo insieme di dati raster.
- Carica srtm_41_19.tif, che trovi nella cartella exercise_data/raster/SRTM/.
- Quando appare Layers list, rinominalo DEM.
- Visualizza tutto il raster, click destro sul raster nella lista dei layer, selezionando Zoom sul layer.

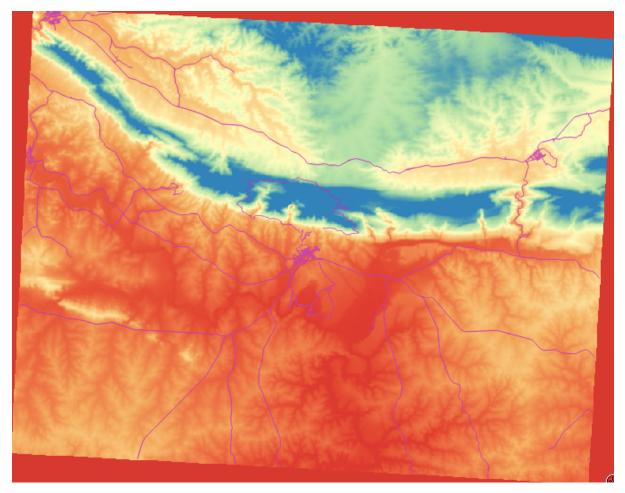
L'insieme di dati è un *Modello digitale di elevazione (DEM)*. E' una mappa di elevazione ((altitudine) del terreno che permette, per esempio, la visione di valli e montagne.

Una volta caricato, puoi vedere che si tratta di una rappresentazione in scala di grigi del DEM. Qui è rappresentato con la sovrapposizione dei vettoriali:

QGIS ha applicato automaticamente uno stiraento dell'immagine per la visualizzazione, su cui imparerai più avanti.

8.2.2 Modificare la simbologia raster

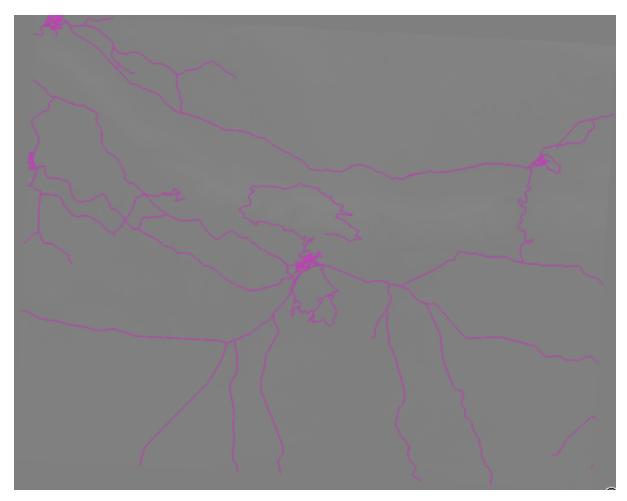
- Apri la finestra *Proprietà Layer* ' *del raster : guilabel: 'SRTM* col click destr sul layer nella lista dei layer e seleziona *Proprietà*.
- Spostati sulla scheda Stile.


00	Layer Properties – srtm_41_19 Style	
General	Band rendering	
🎸 Style	Render type Singleband gray +	
 Transparency Pyramids Histogram Metadata 	Gray band Band 1 (Gray) Load min/max values Color gradient Black to white	
	Extent Accuracy	
	Full Estimate (faster) Current Actual (slower)	
	▼ Color rendering	
	Blending mode Normal 🗘 🦘 Reset	t
	Brightness 0 0 Contrast 0	•
	Saturation O Crayscale Off +	
	Hue Colorize Strength 100%	(A) V
	▼ Resampling	
	▼ Resampling Zoomed: in Nearest neighbour ±) out Nearest neighbour ±) Oversampling 2.00 ±)	
		 OK

Queste sono le impostazioni predefinite da QGIS. E' una modalità di vedere iil DEM, provane altre.

- Cambia Tipo visualizzazione in Banda singola falso colore, e usa le opzioni predefinite.
- Click il pulsante *Classifica* per generare una nuova classificazione dei colori, e click *OK* per applicarla al DEM.

000	Layer Properties – srtm	_41_19 Style
🔀 General	 Band rendering 	
🨻 Style	Render type Singleband pseudocolor \$)
Transparency	Band 1 (Gray) 🛊	Generate new color map
👜 Pyramids	Color interpolation Linear +	Spectral + Invert
🗠 Histogram	* 2 - 2	Mode Continuous Classes 5
🚺 Metadata	Value Color Label 0.000000 0.000000 0.000000	Min 0 Max 1004.11
	251.027 251.027500	Classify
	502.055 502.055000 753.082 753.082500	Min / max origin:
	1004.11 1004.110000	Estimated cumulative cut of full extent.
ſ		 Cumulative count cut 4.0 ÷ - 98.0 ÷ % Min / max Mean +/- standard deviation x 52.00 ÷ Extent Accuracy Full Current Actual (slower)
	Clip Restore Default Style Save As Defau Help Apply	Load It Load Style Cancel OK


Vedrai questo:

Questo è un modo interessante di visualizzare il DEM, ma puoi usare anche altri colori.

- Apri di nuovo la finestra Proprietà layer.
- Cambia Tipo visualizzazione in Banda singola grigia.
- Click *OK* per applicare le impostazioni del raster.

Vedrai un rettangolo totalmente grigio non molto utile.

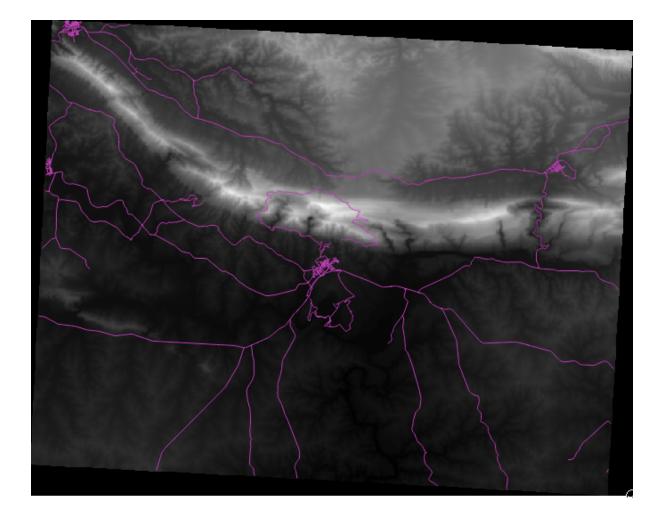
Questo perchè hai perso le impostazioni predefinite che "distendono" i colori per mostrare i contrasti.

Let's tell QGIS to again "stretch" the color values based on the range of data in the DEM. This will make QGIS use all of the available colors (in *Grayscale*, this is black, white and all shades of gray in between).

- Specify the *Min* and *Max* values as shown below.
- Set the value *Contrast enhancement* to *Stretch To MinMax*:

000	Layer Properties – srtm_41_19 Style
🔆 General	Band rendering
🧹 Style	Render type Singleband gray +
 ➡ Transparency ♠ Pyramids ➡ Histogram ↑ Metadata 	Gray band Band 1 (Gray) Color gradient Black to white Min -32768 Max 32767 Contrast enhancement Stretch to MinMax Stretch to MinMax Contrast enhancement Stretch to MinMax
	✓ Color rendering Blending mode Normal
	Brightness 0 (‡) Contrast 0 (‡
	Saturation O C Grayscale Off +
	Hue Colorize Strength

But what are the minimum and maximum values that should be used for the stretch? The ones that are currently under *Min* and *Max* values are the same values that just gave us a gray rectangle before. Instead, we should be using the minimum and maximum values that are actually in the image, right? Fortunately, you can determine those values easily by loading the minimum and maximum values of the raster.


- Under Load min / max values, select Min / Max option.
- Click the *Load* button:

Notice how the Custom min / max values have changed to reflect the actual values in our DEM:

000	Layer Properties – srtm_41_1	9 Style
General	Band rendering	
🧹 Style	Render type Singleband gray +	
 Transparency Pyramids Histogram Metadata 	Gray bandBand 1 (Gray)‡)Color gradientBlack to white‡)Min01Max16991Contrast enhancementStretch to MinMax‡)	Load min/max values Cumulative 2.0 ¢ - 98.0 ¢ % Min / max Mean +/- standard deviation x 1.00 ¢ Extent Accuracy Full Current Estimate (faster) Actual (slower)
	▼ Color rendering Blending mode Normal	÷ Coad
		÷ * Reset
	Blending mode Normal	Contrast O Contrast
	Blending mode Normal Brightness 0 0	Contrast Contrast Contrast Crayscale Off Crayscale Craysca
	Blending mode Normal Brightness 0 ¢ Saturation 0 ¢	

• Click *OK* to apply these settings to the image.

You'll now see that the values of the raster are again properly displayed, with the darker colors representing valleys and the lighter ones, mountains:

But isn't there a better or easier way?

Yes, there is. Now that you understand what needs to be done, you'll be glad to know that there's a tool for doing all of this easily.

- Remove the current DEM from the Layers list.
- Load the raster in again, renaming it to DEM as before. It's a gray rectangle again...
- Enable the tool you'll need by enabling $View \rightarrow Toolbars \rightarrow Raster$. These icons will appear in the interface:

The third button from the left *Local Histogram Stretch* will automatically stretch the minimum and maximum values to give you the best contrast in the local area that you're zoomed into. It's useful for large datasets. The button on the left *Local Cumulative Cut Stretch* ... will stretch the minimum and maximum values to constant values across the whole image.

• Click the fourth button from the left (*Stretch Histogram to Full Dataset*). You'll see the data is now correctly represented as before.

You can try the other buttons in this toolbar and see how they alter the stretch of the image when zoomed in to local areas or when fully zoomed out.

8.2.3 In Conclusion

These are only the basic functions to get you started with raster symbology. QGIS also allows you many other options, such as symbolizing a layer using standard deviations, or representing different bands with different colors in a multispectral image.

8.2.4 Reference

The SRTM dataset was obtained from http://srtm.csi.cgiar.org/

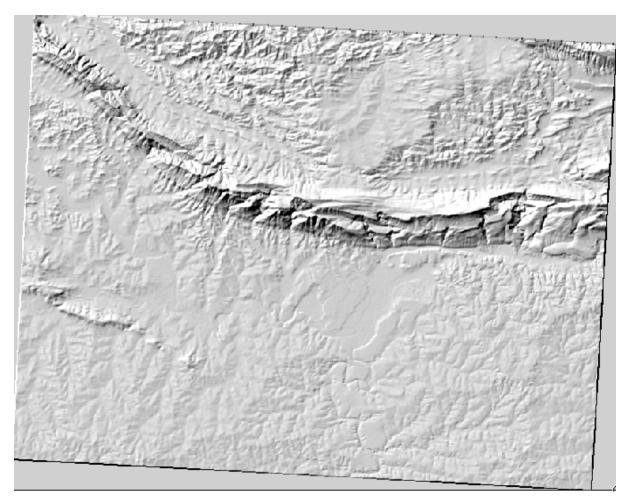
8.2.5 What's Next?

Now that we can see our data displayed properly, let's investigate how we can analyze it further.

8.3 Lesson: Terrain Analysis

Certain types of rasters allow you to gain more insight into the terrain that they represent. Digital Elevation Models (DEMs) are particularly useful in this regard. In this lesson you will use terrain analysis tools to find out more about the study area for the proposed residential development from earlier.

The goal for this lesson: To use terrain analysis tools to derive more information about the terrain.

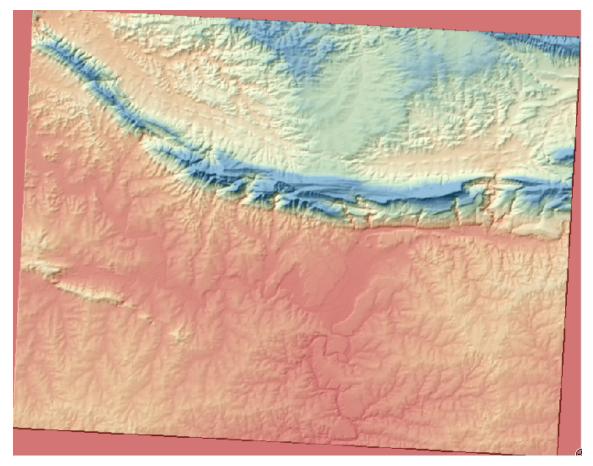

8.3.1 *Follow Along: Calculating a Hillshade*

The DEM you have on your map right now does show you the elevation of the terrain, but it can sometimes seem a little abstract. It contains all the 3D information about the terrain that you need, but it doesn't look like a 3D object. To get a better look at the terrain, it is possible to calculate a *hillshade*, which is a raster that maps the terrain using light and shadow to create a 3D-looking image.

To work with DEMs, you should use QGIS' all-in-one DEM (Terrain models) analysis tool.

- Click on the menu item $Raster \rightarrow Analysis \rightarrow DEM$ (Terrain models).
- In the dialog that appears, ensure that the *Input file* is the *DEM* layer.
- Set the Output file to hillshade.tif in the directory exercise_data/residential_development.
- Also make sure that the *Mode* option has *Hillshade* selected.
- Check the box next to Load into canvas when finished.
- You may leave all the other options unchanged.
- Click *OK* to generate the hillshade.
- When it tells you that processing is completed, click OK on the message to get rid of it.
- Click Close on the main DEM (Terrain models) dialog.

You will now have a new layer called *hillshade* that looks like this:



That looks nice and 3D, but can we improve on this? On its own, the hillshade looks like a plaster cast. Can't we use it together with our other, more colorful rasters somehow? Of course we can, by using the hillshade as an overlay.

8.3.2 *Follow Along: Using a Hillshade as an Overlay*

A hillshade can provide very useful information about the sunlight at a given time of day. But it can also be used for aesthetic purposes, to make the map look better. The key to this is setting the hillshade to being mostly transparent.

- Change the symbology of the original *DEM* to use the *Pseudocolor* scheme as in the previous exercise.
- Hide all the layers except the *DEM* and *hillshade* layers.
- Click and drag the *DEM* to be beneath the *hillshade* layer in the *Layers list*.
- Set the *hillshade* layer to be transparent by opening its *Layer Properties* and go to the *Transparency* tab.
- Set the *Global transparency* to 50%:
- Click OK on the Layer Properties dialog. You'll get a result like this:

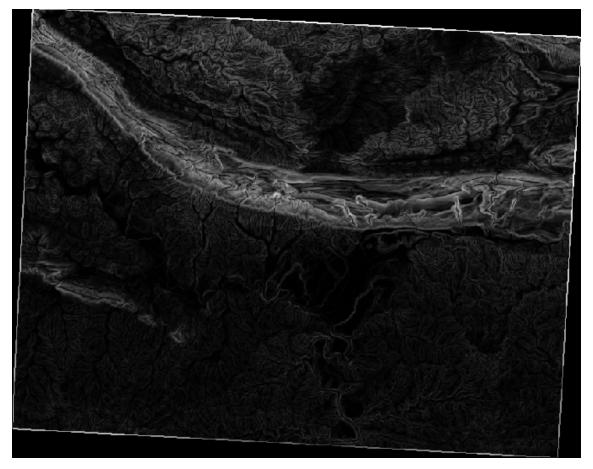
• Switch the *hillshade* layer off and back on in the *Layers list* to see the difference it makes.

Using a hillshade in this way, it's possible to enhance the topography of the landscape. If the effect doesn't seem strong enough to you, you can change the transparency of the *hillshade* layer; but of course, the brighter the hillshade becomes, the dimmer the colors behind it will be. You will need to find a balance that works for you.

Remember to save your map when you are done.

Nota: For the next two exercises, please use a new map. Load only the DEM raster dataset into it (exercise_data/raster/SRTM/srtm_41_19.tif). This is to simplify matters while you're working with the raster analysis tools. Save the map as exercise_data/raster_analysis.qgs.

8.3.3 *Follow Along: Calculating the Slope*


Another useful thing to know about the terrain is how steep it is. If, for example, you want to build houses on the land there, then you need land that is relatively flat.

To do this, you need to use the Slope mode of the DEM (Terrain models) tool.

- Open the tool as before.
- Select the *Mode* option *Slope*:

😣 🗉 Slope	
Elevation layer	DEM ‡
Output layer	elopment/slope.tif
Output format	GeoTIFF ‡
Z factor	1.0
🥃 Add result to project	
	<u>Cancel</u> <u>O</u> K

- Set the save location to exercise_data/residential_development/slope.tif
- Enable the *Load into canvas...* checkbox.
- Click *OK* and close the dialogs when processing is complete, and click *Close* to close the dialog. You'll see a new raster loaded into your map.
- With the new raster selected in the *Layers list*, click the *Stretch Histogram to Full Dataset* button. Now you'll see the slope of the terrain, with black pixels being flat terrain and white pixels, steep terrain:

8.3.4 **C** Try Yourself calculating the aspect

The *aspect* of terrain refers to the direction it's facing in. Since this study is taking place in the Southern Hemisphere, properties should ideally be built on a north-facing slope so that they can remain in the sunlight.

• Use the Aspect mode of the DEM (Terain models) tool to calculate the aspect of the terrain.

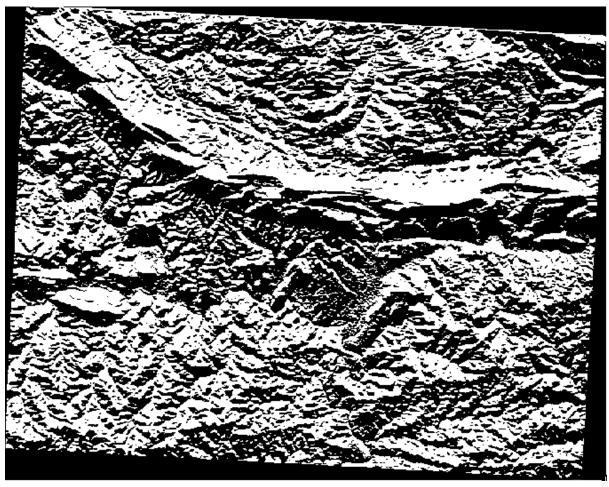
Check your results

8.3.5 **Follow Along: Using the Raster Calculator**

Think back to the estate agent problem, which we last addressed in the *Vector Analysis* lesson. Let's imagine that the buyers now wish to purchase a building and build a smaller cottage on the property. In the Southern Hemisphere, we know that an ideal plot for development needs to have areas on it that are north-facing, and with a slope of less than five degrees. But if the slope is less than 2 degrees, then the aspect doesn't matter.

Fortunately, you already have rasters showing you the slope as well as the aspect, but you have no way of knowing where both conditions are satisfied at once. How could this analysis be done?

The answer lies with the Raster calculator.


- Click on *Raster > Raster calculator*... to start this tool.
- To make use of the *aspect* dataset, double-click on the item *aspect*@1 in the *Raster bands* list on the left. It will appear in the *Raster calculator expression* text field below.

North is at 0 (zero) degrees, so for the terrain to face north, its aspect needs to be greater than 270 degrees and less than 90 degrees.

- In the Raster calculator expression field, enter this expression:
- aspect@1 <= 90 OR aspect@1 >= 270
- Set the output file to aspect_north.tif in the directory exercise_data/residential_development/.
- Ensure that the box Add result to project is checked.
- Click *OK* to begin processing.

Raster bands	Result layer			
"aspect@1" "aspect_north@1"	Output layer	rcise	_data/residential_d	levelopment/aspect_north
"slope@1" "DEM@1"	Current la	yer extent		
	X min	969491.27540	XMax	1038119.77313
	Y min	6196103.34085	🗘 Y max	6250296.99556
	Columns	837	Rows	661
	Output forma	t Geo	TIFF	\$
	Add resul	t to project		
Operators +	sqrt	sin	^	acos (
- /	cos	asin	tan	atan)
	• =	<=	>=	AND OR
< >				
> Raster calculator expression aspect@1 <= 90 OR	n			

Your result will be this:

Now that you've done the aspect, create two separate new analyses of the DEM layer.

- The first will be to identify all areas where the slope is less than or equal to 2 degrees.
- The second is similar, but the slope should be less than or equal to 5 degrees.
- Save them under exercise_data/residential_development/ as slope_lte2.tif and slope_lte5.tif.

Check your results

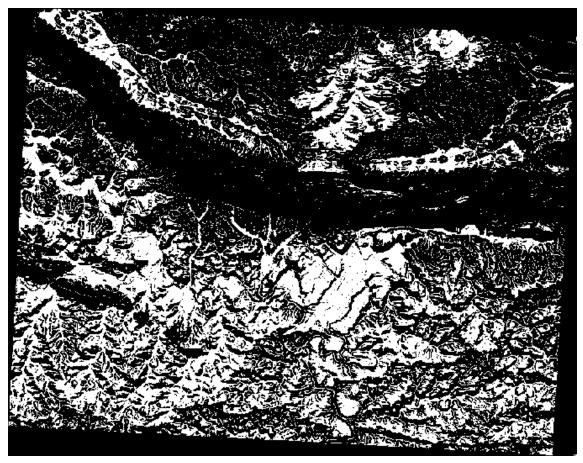
8.3.7 Follow Along: Combining Raster Analysis Results

Now you have three new analysis rasters of the DEM layer:

- *aspect_north*: the terrain faces north
- *slope_lte2*: the slope is at or below 2 degrees
- *slope_lte5*: the slope is at or below 5 degrees

Where the conditions of these layers are met, they are equal to 1. Elsewhere, they are equal to 0. Therefore, if you multiply one of these rasters by another one, you will get the areas where both of them are equal to 1.

The conditions to be met are: at or below 5 degrees of slope, the terrain must face north; but at or below 2 degrees of slope, the direction that the terrain faces in does not matter.


Therefore, you need to find areas where the slope is at or below 5 degrees AND the terrain is facing north; OR the slope is at or below 2 degrees. Such terrain would be suitable for development.

To calculate the areas that satisfy these criteria:

- Open your Raster calculator again.
- Use the *Raster bands* list, the *Operators* buttons, and your keyboard to build this expression in the *Raster calculator expression* text area:

(aspect_north@1 = 1 AND slope_lte5@1 = 1) OR slope_lte2@1 = 1

- Save the output under exercise_data/residential_development/ as all_conditions.tif.
- Click *OK* on the *Raster calculator*. Your results:

8.3.8 Follow Along: Simplifying the Raster

As you can see from the image above, the combined analysis has left us with many, very small areas where the conditions are met. But these aren't really useful for our analysis, since they're too small to build anything on. Let's get rid of all these tiny unusable areas.

- Open the *Sieve* tool (*Raster* \rightarrow *Analysis* \rightarrow *Sieve*).
- Set the *Input file* to all_conditions, and the *Output file* to all_conditions_sieve.tif (under exercise_data/residential_development/).
- Set both the *Threshold* and *Pixel connections* values to 8, then run the tool.

	Sieve
Input file	all_conditions
Output file	nent/conditions_seive Select
Threshold	8
Pixel connection	s 8 ‡
🗹 Load into canvas v	vhen finished
1	3 -of GTiff all_conditions
Documentation/source ta/residential_develo	pment/conditions_seive
Help	Close OK

Once processing is done, the new layer will load into the canvas. But when you try to use the histogram stretch tool to view the data, this happens:

What's going on? The answer lies in the new raster file's metadata.

• View the metadata under the *Metadata* tab of the *Layer Properties* dialog. Look in the *Properties* section at the bottom.

Seneral 🗧	Metadata	
Style	▼ Description	
Transparency	Title	
Pyramids	Abstract	
	Keyword list	
j) Metadata	Format	\$
	★ Attribution	
	Title	
	Url	
	Url Type	
	Band 1	
	STATISTICS_MINIMUM=-2147483648	0
	STATISTICS_MAXIMUM=1	
	STATISTICS_MEAN=-268924962.63441	
	STATISTICS_STDDEV=710768123.11607	
	ityle Save As Default Load Style Save S	Style
Restore Default S		-

Whereas this raster, like the one it's derived from, should only feature the values 1 and 0, it has the STATISTICS_MINIMUM value of a very large negative number. Investigation of the data shows that this number acts as a null value. Since we're only after areas that weren't filtered out, let's set these null values to zero.


• Open the Raster Calculator again, and build this expression:

(all_conditions_sieve@1 <= 0) = 0</pre>

This will maintain all existing zero values, while also setting the negative numbers to zero; which will leave all the areas with value 1 intact.

• Save the output under exercise_data/residential_development/ as all_conditions_simple.tif.

Your output looks like this:

This is what was expected: a simplified version of the earlier results. Remember that if the results you get from a tool aren't what you expected, viewing the metadata (and vector attributes, if applicable) can prove essential to solving the problem.

8.3.9 In Conclusion

You've seen how to derive all kinds of analysis products from a DEM. These include hillshade, slope and aspect calculations. You've also seen how to use the raster calculator to further analyze and combine these results.

8.3.10 What's Next?

Now you have two analyses: the vector analysis which shows you the potentially suitable plots, and the raster analysis that shows you the potentially suitable terrain. How can these be combined to arrive at a final result for this problem? That's the topic for the next lesson, starting in the next module.

Module: Completing the Analysis

You now have two halves of an analysis: a vector and a raster part. In this module, you'll see how to combine them. You will conclude the analysis and present the final results.

9.1 Lesson: Raster to Vector Conversion

Converting between raster and vector formats allows you to make use of both raster and vector data when solving a GIS problem, as well as using the various analysis methods unique to these two forms of geographic data. This increases the flexibility you have when considering data sources and processing methods for solving a GIS problem.

To combine a raster and vector analysis, you need to convert the one type of data to the other. Let's convert the raster result of the previous lesson to a vector.

The goal for this lesson: To get the raster result into a vector that can be used to complete the analysis.

9.1.1 **Follow Along:** The *Raster to Vector* Tool

Start with the map from the last module, raster_analysis.qgs. There you should have the all_conditions_simple.tif calculated during the previous exercises.

- Click on *Raster* \rightarrow *Conversion* \rightarrow *Polygonize* (*Raster to Vector*). The tool dialog will appear.
- Set it up like this:

Input file (raster)	all_conditions_simple Select
Output file for polygons (shapefile)	bo/sites/qgis/all_terrain.shp Select
✓ Field name	suitable
🗌 Use mask	srtm_41_19 Select
Load into canvas when finished	
	/ggis/all conditions simple tif -f
gdal_polygonize.py / "ESRI Shapefile" /	'qgis/all_conditions_simple.tif -f /qgis/all_terrain.shp all_terrain suitable

- Change the field name (describing the values of the raster) to suitable.
- Save the shapefile under exercise_data/residential_development as all_terrain.shp.

Now you have a vector file which contains all the values of the raster, but the only areas you're interested in are those that are suitable; i.e., those polygons where the value of suitable is 1. You can change the style of this layer if you want to have a clearer visualization of it.

9.1.2 **Try Yourself**

Refer back to the module on vector analysis.

- Create a new vector file that contains only the polygons where suitable has the value of 1.
- Save the new file as exercise_data/residential_development/ as suitable_terrain.shp.

Check your results

9.1.3 Follow Along: The Vector to Raster Tool

Although unnecessary for our current problem, it's useful to know about the opposite conversion from the one performed above. Convert to raster the suitable_terrain.shp vector file you just created in previous step.

• Click on *Raster* → *Conversion* → *Rasterize* (*Vector to Raster*) to start this tool, then set it up as in the screenshot below:

	pefile)	suitable_terrain 🔻 Select
Attribute field		suitable 💠
Output file fo	r rasterized vectors (raster) sites/qgis/raster_conversion Select
 Keep exist Raster size 	ing raster size and resolut in pixels	ion
Width 8	37	Height 661
Load into ca	nvas when finished	
gdal_rasterize	-a suitable -ts 837 661 -l	suitable_terrain
Documentation shp	n/source/docs/training_ma /qgis/raster_	anual/exercise_data/raster/suitable_terrain
		Close OK

- *Input file* is *all_terrain*;
- *Output file...* is exercise_data/residential_development/raster_conversion.tif;
- Width and Height are 837 and 661, respectively.

Nota: The size of the output image is specified here to be the same as the original raster which was vectorized. To view the dimensions of an image, open its metadata (*Metadata* tab in the *Layer Properties*).

- Click OK on the dialog to begin the conversion process.
- When it is complete, gauge its success by comparing the new raster with the original one. They should match up exactly, pixel for pixel.

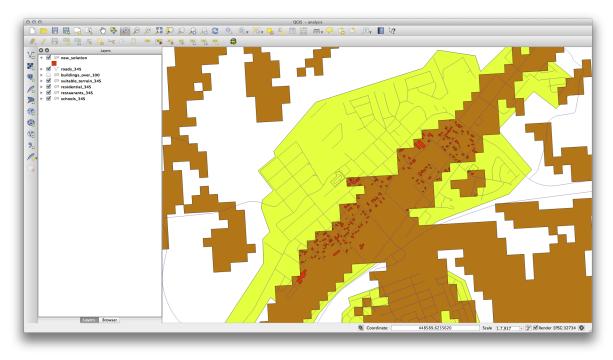
9.1.4 In Conclusion

Converting between raster and vector formats allows you to widen the applicability of data, and need not lead to data degradation.

9.1.5 What's Next?

Now that we have the results of the terrain analysis available in vector format, they can be used to solve the problem of which buildings we should consider for the residential development.

9.2 Lesson: Combining the Analyses


Using the vectorized results of the raster analysis will allow you to select only those buildings on suitable terrain.

The goal for this lesson: To use the vectorized terrain results to select suitable plots.

- Save your current map (raster_analysis.qgs).
- Open the map in which you created during the vector analysis earlier (you should have saved the file as analysis.qgs).
- In the *Layers list*, enable these layers:
 - hillshade,
 - *solution* (or *buildings_over_100*)
- In addition to these layers, which should already be loaded in the map from when you worked on it before, also add the suitable_terrain.shp dataset.
- If you are missing some layers, you should find them in exercise_data/residential_development/
- Use the *Intersect* tool (*Vector -> Geoprocessing Tools*) to create a new vector layer called new_solution.shp which contains only those buildings which intersect the suitable_terrain layer.

You should now have a layer showing certain buildings as your solution, for example:

Nota: If you find that the *Intersect* tool does not produce any results, check the CRS settings of each of your layers. The CRS must be the same for both the layers you are comparing. You may need to reproject one layer by saving the layer as a new shapefile with the required CRS. In our example, the suitable_terrain layer was reprojected to WGS 84 / UTM 34S and named suitable_terrain_34S.

9.2.2 **C** Try Yourself Inspecting the Results

Look at each of the buildings in your *new_solution* layer. Compare them with the *suitable_terrain* layer by changing the symbology for the *new_solution* layer so that it has outlines only. What do you notice about some of the buildings? Are they all suitable just because they intersect with the *suitable_terrain* layer? Why or why not? Which ones would you deem to be unsuitable?

Check your results

9.2.3 **C** Try Yourself Refining the Analysis

You can see from the results that some buildings which were included were not really suitable, so we can now refine the analysis.

We want to ensure that our analysis returns only those buildings which fall entirely within the suitable_terrain layer. How would you achieve this? Use one or more Vector Analysis tools and remember that our buildings are all over 100m squared in size.

Check your results

9.2.4 In Conclusion

You have now answered the original research question, and can offer an opinion (with reasons, backed by analysis) for a recommendation regarding which property to develop.

9.2.5 What's Next?

Next you will present these results as part of your second assignment.

9.3 Compito

Utilizzando il Compositore di Stampe, crea una nuova mappa che rappresenti i risultati della tua analisi. Includi i seguenti layer:

- places (con le etichette),
- hillshade,
- *solution* (oppure *new_solution*),
- roads e
- oppure *aerial_photos* o *DEM*.

Scrivi un breve testo esplicativo di accompagnamento. Includi in tale testo i criteri utilizzati per valutare una casa per l'acquisto e il successivo sviluppo, così come la spiegazione delle tue raccomandazioni su quali edifici sono adatti.

9.4 Lesson: Supplementary Exercise

In this lesson, you will be guided through a complete GIS analysis in QGIS.

```
Nota: Lesson developed by Linfiniti and S Motala (Cape Peninsula University of Technology)
```

9.4.1 Problem Statement

You are tasked with finding areas in and around the Cape Peninsula that are a suitable habitat for a rare fynbos plant species. The extent of your area of investigation in the Cape Peninsula is: south of Melkbosstrand, west of Strand. Botanists have provided you with the following preferences exhibited by the species in question:

- It grows on east facing slopes.
- It grows on slopes with a gradient between 15% and 60%.
- It grows in areas that have a total annual rainfall of > 1200 mm.
- It will only be found at least 250 m away from any human settlement.
- The area of vegetation in which it occurs should be at least 6000m2 in area.

As a volunteer for Cape Nature, you have agreed to search for the plant on the closest suitable piece of land to your house. Use your GIS skills to determine where you should go to look.

9.4.2 Solution Outline

In order to solve this problem, you will have to use the available data (available in exercise_data/more_analysis) to find the candidate area that is closest to your house. If you don't live in Cape Town (where this problem is based) you can choose any house in the Cape Town region. The solution will involve:

- analysing the DEM to find the east facing slopes and the slopes with the correct gradients;
- analysing the rainfall raster to find the areas with the correct amount of rainfall;
- analysing the Zoning vector layer to find areas that are away from human settlement and are of the correct size.

9.4.3 Setting up the Map

- Click on the "CRS status" button in the extreme lower right corner of the screen. Under the CRS tab of the screen that appears, you will see the box *Coordinate reference systems of the world*.
- In this box, navigate to Projected Coordinate Systems → Universal Transverse Mercator (UTM).
- Select the entry WGS 84 / UTM zone 33S (with the EPSG code 32733).
- Click OK. The map is now in the UTM33S coordinate reference system.
- Save the map by clicking on the *Save Project As* toolbar button, or use the *File* → *Save Project As...* menu item.
- Save the map in a directory called Rasterprac that you should create somewhere on your computer. You will save whatever layers you create in this directory as well.

9.4.4 Loading Data into the Map

In order to process the data, you will need to load the necessary layers (street names, zones, rainfall, DEM) into the map canvas.

For vectors ...

- Click on the Add Vector Layer button, or use the Layer \rightarrow Add Vector Layer... menu item.
- In the dialog that appears, ensure that the File radio button is selected.
- Click on the *Browse* button.

- In the dialog that appears, open the exercise_data/more_analysis/streets directory.
- Select the file *Street_Names_UTM33S.shp*.
- Click Open.

The dialog closes and shows the original dialog, with the file path specified in the text field next to the *Browse* button. This allows you to ensure that the correct file is selected. It is also possible to enter the file path in this field manually, should you wish to do so.

- Click *Open*. The vector layer will load in your map. Its color is automatically assigned. It will be changed later.
- Rename the layer to Streets.
- Right-click on it in the Layers list (by default, the pane along the left-hand side of the screen).
- Click Rename in the dialog that appears and rename it, pressing the Enter key when done.
- Repeat the vector adding process, but this time select the *Generalised_Zoning_Dissolve_UTM33S.shp* file in the *Zoning* directory.
- Rename it to Zoning.

For rasters ...

- Click on the Add Raster Layer button, or use the Layer \rightarrow Add Raster Layer... menu item.
- Navigate to the appropriate file, select it, and click Open.
- Do this for each of the two raster files. The files you want are *DEM/reproject/DEM* and *Rain-fall/reprojected/rainfall.tif*.
- Rename the rainfall raster to Rainfall (with an initial capital). Initially when you load them, the images will be gray rectangles. Don't worry, this will be changed later.
- Save the map.

In order to properly see what's going on, the symbology for the layers needs to be changed.

9.4.5 Changing the symbology of vector layers

- In the Layers list, right-click on the Streets layer.
- Select *Properties* from the menu that appears.
- Switch to the *Style* tab in the dialog that appears.
- Click on the button labelled *Change*, with a square showing the current color of the *Streets* layer.
- Select a new color in the dialog that appears.
- Click OK.
- Click OK again in the Layer Properties dialog. This will change the color of the Streets layer.
- Follow a similar process for the Zoning layer and choose an appropriate color for it.

9.4.6 Changing the symbology of raster layers

Raster layer symbology is somewhat different.

- Open the *Properties* dialog for the *Rainfall* raster.
- Switch to the *Style* tab. You'll notice that this style dialog is very different from the version used for vector layers.
- Ensure that the button *Use standard deviation* is selected.

- Change the value in the associated box to 2.00 (it should be set to 0.00 by default).
- Under the heading *Contrast enhancement*, change the value of the *Current* dropdown list to *Stretch to MinMax*.
- Click *OK*. The "Rainfall" raster, if visible, should change colors, allowing you to see different brightness values for each pixel.
- Repeat this process for the DEM, but set the standard deviations used for stretching to 4.00.

9.4.7 Changing the layer order

- In the Layers list, click and drag layers up and down to change the order they appear in on the map.
- Newer versions of QGIS may have a *Control rendering order* checkbox beneath the *Layers list*. Ensure that it is checked.

Now that all the data is loaded and properly visible, the analysis can begin. It is best if the clipping operation is done first. This is so that no processing power is wasted on computing values in areas that aren't going to be used anyway.

9.4.8 Find the Correct Districts

- Load the vector layer admin_boundaries/Western_Cape_UTM33S.shp into your map.
- Rename it to Districts.
- Right-click on the Districts layer in the Layers list.
- In the menu that appears, select the Query... menu item. The Query Builder dialog appears.

You will now build a query to select only the following list of districts:

- Bellville,
- Cape,
- Goodwood,
- Kuils River,
- Mitchells Plain,
- Simons Town, and
- Wynberg.
- In the *Fields* list, double-click on the *NAME_2* field. It appears in the *SQL* where clause text field below.
- Click the = button; an = sign is added to the SQL query.
- Click the *All* button below the (currently empty) *Values* list. After a short delay, this will populate the *Values* list with the values of the selected field (*NAME_2*).
- Double-click the value Bellville in the Values list. As before, this will be added to the SQL query.

In order to select more than one district, you'll need to use the OR boolean operator.

- Click the OR button and it will be added to the SQL query.
- Using a process similar to the above, add the following to the existing SQL query:

"NAME_2" = 'Cape'

- Add another OR operator, then work your way through the list of districts above in a similar fashion.
- The final query should be

"NAME_2" = 'Bellville' OR "NAME_2" = 'Cape' OR "NAME_2" = 'Goodwood' OR "NAME_2" = 'Kuils River' OR "NAME_2" = 'Mitchells Plain' OR "NAME_2" = 'Simons Town' OR "NAME_2" = 'Wynberg'

• Click OK. The districts shown in your map are now limited to those in the list above.

9.4.9 Clip the Rasters

Now that you have an area of interest, you can clip the rasters to this area.

- Ensure that the only layers that are visible are the DEM, Rainfall and Districts layers.
- Districts must be on top so that they are visible.
- Open the clipping dialog by selecting the menu item Raster \rightarrow Extraction \rightarrow Clipper.
- In the Input file (raster) dropdown list, select the DEM layer.
- Specify an output location in the Output file text field by clicking the Select... button.
- Navigate to your Rasterprac directory.
- Enter a file name.
- Save the file. Leave the No data value checkbox unchecked.
- Use the *Extent* clipping mode by ensuring the correct radio button is selected.
- Click and drag an area in the canvas, so that the area which includes the districts is selected.
- Check the Load into canvas when finished box.
- Click OK.
- After the clipping operation is completed, DO NOT CLOSE the *Clipper* dialog. (Doing so would cause you to lose the clipping area that you have already defined.)
- Select the *Rainfall* raster in the *Input file (raster)* dropdown list and choose a different output file name.
- Do not change any other options. Do not alter the existing clipping area which you drew previously. Leave everything the same and click *OK*.
- After the second clipping operation has completed, you may close the *Clipper* dialog.
- Save the map.

9.4.10 Clean up the map

- Remove the original Rainfall and DEM layers from the Layers list:
- Right-click on these layers and select Remove.
 - This will not remove the data from your storage device, it will merely take it out of your map.
- Deactivate the labels on the *Streets* layer:
 - Click the *Labeling* button.
 - Uncheck the Label this layer with box.
 - Click OK.
- Show all the *Streets* again:
 - Right-click on the layer in the Layers list.
 - Select *Query*.
- In the *Query* dialog that appears, click the *Clear* button, then click *OK*.

- Wait while the data is loaded. All the streets will now be visible.
- Change the raster symbology as before (see Changing the symbology of raster layers).
- Save the map.
- You can now hide the vector layers by unchecking the box next to them in the *Layers list*. This will make the map render faster and will save you some time.

In order to create the hillshade, you will need to use a plugin that was written for this purpose.

9.4.11 Activating the Raster Terrain Analysis plugin

This plugin is included by default in QGIS 1.8. However, it may not be immediately visible. To check if it is accessible on your system:

- Click on the menu item *Plugins -> Manage Plugins....*
- Ensure that the box next to Raster Terrain Analysis plugin is selected.
- Click OK.

You will now have access to this plugin via the Raster \rightarrow Terrain analysis menu item.

Remember that plugins may sometimes depend on certain Python modules being installed on your system. Should a plugin refuse to work while complaining of missing dependencies, please ask your tutor or lecturer for assistance.

9.4.12 Create the hillshade

- In the Layers list, ensure that the DEM is the active layer (i.e., it is highlighted by having been clicked on).
- Click on the Raster \rightarrow Terrain analysis \rightarrow Hillshade menu item to open the Hillshade dialog.
- Specify an appropriate location for the output layer and call it *hillshade*.
- Check the *Add result to project* box.
- Click OK.
- Wait for it to finish processing.

The new hillshade layer has appeared in your Layers list.

- Right-click on the hillshade layer in your Layers list and bring up the Properties dialog.
- Click on the Transparency tab and set the transparency slider to 80%.
- Click *OK* on the dialog.
- Note the effect when the transparent hillshade is superimposed over the clipped DEM.

9.4.13 Slope

- Click on the menu item $Raster \rightarrow Terrain analysis$.
- Select the *Slope* analysis type, with the clipped DEM as the input layer.
- Specify an appropriate file name and location for output purposes.
- Check the Add result to project box.
- Click OK.

The slope image has been calculated and added to the map. However, as usual it is just a gray rectangle. To properly see what's going on, change the symbology as follows.

• Open the layer Properties dialog (as usual, via the right-click menu of the layer).

- Click on the *Style* tab.
- Where it says Grayscale (in the Color map dropdown menu), change it to Pseudocolor.
- Ensure that the Use standard deviation radio button is selected.

9.4.14 Aspect

• Use the same approach as for calculating the slope, but select *Aspect* in the initial dialog box.

Remember to save the map periodically.

9.4.15 Reclassifying rasters

- Click the menu item *Raster* \rightarrow *Raster calculator*.
- Specify your Rasterprac directory as the location for the output layer.
- Ensure that the Add result to project box is selected.

In the *Raster bands* list on the left, you will see all the raster layers in your *Layers list*. If your Slope layer is called *slope*, it will be listed as *slope@1*.

The slope needs to be between 15 and 60 degrees. Everything less than 15 or greater than 60 must therefore be excluded.

• Using the list items and buttons in the interface, build the following expression:

```
((slope@1 < 15) OR (slope@1 > 60)) = 0
```

- Set the Output layer field to an appropriate location and file name.
- Click OK.

Now find the correct aspect (east-facing: between 45 and 135 degrees) using the same approach.

• Build the following expression:

```
((aspect@1 < 45) OR (aspect@1 > 135)) = 0
```

• Find the correct rainfall (greater than 1200mm) the same way. Build the following expression:

```
(rainfall@1 < 1200) = 0
```

Having reclassified all the rasters, you will now see them displayed as gray rectangles in your map (assuming that they have been added to the map correctly). To properly display raster data with only two classes (1 and 0, meaning true or false), you will need to change their symbology.

9.4.16 Setting the style for the reclassified layers

- Open the *Style* tab in the layer's *Properties* dialog as usual.
- Under the heading Load min / max values from band, select the Actual (slower) radio button.
- Click the Load button.

The *Custom min / max values* fields should now populate with 0 and 1, respectively. (If they do not, then there was a mistake with your reclassification of the data, and you will need to go over that part again.)

- Under the heading Contrast enhancement, set the Current dropdown list to Stretch To MinMax.
- Click OK.
- Do this for all three reclassified rasters, and remember to save your work!

The only criterion that remains is that the area must be 250m away from urban areas. We will satisfy this requirement by ensuring that the areas we compute are 250m or more from the edge of a rural area. Hence, we need to find all rural areas first.

9.4.17 Finding rural areas

- Hide all layers in the Layers list.
- Unhide the Zoning vector layer.
- Right-click on it and bring up the Query dialog.
- Build the following query:

"Gen_Zoning" = 'Rural'

See the earlier instructions for building the *Streets* query if you get stuck.

• When you're done, close the Query dialog.

You should see a collection of polygons from the Zoning layer. You will need to save these to a new layer file.

- On the right-click menu for Zoning, select Save as....
- Save your layer under the Zoning directory.
- Name the output file rural.shp.
- Click OK.
- Add the layer to your map.
- Click the menu item *Vector* \rightarrow *Geoprocessing Tools* \rightarrow *Dissolve*.
- Select the rural layer as your input vector layer, while leaving the Use only selected features box unchecked.
- Under Dissolve field, select Dissolve all —.
- Save your layer under the *Zoning* directory.
- Click *OK*. A dialog will appear asking whether you want to add the new layer to the TOC ("Table of Contents", referring to the *Layers list*).
- Click Yes.
- Close the *Dissolve* dialog.
- Remove the *rural* and *Zoning* layers.
- Save the map.

Now you need to exclude the areas that are within 250m from the edge of the rural areas. Do this by creating a negative buffer, as explained below.

9.4.18 Creating a negative buffer

- Click the menu item *Vector* \rightarrow *Geoprocessing Tools* \rightarrow *Buffer*(*s*).
- In the dialog that appears, select the *rural_dissolve* layer as your input vector layer (*Use only selected features* should not be checked).
- Select the *Buffer distance* button and enter the value -250 into the associated field; the negative value means that the buffer must be an internal buffer.
- Check the Dissolve buffer results box.
- Set the output file to the same directory as the other rural vector files.
- Name the output file rural_buffer.shp.

- Click Save.
- Click *OK* and wait for the processing to complete.
- Select *Yes* on the dialog that appears.
- Close the Buffer dialog.
- Remove the *rural_dissolve* layer.
- Save the map.

In order to incorporate the rural zones into the same analysis with the three existing rasters, it will need to be rasterized as well. But in order for the rasters to be compatible for analysis, they will need to be the same size. Therefore, before you can rasterize, you'll need to clip the vector to the same area as the three rasters. A vector can only be clipped by another vector, so you will first need to create a bounding box polygon the same size as the rasters.

9.4.19 Creating a bounding box vector

- Click on the menu item Layer -> New -> New Shapefile Layer....
- Under the *Type* heading, select the *Polygon* button.
- Click Specify CRS and set the coordinate reference system WGS 84 / UTM zone 33S : EPSG: 32733.
- Click OK.
- Click OK on the New Vector Layer dialog as well.
- Save the vector in the Zoning directory.
- Name the output file bbox.shp.
- Hide all layers except the new *bbox* layer and one of the reclassified rasters.
- Ensure that the *bbox* layer is highlighted in the *Layers list*.
- Navigate to the *View > Toolbars* menu item and ensure that *Digitizing* is selected. You should then see a toolbar icon with a pencil or koki on it. This is the *Toggle editing* button.
- Click the *Toggle editing* button to enter *edit mode*. This allows you to edit a vector layer.
- Click the *Add feature* button, which should be nearby the *Toggle editing* button. It may be hidden behind a double arrow button; if so, click the double arrows to show the *Digitizing* toolbar's hidden buttons.
- With the *Add feature* tool activated, left-click on the corners of the raster. You may need to zoom in with the mouse wheel to ensure that it is accurate. To pan across the map in this mode, click and drag in the map with the middle mouse button or mouse wheel.
- For the fourth and final point, right-click to finalize the shape.
- Enter any arbitrary number for the shape ID.
- Click OK.
- Click the Save edits button.
- Click the *Toggle editing* button to stop your editing session.
- Save the map.

Now that you have a bounding box, you can use it to clip the rural buffer layer.

9.4.20 Clipping a vector layer

- Ensure that only the *bbox* and *rural_buffer* layers are visible, with the latter on top.
- Click the menu item *Vector* > *Geoprocessing Tools* > *Clip*.
- In the dialog that appears, set the input vector layer to *rural_buffer* and the clip layer to *bbox*, with both *Use only selected features* boxes unchecked.
- Put the output file under the Zoning directory.
- Name the output file rural_clipped.
- Click OK.
- When prompted to add the layer to the TOC, click Yes.
- Close the dialog.
- Compare the three vectors and see the results for yourself.
- Remove the *bbox* and *rural_buffer* layers, then save your map.

Now it's ready to be rasterized.

9.4.21 Rasterizing a vector layer

You'll need to specify a pixel size for a new raster that you create, so first you'll need to know the size of one of your existing rasters.

- Open the Properties dialog of any of the three existing rasters.
- Switch to the *Metadata* tab.
- Make a note of the X and Y values under the heading *Dimensions* in the Metadata table.
- Close the Properties dialog.
- Click on the *Raster* → *Conversion* → *Rasterize* menu item. You may receive a warning about a dataset being unsupported. Click it away and ignore it.
- Select *rural_clipped* as your input layer.
- Set an output file location inside the Zoning directory.
- Name the output file rural_raster.tif.
- Check the New size box and enter the X and Y values you made a note of earlier.
- Check the *Load into canvas* box.
- Click the pencil icon next to the text field which shows the command that will be run. At the end of the existing text, add a space and then the text -burn 1. This tells the Rasterize function to "burn" the existing vector into the new raster and give the areas covered by the vector the new value of 1 (as opposed to the rest of the image, which will automatically be 0).
- Click OK.
- The new raster should show up in your map once it has been computed.
- The new raster will look like a grey rectangle you may change the display style as you did for the reclassified rasters.
- Save your map.

Now that you have all four criteria each in a separate raster, you need to combine them to see which areas satisfy all the criteria. To do so, the rasters will be multiplied with each other. When this happens, all overlapping pixels with a value of 1 will retain the value of 1, but if a pixel has the value of 0 in any of the four rasters, then it will be 0 in the result. In this way, the result will contain only the overlapping areas.

9.4.22 Combining rasters

- Click the *Raster* \rightarrow *Raster calculator* menu item.
- Build the following expression (with the appropriate names for your layers, depending on what you called them):

```
[Rural raster] * [Reclassified aspect] * [Reclassified slope] *
[Reclassified rainfall]
```

- Set the output location to the Rasterprac directory.
- Name the output raster cross_product.tif.
- Ensure that the Add result to project box is checked.
- Click OK.
- Change the symbology of the new raster in the same way as you set the style for the other reclassified rasters. The new raster now properly displays the areas where all the criteria are satisfied.

To get the final result, you need to select the areas that are greater than 6000m². However, computing these areas accurately is only possible for a vector layer, so you will need to vectorize the raster.

9.4.23 Vectorizing the raster

- Click on the menu item $Raster \rightarrow Conversion \rightarrow Polygonize$.
- Select the *cross_product* raster.
- Set the output location to Rasterprac.
- Name the file candidate_areas.shp.
- Ensure that Load into canvas when finished is checked.
- Click OK.
- Close the dialog when processing is complete.

All areas of the raster have been vectorized, so you need to select only the areas that have a value of 1.

- Open the Query dialog for the new vector.
- Build this query:

"DN" = 1

- Click OK.
- Create a new vector file from the results by saving the *candidate_areas* vector after the query is complete (and only the areas with a value of 1 are visible). Use the *Save as...* function in the layer's right-click menu for this.
- Save the file in the Rasterprac directory.
- Name the file *candidate_areas_only.shp*.
- Save your map.

9.4.24 Calculating the area for each polygon

- Open the new vector layer's right-click menu.
- Select Open attribute table.
- Click the *Toggle editing mode* button along the bottom of the table, or press Ctrl+E.
- Click the Open field calculator button along the bottom of the table, or press Ctrl+I.

- Under the *New field* heading in the dialog that appears, enter the field name area. The output field type should be an integer, and the field width should be 10.
- In Field calculator expression, type:

\$area

This means that the field calculator will calculate the area of each polygon in the vector layer and will then populate a new integer column (called *area*) with the computed value.

- Click OK.
- Do the same thing for another new field called *id*. In *Field calculator expression*, type:

\$id

This ensures that each polygon has a unique ID for identification purposes.

• Click Toggle editing mode again, and save your edits if prompted to do so.

9.4.25 Selecting areas of a given size

Now that the areas are known:

- Build a query (as usual) to select only the polygons larger than 6000m^2. The query is:
 - "area" > 6000
- Save the selection as a new vector layer called *solution.shp*.

You now have your solution areas, from which you will pick the one nearest to your house.

9.4.26 Digitize your house

- Create a new vector layer as before, but this time, select the Type value as being a Point.
- Ensure that it is in the correct CRS!
- Name the new layer house.shp.
- Finish creating the new layer.
- Enter edit mode (while the new layer is selected).
- Click the point where your house or other current place of residence is, using the streets as a guide. You might have to open other layers to help you find your house. If you don't live anywhere nearby, just click somewhere among the streets where a house could conceivably be.
- Enter any arbitrary number for the shape ID.
- Click OK.
- Save your edits and exit edit mode.
- Save the map.

You will need to find the centroids ("centers of mass") for the solution area polygons in order to decide which is closest to your house.

9.4.27 Calculate polygon centroids

- Click on the Vector \rightarrow Geometry Tools \rightarrow Polygon centroids menu item.
- Specify the input layer as *solution.shp*.
- Provide the output location as Rasterprac.

- Call the destination file solution_centroids.shp.
- Click OK and add the result to the TOC (Layers list), then close the dialog.
- Drag the new layer to the top of the layer order so that you can see it.

9.4.28 Calculate which centroid is closest to your house

- Click on the menu item *Vector* -> *Analysis Tools* -> *Distance matrix*.
- The input layer should be your house, and the target layer *solution_centroids*. Both of these should use the id field as their unique ID field.
- The output matrix type should be *linear*.
- Set an appropriate output location and name.
- Click OK.
- Open the file in a text editor (or import it into a spreadsheet). Note which target ID is associated with the shortest *Distance*. There may be more than one at the same distance.
- Build a query in QGIS to select only the solution areas closest to your house (selecting it using the id field).

This is the final answer to the research question.

For your submission, include the semi-transparent hillshade layer over an appealing raster of your choice (such as the *DEM* or the *slope* raster, for example). Also include the polygon of the closest solution area(s), as well as your house. Follow all the best practices for cartography in creating your output map.

Module: Plugin

I plugin permettono di estendere le funzionalità che QGIS offre. In questo modulo, ti sarà mostrato come attivare e utilizzare i plugin.

10.1 Lesson: Installing and Managing Plugins

To begin using plugins, you need to know how to download, install and activate them. To do this, you will learn how to use the *Plugin Installer* and *Plugin Manager*.

The goal for this lesson: To understand and use QGIS' plugin system.

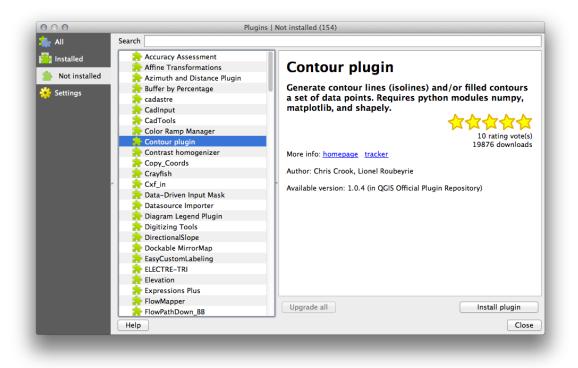
10.1.1 Follow Along: Managing Plugins

- To open the *Plugin Manager*, click on the menu item *Plugins* \rightarrow *Manage and Install Plugins*.
- In the dialog that opens, find the *Processing* plugin:

000	Plug	gins All (178)
🚵 Ali S	iearch	
installed	 Ordnance Survey Translator OSM place search OSMEditorRemoteControl 	This plugin is experimental
	osmSearch PDOK BAG Geocoder PDOK services plugin pgRoutingLayer Photo2Shape Pin Point Plain Geometry Editor Plugin Builder Plugin Reloader Points2One Points2One Points2One Points1C Topaths PostCIS Topology Editor PostGIS Topology Editor PostGIS Topology Editor Processing Processing UWGEOM Provider ProcessingPermaclim provider Profile tool PS Time Series Viewer QChainage QConsolidate QCIS Cloud Plugin Help	Processing Spatial data processing framework for QCIS Spatial data processing framework for QCIS Category: G rating vote(s) 10027 downloads Category: Analysis More info: homepage tracker code repository Author: Victor Olaya Installed version: Noters/george/.agis2/python/plugins/processing) Available version: 2.0-20131120 (in QCIS Official Plugin Repository) Upgrade all Uninstall plugin Reinstall plugin

• Click in the box next to this plugin and uncheck it to uninstall it.

- Click Close.
- Looking at the menu, you will notice that the *Processing* menu is is now gone. This means that many of the processing functions you have been using before have disappeared! This is because they are part of the *Processing* plugin, which needs to be activated for you to use them.
- Open the *Plugin Manager* again and reactivate the *Processing* plugin by clicking in the checkbox next to it and clicking *Close*..
- The *Processing* menu should be available again.


10.1.2 **Follow Along: Installing New Plugins**

The list of plugins that you can activate and deactivate draws from the plugins that you currently have installed.

• To install new plugins, select the *Not Installed* option in the *Plugin Manager* dialog. The plugins available for you to install will be listed here. This list will vary depending on your existing system setup.

000	Plugir	ns Not installed (154)
🏠 All 🛛 Sear	rch	
Installed Not installed Settings	Accuracy Assessment Affine Transformations Azimuth and Distance Plugin Buffer by Percentage cadastre CadInput CadTools Color Ramp Manager Contour plugin Contrast homogenizer Copy_Coords Crayfish Cxf_in Data-Driven Input Mask Datasource Importer Diagram Legend Plugin Digitizing Tools DirectionalSlope Dockable MirrorMap EasyCustomLabeling ELECTRE-TRI Elevation Expressions Plus FlowMapper	Not installed plugins Here you see the list of all plugins available in the repositories, but which are not yet installed. Click on the name to see details. You can change the sorting via the context menu (right click). A plugin can be downloaded and installed by clicking on it's name, and then click the 'Install plugin' button.
H	PlowPathDown_BB	Close

• You can find information about each plugin by selecting it in the list of plugins displayed.

• A plugin can be installed by clicking the *Install Plugin* button below the plugin information panel.

10.1.3 Follow Along: Configuring Additional Plugin Repositories

The plugins that are available to you for installation depend on which plugin *repositories* you are configured to use.

QGIS plugins are stored online in repositories. By default, only the official repositories are active, meaning that you can only access official plugins. These are usually the first plugins you want, because they have been tested thoroughly and are often included in QGIS by default.

It is possible, however, to try out more plugins than the default ones. First, you want to configure additional repositories. To do this:

• Open the Settings tab in the Plugin Manager dialog:

All	Plugins Not installed (154) Note: If this function is enabled, CRIS will inform you wherever a new plugin or plugin update is available. Otherwise, fetching repositories will be performed during opening of the
Installed	Plugin Manager window.
Not installed	▼ 🗹 Show also experimental plugins
Settings	Note: Experimental plugins are generally unsuitable for production use. These plugins are in early stages of development, and should be considered 'incomplete' or 'proof of concept' tools. GGIS does not recommend installing these plugins unless you intend to use them for testing purposes.
	▼
	Note: Deprecated plugins are generally unsuitable for production use. These plugins are unmaintained, and should be considered 'obsolete' tools. QGIS does not recommend installing these plugins unless you still need it and there are no other alternatives available.
	Plugin repositories
· · · · · · · · · · · · · · · · · · ·	Status Name URL
	Status Name URL Image: Connected QGIS Official Plugin Repository http://plugins.qgis.org/plugins/plugins.xml?qgis=2.1

- Click *Add* to find and add a new repository.
- Provide a Name and URL for the new repository you want to configure and make sure the *Enabled* checkbox is selected.

Name	Boundless
URL	http://qgis.boundlessgeo.com/plugins.xml
Parameters	?qgis=2.0
Enabled	
	Cancel OK

• You will now see the new plugin repo listed in the list of configured Plugin Repositories

000		Plugins Not i	nstalled (154)
촕 All	Note: If this function is Plugin Manager window	enabled, QGIS will inform you whenever a new plug v.	in or plugin update is available. Otherwise, tetching repositories will be performed during opening of the
🤁 Installed			
🍅 Not installed	🔻 🗹 Show als	o experimental plugins	
👙 Settings	Note: Experimental pl concept' tools. QGIS of	ugins are generally unsuitable for production use. T does not recommend installing these plugins unless	hese plugins are in early stages of development, and should be considered "incomplete" or 'proof of you intend to use them for testing purposes.
	▼ □ Show als	o deprecated plugins	
	Note: Deprecated plu installing these pluging	gins are generally unsuitable for production use. Th s unless you still need it and there are no other alter	ese plugins are unmaintained, and should be considered 'obsolete' tools. QGIS does not recommend matives available.
1	Plugin repositor		
~	Status	Name	URL
	 connected connected 	Boundless QGIS Official Plugin Repository	http://qgis.boundlessgeo.com/plugins.xml?qgis=2.1 http://plugins.qgis.org/plugins/plugins.xml?qgis=2.1
	Reload all re	positories	Add Edit Delete
He	elp		Close

- You can also select the option to display Experimental Plugins by selecting the *Show also experimental plugins* checkbox.
- If you now switch back to the *Get More* tab, you will see that additional plugins are now available for installation.
- To install a plugin, simply click on it in the list and then click the Install plugin button.

10.1.4 In Conclusion

Installing plugins in QGIS is simple and effective!

10.1.5 What's Next?

Next we'll introduce you to some useful plugins as examples.

10.2 Lesson: Useful QGIS Plugins

Now that you can install, enable and disable plugins, let's see how this can help you in practice by looking at some examples of useful plugins.

The goal for this lesson: To familiarize yourself with the plugin interface and get acquainted with some useful plugins.

10.2.1 Follow Along: The Raster Terrain Analysis Plugin

• Start a new map with only the *srtm_41_19.tif* raster dataset in it (look in exercise_data/raster/SRTM).

From the lesson on raster analysis, you're already familiar with raster analysis functions. You used GDAL tools (accessible via *Raster -> Analysis*) for this. However, you should also know about the Raster Terrain Analysis plugin. This ships standard with newer versions of QGIS, and so you don't need to install it separately.

• Open the *Plugin Manager* and check that the Raster Terrain Analysis plugin is enabled:

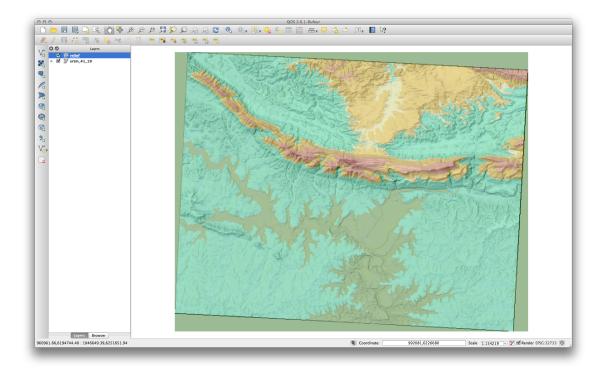
 Installed Not installed Settings Galartic Cordinate Capture DB Manager DB Manager DB Manager Converter Frools Galarticols Coordinate Capture Coordinate Capture Coordinate Capture Galarticols Coordinate Capture Coordinate Capture	Raster Terrain Analysis plugin
 GeoSearch GPS Tools Heatmap InaSAFE Interpolation plugin OpenLayers Plugin Oracle Spatial GeoRaster Processing Road graph plugin Spatial Query Plugin SPIT SQL Anywhere plugin Topology Checker Zonal statistics plugin 	Installed version: Version 0.1 (in /usr/local/Cellar/qgis-20/HEAD/QGIS.app/Contents/MacOS//PlugIns/ gis/librasterterrainplugin.so)

- Open the Raster menu. You should see a Terrain analysis submenu.
- Click on *Terrain analysis* \rightarrow *Relief* and input the following options:

Elevation layer	srtm_41_19	
Output layer		exercise_data/plugins/relief
Output format	GeoTIFF	
Z factor	1.0	
Add result to projec	t	
Relief colors		
Create automatica	lly Export distribution	Up Down + -
		Up Down + -
Create automatica		Up Down + -
		Up Down + -
Lower bound Upp	er bound Color	Up Down + -
		Up Down + -
Lower bound Upp	er bound Color	Up Down + -
Lower bound Upp	er bound Color	Up Down + -

- Save the new file under exercise_data/plugins/relief.tif (create a new folder if necessary).
- Leave the *Output format* and *Z factor* unchanged.

- Make sure the *Add result to project* box is checked.
- Click the *Create automatically* button. The list below will be populated:


evation layer	srtm_	_41_19			;
utput layer	Volum	nes/Drobo/sites/qgis/QG	IS-Documentation/source/	docs/training_manual/exercise_data/p	lugins/relief
utput format	GeoT	TIFF			;
factor	1.0				
Add result to Relief colors	project				
Create auton	natically	Export distribution		Up Down	+ -
Lower bound	Upper bound	d Color			
0	121.357				
121.357	350.587				
350.587	653.98				
653.98	707.917				
707.917	997.825				
997.825	997.825				
997.825	997.825				
997.825	1436.06				
1436.06	1699				
Export color	s	Import colors			
					ncel OK

These are the colors that the plugin will use to create the relief.

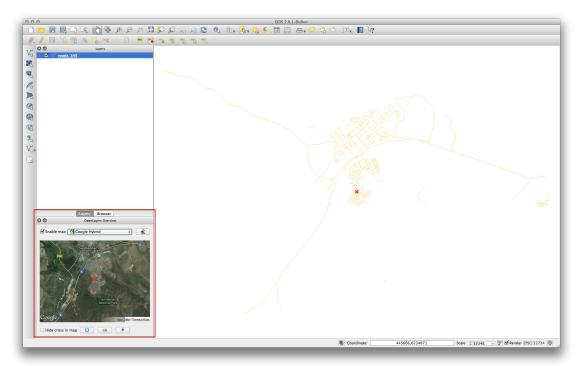
• If you like, you can change these colors by double-clicking on each row's color bar. For example:

levation layer	srtm_41_19	
levation layer	SIGII_41_19	
utput layer	Volumes/Drobo/sites/qgis/QGIS-Documentatio	on/source/docs/training_manual/exercise_data/plugins/relief
utput format	GeoTIFF	
factor	1.0	
Add result to	roject	
Relief colors		
Create autor	atically Export distribution	Up Down + -
Create autor		
Lower bound	Upper bound Color	
0	121.357	
121.357	350.587	
350.587	653.98	
653.98	707.917	
707.917	997.825	
997.825	997.825	
	997.825	
997.825	1436.06	
	1699	
997.825		
997.825 997.825		
997.825 997.825 1436.06	Import colors	
997.825 997.825	Import colors	
997.825 997.825 1436.06	Import colors	
997.825 997.825 1436.06	Import colors	Cancel OK

• Click *OK* and the relief will be created:

This achieves a similar effect to when you used the semi-transparent hillshade as an overlay over another raster layer. The advantage of this plugin is that it creates this effect using only one layer.

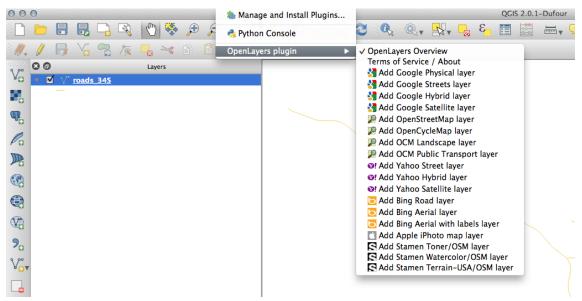
10.2.2 Follow Along: The OpenLayers Plugin

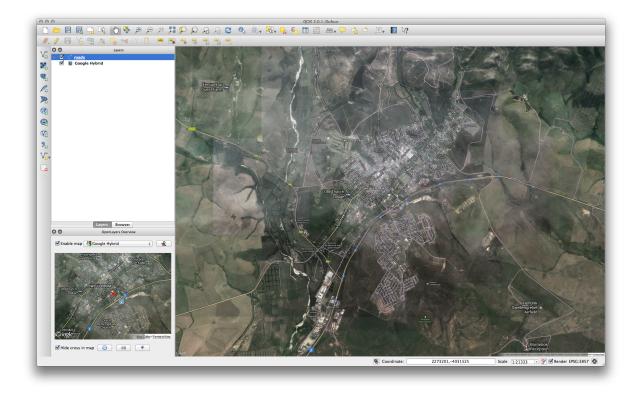

- Start a new map and add the *roads.shp* layer to it.
- Zoom in over the Swellendam area.
- Using the *Plugin Manager*, find a new plugin by entering the word OpenLayers in the *Filter* field.
- Select the OpenLayers plugin from the filtered list:

$\bigcirc \bigcirc \bigcirc \bigcirc$	Р	lugins Not installed (155)
à All	Search OpenLa	D
Not installed	CCR2Layers OpenLayers Plugin	OpenLayers Plugin
Settings	I'MS for Korea	OpenStreetMap, Google Maps, Bing Maps layers and more
		63 rating vote(s) 79173 downloads Tags: openlayers,osm,google,bing More info: <u>homepage tracker code repository</u>
		Author: Sourcepole
	r	Available version: 1.1.2 (in QGIS Official Plugin Repository)
		Upgrade all Install plugin
	Help	Close

- Click the Install plugin button to install.
- When it's done, close the *Plugin Manager*.

Before using it, make sure that both your map and the plugin are configured properly:

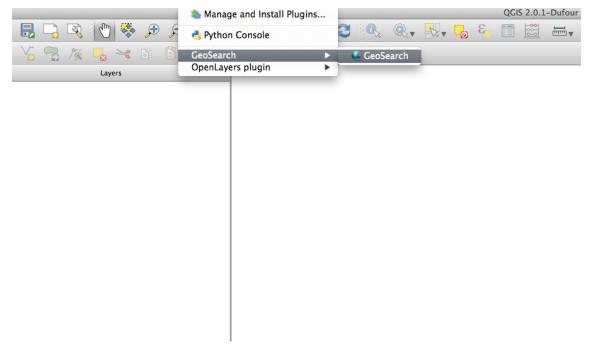

- Open the plugin's settings by clicking on $Web \rightarrow OpenLayers \ plugin \rightarrow OpenLayers \ Overview.$
- Use the panel to choose a map type you want. In this example, we'll use the "Hybrid" type map, but you can choose any others if you want.


- Open the *Project Properties* Dialog by selecting *Project -> Project Properties* from the menu.
- Enable "on the fly" projection and use the Google Mercator projection:

00	Project Properties CRS			
General	Second Enable 'on the fly' CRS transformation			
CRS CRS	Filter			
💀 Identify layers	Recently used coordinate reference systems			
	Coordinate Reference System	Authority ID		
🥁 Default styles	Van der Grinten I	USER: 100000		
	NSIDC EASE-Grid Global	EPSG:3410		
🛃 OWS server	WGS 84 / UTM zone 33S	EPSG:32733		
	WGS 84 / UTM zone 34S	EPSG:32734		
💽 Macros	WGS 84 / Pseudo Mercator	EPSG:3857		
	Google Mercator	EPSG:900913		
Relations	WCS 84	EPSG:4326		
	Coordinate reference systems of the world	Hide deprecated CRS		
	Coordinate Reference System	Authority ID		
	WGS 84 / SCAR IMW ST53-56	EPSG:3273		
· · · · · · · · · · · · · · · · · · ·	WGS 84 / SCAR IMW ST57-60	EPSG:3274		
	WGS 84 / South Georgia Lambert	EPSG:3762		
	WGS 84 / USGS Transantarctic Mountains	EPSG:3294		
	unnamed	EPSG:22500		
	Mercator	EF3G.27300		
	Batavia (Jakarta) / NEIEZ (deprecated)	EPSG:21100		
	Batavia (NEIEZ	EPSG:3001		
	Google Mercator	EPSG:900913		
	Makassar (Jakarta) / NEIEZ (deprecated)	EPSG:25700		
	Maxassai (Jakaita) / NEIEZ (deprecated)	EF30.23700		
	Selected CRS: Google Mercator			
	+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 + +k=1.0 +units=m +nadgrids=@null +wktext +over +n	lon_0=0.0 +x_0=0.0 +y_0=0 no_defs		
	TK-1.0 Tunits-III Thaughus-Whun Twktekt Tovel Th			

Now use the plugin to give you a Google map of the area. You can click on *Plugins* → *OpenLayers Plugin* → *Add Google Hybrid Layer* to add it:

This will load a new raster image in from Google that you can use as a backdrop, or to help you find out where you are on the map. Here is such a layer, with our own vector road layer as overlay:


Nota: You may need to drag your roads layer above the Google layer to make it visible above the background layer. It may also be necessary to zoom to the extent of the roads layer to re-center the map.

10.2.3 Follow Along: The GeoSearch Plugin

- Start a new map with no datasets.
- Open the Plugin Manager and filter for the GeoSearch Plugin and click Install Plugin to install it.

000		Plugins All (178)
為 All	Search geos	a
Installed	GeoSearch GeoSpatial Simulation HTP Geoprocessor	GeoSearch Search location by words like google map; Calculate Distance between two points on mapCanvas.(0.05.00) $^{1} rating vote(s) \\ 8356 downloads}$ Tags: maptool More info: homepage tracker code repository
	~	Author: Walter Tsui Available version: 0.06.00 (in QGIS Official Plugin Repository)
	Help	Close

- Close the *Plugin Manager*.
- You can now use the GeoSearch plugin to search for placenames. Click on *Plugins -> GeoSearch Plugin -> GeoSearch* to open the GeoSearch dialog.

• Search for Swellendam in the GeoSearch Dialog to locate it on your map:

000	GeoSearch Point Distance	e]
Geocod	Addres:	
GoogleV3 ÷	swellendam	Search
Geocod	Latitude Long	gituc
GoogleV3 ÷		om Map Search
	Result	🗹 Exact One Res
	List Text	Search On Google Web

10.2.4 In Conclusion

There are many useful plugins available for QGIS. Using the built-in tools for installing and managing these plugins, you can find new plugins and make optimum use of them.

10.2.5 What's Next?

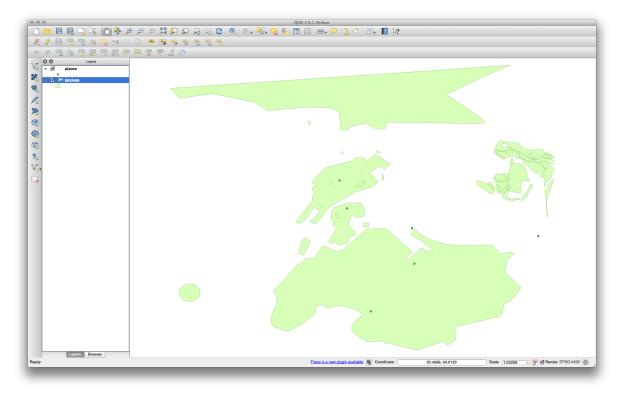
Next we'll look at how to use layers that are hosted on remote servers in real time.

Module: Online Resources

When considering data sources for a map, there is no need to be restricted to data which you have saved on the computer you're working on. There are online data sources which you can load data from as long as you are connected to the Internet.

In this module, we'll cover two kinds of web-based GIS services: Web Mapping Services (WMS) and Web Feature Services (WFS).

11.1 Lesson: Web Mapping Services


Un Web Mapping Service (WMS) è un servizio ospitato su un server remoto. Simile a un sito Web, è possibile accedervi se si dispone di una connessione al server. Con QGIS, è possibile caricare un WMS direttamente nella vostra mappa.

Nell'esercitazione sui plugin è stata spiegata come caricare una nuova immagine raster da Google. Tuttavia, questa è una operazione una tantum: una volta scaricata l'immagine, non ci saranno eventuali aggiornamenti futuri. Il caso del WMS è diverso in quanto si tratta di un servizio in tempo reale, che si aggiorna automaticamente.

Lo scopo di questa esercitazione Come usare un WMS e i suoi limiti.

In questo esercizio, puoi utilizzare la mappa di base che hai fatto all'inizio del corso, o fare una nuova mappa e caricare alcuni vettori. In questo esempio, abbiamo creato una nuova mappa e caricato i vettori *places* e *landuse* e impostata la simbologia:

- Carica questi vettori su una mappa nuova o esistente, con solo questi vettori visibili:
- Before starting to add the WMS layer, first deactivate "on the fly" projection. This may cause the layers to no longer overlap properly, but don't worry: we'll fix that later.
- To add WMS layers, click on the Add WMS Layer button:

Remember how you connected to a SpatiaLite database at the beginning of the course. The *landuse*, *places*, and *water* layers are in that database. To use those layers, you first needed to connect to the database. Using a WMS is similar, with the exception that the layers are on a remote server.

• To create a new connection to a WMS, click on the New button.

You'll need a WMS address to continue. There are several free WMS servers available on the Internet. One of these is terrestris, which makes use of the OpenStreetMap dataset.

• To make use of this WMS, set it up in your current dialog, like this:

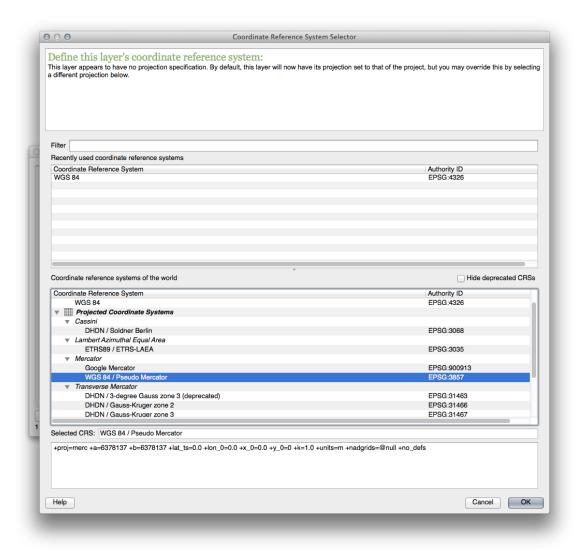
	Create a new WMS connection	
gis-lab	Connection details	
Connect Ne	Name terrestris	Add default servers
	URL http://ows.terrestris.de/osm/service	
2 d	If the service requires basic authentication, enter a user name and optional password	
	User name	
_	Password	
Image encoding	Referer	
	☐ Ignore GetMap URI reported in capabilities	
Coordinate Refere	Ignore GetFeatureInfo URI reported in capabilities	
Layer name OSM	Ignore axis orientation (WMS 1.3/WMTS) Invert axis orientation	
Tile size	Smooth pixmap transform	
Feature limit for G		
WGS 84	Help Cancel OK	

- The value of the *Name* field should be terrestris.
- The value of the URL field should be http://ows.terrestris.de/osm/service.
- Click OK. You should see the new WMS server listed:

Connect	New Edit	Delete	٦		Load	Save	Add default servers
ID	Name	Title	Abstract				
Image encodi	ing						
Image encod	ing						
Image encodi Options	ing						
	ing						
Options	ing						
Options Layer name Tile size	ing)		10			
Options Layer name Tile size				10		Change	

• Click *Connect*. In the list below, you should now see these new entries loaded:

terrestris						
Connect	New Edit	Delete		Load	Save	Add default servers
-	Name	Title		Abs	tract	
▼ 0 ▶ 1	OSM-WMS	OpenStreetMap WMS De OpenStreetMap WMS - by				
Image encodir	g					
O PNG	JPEG 💿 GIF					
Options (0 cos	rdinata reference	systems available)				
	i ullate reference	systems available)				
Layer name						
Tile size	or GetFeatureInfo)	10			
					Change	
					Change	

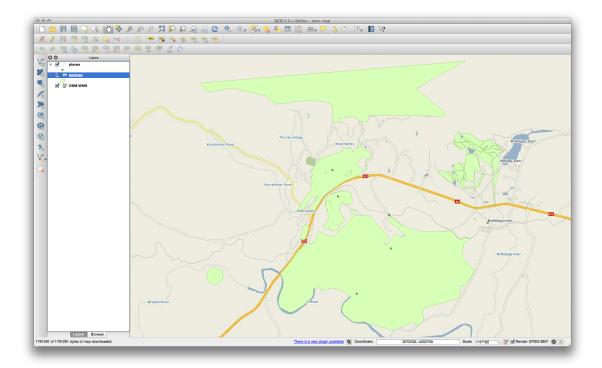

These are all the layers hosted by this WMS server.

• Click once on the OSM-WMS layer. This will display its Coordinate Reference System:

		Layers	Layer Order	Tilesets	Server Search		
terrestris							;
Connect	New Edit	Delete]		Load	ave Add default	t servers
D	Name	Title			Abstract		
v 0			tMap WMS D				
▶ 1	OSM-WMS	OpenStreet	Map WMS - I	by terrestris			
Image encodi	ina						
OPNG (JPEG 💽 GIF						
Coordinate R	eference System	(13 available)					
		· · · · ·					
Layer name	OSM-WMS						
Tile size							
	for GetFeatureInf			10			
Feature limit	ior detreaturenni	,		10			
Feature limit					C	hange	
Feature limit WGS 84							
WGS 84							
	bt						Clos
WGS 84							Clos

Since we're not using WGS 84 for our map, let's see all the CRSs we have to choose from.

- Click the *Change* button. You will see a standard *Coordinate Reference System Selector* dialog.
- We want a projected CRS, so let's choose WGS 84 / Pseudo Mercator.


- Click OK.
- Click Add and the new layer will appear in your map as OSM-WMS.
- In the *Layers list*, click and drag it to the bottom of the list.

You will notice that your layers aren't located correctly. This is because "on the fly" projection is disabled. Let's enable it again, but using the same projection as the OSM-WMS layer, which is WGS 84 / Pseudo Mercator.

- Enable "on the fly" projection.
- In the CRS tab (Project Properties dialog), enter the value pseudo in the Filter field:

00	Project Properties	
General (Coordinate Reference System (CRS)	
	Enable 'on the fly' CRS transformation	
CRS		
Identify layers	Filter pseudo Recently used coordinate reference systems	⊠
V Default styles	Coordinate Reference System WGS 84 / Pseudo Mercator	Authority ID EPSG:3857
OWS server	WGS 84 / Pseudo Mercator	EPSG:3857
Macros		
	Coordinate reference systems of the world	Hide deprecated CRSs
~	Coordinate Reference System	Authority ID
	Frojected Coordinate Systems Mercator	
	WGS 84 / Pseudo Mercator	EPSG:3857
	Selected CRS: WGS 84 / Pseudo Mercator	
	+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lc +nadgrids=@null +no_defs	on_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m
Help Apply		Cancel

- Choose WGS 84 / Pseudo Mercator from the list.
- Click OK.
- Now right-click on one of your own layers in the *Layers list* and click *Zoom to layer extent*. You should see the Swellendam area:

Note how the WMS layer's streets and our own streets overlap. That's a good sign!

The nature and limitations of WMS

By now you may have noticed that this WMS layer actually has many features in it. It has streets, rivers, nature reserves, and so on. What's more, even though it looks like it's made up of vectors, it seems to be a raster, but you can't change its symbology. Why is that?

This is how a WMS works: it's a map, similar to a normal map on paper, that you receive as an image. What usually happens is that you have vector layers, which QGIS renders as a map. But using a WMS, those vector layers are on the WMS server, which renders it as a map and sends that map to you as an image. QGIS can display this image, but can't change its symbology, because all that is handled on the server.

This has several advantages, because you don't need to worry about the symbology. It's already worked out, and should be nice to look at on any competently designed WMS.

On the other hand, you can't change the symbology if you don't like it, and if things change on the WMS server, then they'll change on your map as well. This is why you sometimes want to use a Web Feature Service (WFS) instead, which gives you vector layers separately, and not as part of a WMS-style map.

This will be covered in the next lesson, however. First, let's add another WMS layer from the *terrestris* WMS server.

11.1.2 |base| Try Yourself

- Hide the OSM-WSM layer in the Layers list.
- Add the "ZAF CGS 1M Bedrock Lithostratigraphy" WMS server at this URL: http://196.33.85.22/cgi-bin/ZAF_CGS_Bedrock_Geology/wms
- Load the *BEDROCKGEOLOGY* layer into the map (use the *Add WMS Layer* button as before). Remember to check that it's in the same *WGS 84 / World Mercator* projection as the rest of your map!
- You might want to set its *Encoding* to *JPEG* and its *Tile size* option to 200 by 200, so that it loads faster:

					rom a Server				
			Layers	Layer Order	Tilesets Server Search	h			
bedrock									
Connect	New Edit	Delete					Load Sav	e Add	default servers
D	▲ Name	Title	Abstract						
▼ 0 ▶ 1	BEDROCKG ZAF_CGS_1			ital geological map M Bedrock Lithostra	covering the whole of the atigraphy	Republic of	South Africa is a	wailable in th	is OGC WMS .
Image encodi	ing								
-	ing) PNG8 💿 JPEG	GIF	TIFF						
O PNG	-		TIFF						
O PNG Coordinate R	PNG8 (•) JPEG	available)	TIFF						
O PNG Coordinate R	PNG8 (•) JPEG	available)	TIFF		200				
PNG Coordinate R Layer name Tile size	PNG8 (•) JPEG eference System (1 BEDROCKGEOLO	available)	TIFF		200				
PNG Coordinate R Layer name Tile size	PNG8 (•) JPEG eference System (1 BEDROCKGEOLO 200	available)	TIFF				Change		
PNG Coordinate R Layer name Tile size Feature limit	PNG8 (•) JPEG eference System (1 BEDROCKGEOLO 200	available)	TIFF				Change		
PNG Coordinate R Layer name Tile size Feature limit WGS 84	PNG8 PNG8 PPNG8 PPNG8 PPNG8 PPNG8 PPN	available)	TIFF				Change		
PNG Coordinate R Layer name Tile size Feature limit WGS 84	PNG8 • JPEG eference System (1 BEDROCKGEOLO 200 for GetFeatureInfo	available)	TIFF				Change		Ck

Check your results

- Hide all other WMS layers to prevent them rendering unnecessarily in the background.
- Add the "OGC" WMS server at this URL: http://ogc.gbif.org:80/wms
- Add the *bluemarble* layer.

Check your results

Part of the difficulty of using WMS is finding a good (free) server.

• Find a new WMS at directory.spatineo.com (or elsewhere online). It must not have associated fees or restrictions, and must have coverage over the Swellendam study area.

Remember that what you need in order to use a WMS is only its URL (and preferably some sort of description).

Check your results

11.1.5 In Conclusion

Using a WMS, you can add inactive maps as backdrops for your existing map data.

11.1.6 Further Reading

- Spatineo Directory
- Geopole.org
- OpenStreetMap.org list of WMS servers

11.1.7 What's Next?

Now that you've added an inactive map as a backdrop, you'll be glad to know that it's also possible to add features (such as the other vector layers you added before). Adding features from remote servers is possible by using a Web Feature Service (WFS). That's the topic of the next lesson.

11.2 Lesson: Web Feature Services

A Web Feature Service (WFS) provides its users with GIS data in formats that can be loaded directly in QGIS. Unlike a WMS, which provides you only with a map which you can't edit, a WFS gives you access to the features themselves.

The goal for this lesson: To use a WFS and understand how it differs from a WMS.

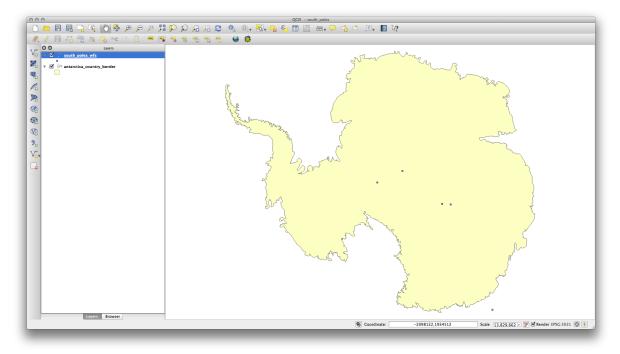
11.2.1 Pollow Along: Loading a WFS Layer

- Start a new map. This is for demo purposes and won't be saved.
- Ensure that "on the fly" re-projection is switched off.
- Click the Add WFS Layer button:

- Click the New button.
- In the dialog that appears, enter the *Name* as nside.org and the *URL* as http://nside.org/cgi-bin/atlas_south?version=1.1.0.

00	Create a new WFS connection
Connection d	etails
Name	nsidc.org
URL	http://nsidc.org/cgi-bin/atlas_south?version=1.1.0
If the servic optional pas	e requires basic authentication, enter a user name and sword
User name	
Password	
Help	Cancel OK

- Click OK, and the new connection will appear in your Server connections.
- Click the Connect. A list of the available layers will appear:

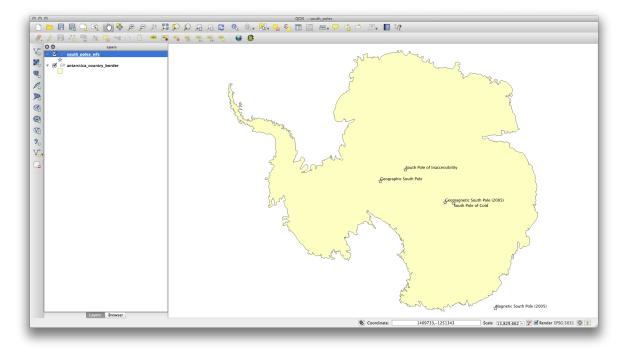

nsidc.org				
	Inte			
Connect New Edit De	lete		Load	Save
Filter:				
Title	Name	Abstract	Cache Feature	Filter
Antarctic ice shelves	antarctic_ice_shelves_fill	Bohlander, J. and T. S		
Antarctic continent	antarctic_continent	Bohlander, J. and T. S		
Antarctic islands	antarctic_islands	Bohlander, J. and T. S	ৰথবেৰবিৰ	
land (excluding Antarctica)	land_excluding_antarctica	Center for Internation		
Antarctic suface elevation contours	antarctica_elevation_contours	Liu, H., K. Jezek, B. L	\checkmark	
glaciers	glaciers	National Imagery and		
glacier outlines	glacier_outlines	Armstrong, R., B. Ra	\checkmark	
coastlines (excluding Antarctica)	coastlines_excluding_antarctica	Center for Internation		
Antarctic coastline (includes ice shelves)	antarctic_ice_shelves_outline	Bohlander, J. and T. S	\checkmark	
Antarctic grounding line (excludes ice shel		Bohlander, J. and T. S		
Antarctic island coastlines	antarctic_islands_coastlines	Bohlander, J. and T. S		
countries (excluding Antarctica)	country_borders_excluding_antar	Center for Internation		
Antarctica border	antarctica_country_border	Bohlander, J. and T. S		
Antarctic island coastlines	antarctica_islands_coastlines	Bohlander, J. and T. S	7	
Antarctic Polar Front	antarctic_polar_front	Orsi, A. and Ryan, U		
International Date Line	international_date_line	National Geographic	হাব	
Antarctic megadunes	antarctic_megadunes	Bohlander, J. and T. S	⊻	
Antarctic permanent research stations	antarctic_research_stations	Wikipedia contributor		
Antarctic ice core locations	antarctic_ice_cores	Maurer, J. compiler. 2	N.	
South Pole, Geographic	south_pole_geographic	Labels the location of	v	
Use title for layer name Coordinate reference system				
				Change
EPSC-3031				Griange
EPSG:3031				
EPSG:3031				

- Find the layer *south_poles_wfs*.
- Click on the layer to select it:

nsidc.org				
Connect New Edit Del	ete		Loa	d Save
ilter:				
	Name	Abstract	Cache Feature	Filter
glacier outlines	glacier_outlines	Armstrong, R., B. Ra	\checkmark	
coastlines (excluding Antarctica)	coastlines_excluding_antarctica	Center for Internation		
Antarctic coastline (includes ice shelves)	antarctic_ice_shelves_outline	Bohlander, J. and T. S	$\mathbf{\nabla}$	
Antarctic grounding line (excludes ice shel	antarctic_coastline	Bohlander, J. and T. S	ৰবেৰবেৰেৰে	
Antarctic island coastlines	antarctic_islands_coastlines	Bohlander, J. and T. S	\checkmark	
countries (excluding Antarctica)	country_borders_excluding_antar	Center for Internation		
Antarctica border	antarctica_country_border	Bohlander, J. and T. S		
Antarctic island coastlines	antarctica_islands_coastlines	Bohlander, J. and T. S		
Antarctic Polar Front	antarctic_polar_front	Orsi, A. and Ryan, U	⊻	
International Date Line	international_date_line	National Geographic	1	
Antarctic megadunes	antarctic_megadunes	Bohlander, J. and T. S		
Antarctic permanent research stations	antarctic_research_stations	Wikipedia contributor Maurer, J. compiler, 2		
Antarctic ice core locations	antarctic_ice_cores	Labels the location of	×	
South Pole, Geographic South Pole, Magnetic	south_pole_geographic south_pole_magnetic	McClean, S. 24 Janu		
		McClean, S. 24 Janu	ধববব	
South Pole, Geomagnetic South Pole of Inaccessibility	south_pole_geomagnetic south_pole_inaccessibility	Wikipedia contributor		
South Pole of Cold	south_pole_of_cold	Wikipedia contributor	Š	
South Poles	south_poles_wfs	Labels the location of	Š	
SouthFoles	south_poles_wis			
Dilles Alls fee laven as as				
Use title for layer name Coordinate reference system				
Coordinate reference system				
5000 0001				Ohanna
EPSG:3031				Change
Help Add Build query				Clo
				CIO

• Click Add.

It may take a while to load the layer. When it has loaded, it will appear in the map. Here it is over the outlines of Antarctica (available on the same server, and by the name of *antarctica_country_border*):



How is this different from having a WMS layer? That will become obvious when you see the layers' attributes.

• Open the *south_poles_wfs* layer's attribute table. You should see this:

ļ	ld ▼	NAME
	0	Geographic South Pole
	0	Magnetic South Pole (2005)
2	0	Geomagnetic South Pole (2005)
	0	South Pole of Inaccessibility
	0	South Pole of Cold
	Show All Featu	ures 🖵

Since the points have attributes, we are able to label them, as well as change their symbology. Here's an example:

• Add labels to your layer to take advantage of the attribute data in this layer.

Differences from WMS layers

A Web Feature Service returns the layer itself, not just a map rendered from it. This gives you direct access to the data, meaning that you can change its symbology and run analysis functions on it. However, this is at the cost of much more data being transmitted. This will be especially obvious if the layers you're loading have complicated shapes, a lot of attributes, or many features; or even if you're just loading a lot of layers. WFS layers typically take a very long time to load because of this.

11.2.2 Follow Along: Querying a WFS Layer

Although it is of possible to query a WFS layer after having loaded it, it's often more efficient to query it before you load it. That way, you're only requesting the features you want, meaning that you use far less bandwidth.

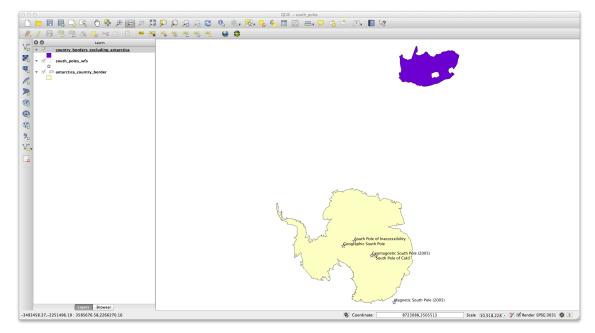
For example, on the WFS server we're currently using, there is a layer called *countries (excluding Antarctica)*. Let's say that we want to know where South Africa is relative to the *south_poles_wfs* layer (and perhaps also the *antarctica_country_border* layer) that's already been loaded.

There are two ways to do this. You can load the whole *countries* ... layer, and then build a query as usual once it's loaded. However, transmitting the data for all the countries in the world and then only using the data for South Africa seems a bit wasteful of bandwidth. Depending on your connection, this dataset can take several minutes to load.

The alternative is to build the query as a filter before even loading the layer from the server.

- In the *Add WFS Layer* ... dialog, connect to the server we used before and you should see the list of available layers.
- Double-click next to the *countries* ... layer in the *Filter* field, or click *Build query*:

Connect New Edit Dele	ete				Load Save
er:					
le v	Name	Abstract	Cache Feature	Filter	
Antarctic ice shelves	antarctic_ice_shelves_fill	Bohlander, J. and T	1		
Antarctic continent	antarctic_continent	Bohlander, J. and T	বেবেবেবেবেবে		
Antarctic islands	antarctic islands	Bohlander, J. and T			
land (excluding Antarctica)	land excluding antarctica	Center for Internati	M		
Antarctic suface elevation contours	antarctica_elevation_contours	Liu, H., K. Jezek, B	1		
glaciers	glaciers	National Imagery an	M		
glacier outlines	glacier outlines	Armstrong, R., B. R	N		
coastlines (excluding Antarctica)	coastlines excluding antarctica	Center for Internati	M		
Antarctic coastline (includes ice shelves)	antarctic ice shelves outline	Bohlander, I. and T	V		
Antarctic grounding line (excludes ice s	antarctic coastline	Bohlander, J. and T	M		
Antarctic island coastlines	antarctic islands coastlines	Bohlander, J. and T	\checkmark		
countries (excluding Antarctica)	country borders excluding antar		N		
Antarctica border	antarctica country border	Bohlander, J. and T			
Antarctic island coastlines	antarctica islands coastlines	Bohlander, J. and T			
Antarctic Polar Front	antarctic_polar_front	Orsi, A. and Ryan, U	মহার্থনের		
International Date Line	international date line	National Geographi			
Antarctic megadunes	antarctic_megadunes	Bohlander, J. and T			
Antarctic permanent research stations	antarctic_research_stations	Wikipedia contribut			
Antarctic ice core locations	antarctic ice cores	Maurer, J. compiler			
South Pole, Geographic	south_pole_geographic	Labels the location			
South Pole, Magnetic	south_pole_magnetic	McClean, S. 24 Janu			
South Pole, Geomagnetic	south pole geomagnetic	McClean, S. 24 Janu	<u>s</u>		
South Pole of Inaccessibility	south_pole_inaccessibility	Wikipedia contribut			
South Pole of Cold	south_pole_of_cold	Wikipedia contribut			
South Poles	south_poles_wfs	Labels the location			
Jse title for layer name pordinate reference system					
Solumeter elefence system					
PSG:3031					Change .
F30.3031					Change .


• In the dialog that appears, build the query "Countryeng" = 'South Africa':

O O O Expression s	tring builder
Function list	Selected function help
Search Conditionals Math Conversions Date and Time String Color Geometry Record Record Recent (generic) Fields and Values Count Iso3v10 Unsdcode Countryeng	Field Double click to add field name to expression string. Right-Click on field name to open context menu sample value loading options. Note: Loading field values from WFS layers isn't supported, before the layer is actually inserted, ie. when building queries.
✓ Operators	
Output preview: 0	Cancel OK

• It will appear as the *Filter* value:

nsidc.org				
Connect New Edit De	lete			Load Save
ter:				
itle	Name	Abstract	Cache Feature	Filter
Antarctic ice shelves	antarctic_ice_shelves_fill	Bohlander, J. and T		
Antarctic continent	antarctic_continent	Bohlander, J. and T	N N N	
Antarctic islands	antarctic_islands	Bohlander, J. and T		
land (excluding Antarctica)	land_excluding_antarctica	Center for Internati	1	
Antarctic suface elevation contours	antarctica_elevation_contours	Liu, H., K. Jezek, B	\checkmark	
glaciers	glaciers	National Imagery an	N N	
glacier outlines	glacier_outlines	Armstrong, R., B. R		
coastlines (excluding Antarctica)	coastlines_excluding_antarctica	Center for Internati		
Antarctic coastline (includes ice shelves)	antarctic_ice_shelves_outline	Bohlander, J. and T	V	
Antarctic grounding line (excludes ice s	antarctic_coastline	Bohlander, J. and T		
Antarctic island coastlines	antarctic_islands_coastlines	Bohlander, J. and T	1	
countries (excluding Antarctica)	country_borders_excluding_antar			"Countryeng" = 'South Africa'
Antarctica border	antarctica_country_border	Bohlander, J. and T	2	
Antarctic island coastlines	antarctica_islands_coastlines	Bohlander, J. and T		
Antarctic Polar Front	antarctic_polar_front	Orsi, A. and Ryan, U		
International Date Line	international_date_line	National Geographi		
Antarctic megadunes	antarctic_megadunes	Bohlander, J. and T		
Antarctic permanent research stations	antarctic_research_stations	Wikipedia contribut		
Antarctic ice core locations	antarctic_ice_cores	Maurer, J. compiler		
South Pole, Geographic	south_pole_geographic	Labels the location		
South Pole, Magnetic	south_pole_magnetic	McClean, S. 24 Janu		
South Pole, Geomagnetic	south_pole_geomagnetic	McClean, S. 24 Janu		
South Pole of Inaccessibility	south_pole_inaccessibility	Wikipedia contribut		
South Pole of Cold	south_pole_of_cold	Wikipedia contribut	I	
South Poles	south_poles_wfs	Labels the location		
Use title for layer name coordinate reference system				
EPSG:3031				Change

• Click *Add* with the *countries* layer selected as above. Only the country with the Countryeng value of South Africa will load from that layer:

You don't have to, but if you tried both methods, you'll notice that this is a lot faster than loading all the countries before filtering them!

Notes on WFS availability

It is rare to find a WFS hosting features you need, if your needs are very specific. The reason why Web Feature Services are relatively rare is because of the large amounts of data that must be transmitted to describe a whole feature. It is therefore not very cost-effective to host a WFS rather than a WMS, which sends only images.

The most common type of WFS you'll encounter will therefore probably be on a local network or even on your own computer, rather than on the Internet.

11.2.3 In Conclusion

WFS layers are preferable over WMS layers if you need direct access to the attributes and geometries of the layers. However, considering the amount of data that needs to be downloaded (which leads to speed problems and also a lack of easily available public WFS servers) it's not always possible to use a WFS instead of a WMS.

11.2.4 What's Next?

Next, you'll see how to use QGIS as a frontend for the famous GRASS GIS.

Module: GRASS

GRASS (Geographic Resources Analysis Support System) is a well-known open source GIS with a wide array of useful GIS functions. It was first released in 1984, and has seen much improvement and additional functionality since then. QGIS allows you to make use of GRASS' powerful GIS tools directly.

12.1 Lesson: GRASS Setup

Using GRASS in QGIS requires you to think of the interface in a slightly different way. Remember that you're not working in QGIS directly, but working in GRASS *via* QGIS.

The goal for this lesson: To begin a GRASS project in QGIS.

12.1.1 Follow Along: Start a New GRASS Project

To launch GRASS from within QGIS, you need to activate it as with any other plugin. First, open a new QGIS project.

• In the *Plugin Manager*, enable *GRASS* in the list:

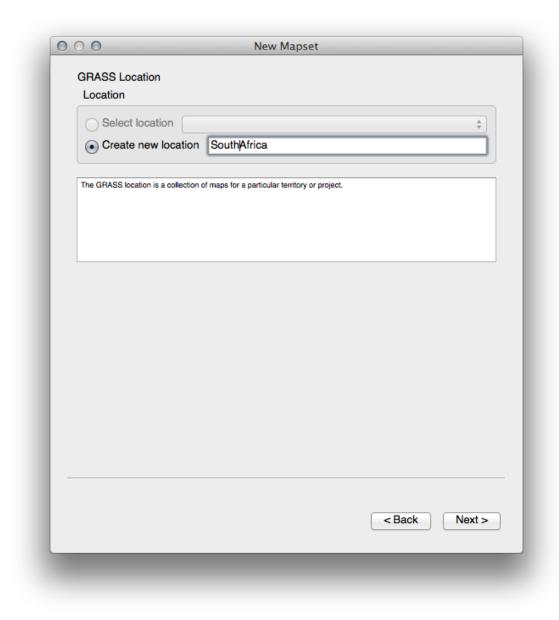
Installed	Plugins > Installed (23)		
Get more	Search	in: names descriptions (tags 🔵 auth
New Invalid	 → Coordinate Capture ✓ B DB Manager → Dx12shp Converter 	GRASS GRASS layer	۶
Settings	 GalTools GalTools Gooreferencer GDAL Globe GPS Tools InsSAFE-Test Interpolation plugin OfflineEditing Oracle Spatial GeoRaster Processing Read graph plugin Spatial Query Plugin Spatial Cuery Plugin SPIT SOL Anywhere plugin Y Zonal statistics plugin 	Category: Plugins Installed version: Version 0.1 (in /Applications/QGIS.app/Contents/MacOS/./PlugIns/qgis/libgrassplugin.so)	
		Upgrade all Uninstall plugin F	Reinstall plugin
Help			Clos

The GRASS toolbar will appear:

Before you can use GRASS, you need to create a **mapset**. GRASS always works in a database environment, which means that you need to import all the data you want to use into a GRASS database.

• Click on the *New mapset* button:

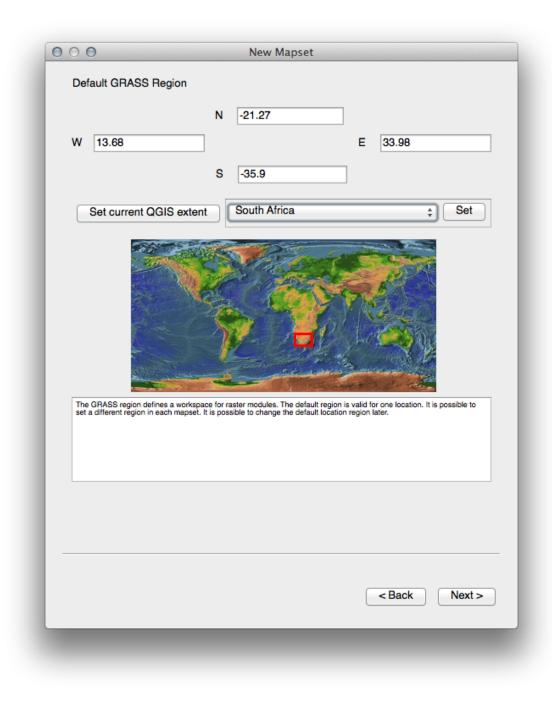
You'll see a dialog explaining the structure of a GRASS mapset.


- Create a new directory called grass_db in *exercise_data*.
- Set it as the directory that will be used by GRASS to set up its database:

Database: /Users/george	eirwin/Desktop/sites/qgis/grass_	db Browse
GRASS data are stored in tree directory structure. The GRASS database is the top-level directory in this tree structure.	Example directory tree: Tree CurDatabase	Comment Database Location 1 System mapset User's mapset Location 2 System mapset User's mapset

• Click Next.

GRASS needs to create a "location", which describes the maximum extents of the geographic area you'll be working in.


• Call the new location South_Africa:

- Click Next.
- We'll be working with ${\tt WGS}~{\tt 84},$ so search for and select this CRS:

rojection			
	te system		
) Not de			
S Project	ion		
Filter	4326		\otimes
Recen	ntly used coordinate refere	ence systems	
Coord	dinate Reference System	Authority ID	
WGS	84	EPSG:4326	
		~	-
Coord	inate reference systems o	of the world Hide deprecated C	RSs
Coord	dinate Reference System	Authority ID	
▼ €	Geographic Coordina		
	WGS 84	EPSG:4326	
Select	ed CRS: WGS 84		
		datum=WGS84 +no_defs +towos84=0.0	.0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0
		-datum=WGS84 +no_defs +towgs84=0,0	,0 Nex

- Click Next.
- Now select the region *South Africa* from the dropdown and click *Set*:

- Click Next.
- Create a mapset, which is the map file that you'll be working with.

Mapset	
New mapset:	grass_mapset
The GRASS maps he can open for wr	at is a collection of maps used by one user. A user can read maps from all mapsets in the location bu ting only his mapset (owned by user).
	< Back Next

Once you're done, you'll see a dialog asking you to confirm that the settings it displays are correct.

- Click Finish.
- Click OK on the success dialog.

12.1.2 Follow Along: Loading Vector Data into GRASS

You'll now have a blank map. To load data into GRASS, you need to follow a two-step process.

- Load data into QGIS as usual. Use the roads.shp dataset (found under exercise_data/epsg4326/) for now.
- As soon as it's loaded, click on the GRASS Tools button:

M

- In the new dialog, select *Modules list*.
- Find the vector import tool by entering the term v.in.ogr.qgis in the *Filter* field.

The v stands for "vector", in means its a function to import data into the GRASS database, ogr is the software library used to read vector data, and qgis means that the tool will look for a vector from among the vectors already loaded into QGIS.

• Once you've found this tool, click on it to bring up the tool itself:

Module: v.in.ogr.qgi	Modules Tre	e Modules List Options Outpu		(• ý	
Loaded layer					
Select a lay Password	yer				\$
Name for out	put vector map				
Show advar	nced options >>				
	Run	View out	put	Close	
					Close

• Set the loaded layer to *roads* and its GRASS version's name to g_roads to prevent confusion.

Module: v.in.	ogr.qgis Options Output Manual
Loade	d layer
road	ts t
Pass	word
Name	for output vector map
g_ro	ads
	Run View output Close
	Clc

Nota: Note the extra import options provided under *Advanced Options*. These include the ability to add a WHERE clause for the SQL query used for importing the data.

- Click Run to begin the import.
- When it's done, click the View output button to see the newly imported GRASS layer in the map.
- Close first the import tool (click the *Close* button to the immediate right of *View output*), then close the *GRASS Tools* window.
- Remove the original *roads* layer.

Now you are left with only the imported GRASS layer as displayed in your QGIS map.

12.1.3 Follow Along: Loading Raster Data into GRASS

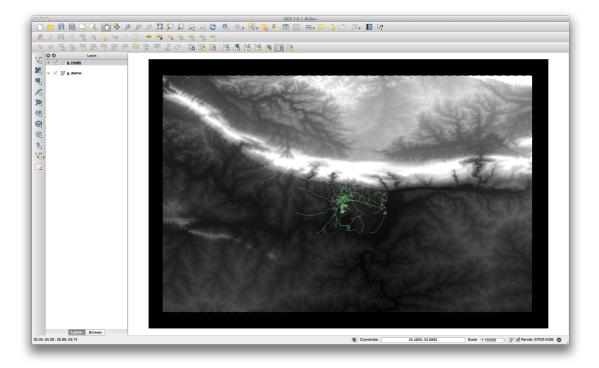
Recall that our DEM is in the Projected CRS UTM 33S / WGS 84, but our GRASS project is in the Geographic CRS WGS 84. So let's re-project the DEM first.

• Load the srtm_41_19.tif dataset (found under exercise_data/raster/SRTM/) into the QGIS
 map as usual, using QGIS' Add Raster Layer tool.

Batch mode (for processing	g whole directory)
Input file	srtm_41_19
Output file	tation/DEM_WGS84 Select
Source SRS	EPSG:32733 Select
Target SRS	EPSG:4326 Select
Resampling method	Near +
No data values	0
Mask layer	▼ Select
 Memory used for caching Resize 	20MB
Width 3000	Height 3000
Use multithreaded warping Load into canvas when finish dalwarp -s_srs EPSG:32733 - Tiff /Users/georgeirwin/Deskto Jocumentation/source/docs/tra ter/SRTM/srtm_41_19.tif Users/georgeirwin/Desktop/site Documentation/DEM_WGS84	ed t_srs EPSG:4326 -r near -of op/sites/qgis/QGIS- ining_manual/exercise_data/ra
Help	Close OK

• Re-project it using GDAL Warp tool (*Raster* \rightarrow *Projections* \rightarrow *Warp* (*Reproject*)), setting it up as shown:

• Save the raster under the same folder as the original, but with the file name DEM_WGS84.tif. Once it appears in your map, remove the srtm_41_19.tif dataset from your *Layers list*.


Now that it's reprojected, you can load it into your GRASS database.

• Open the GRASS Tools dialog again.

- Click on the *Modules List* tab.
- Search for r.in.gdal.qgis and double click the tool to open the tool's dialog.
- Set it up so that the input layer is *DEM_WGS84* and the output is g_dem.

	al.qgis Options Output Manual
Loaded	layer
DEM	WGS84 ÷
Passwo	rd
Name fo	r output raster map
g_dem	
Show a	idvanced options >>

- Click Run.
- When the process is done, click *View output*.
- *Close* the current tab, and then *Close* the whole dialog.

• You may now remove the original *DEM_WGS84* layer.

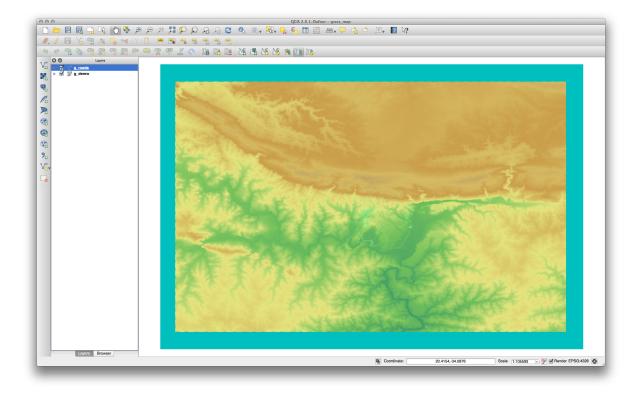
12.1.4 In Conclusion

The GRASS workflow for ingesting data is somewhat different from the QGIS method because GRASS loads its data into a spatial database structure. However, by using QGIS as a frontend, you can make the setup of a GRASS mapset easier by using existing layers in QGIS as data sources for GRASS.

12.1.5 What's Next?

Now that the data is imported into GRASS, we can look at the advanced analysis operations that GRASS offers.

12.2 Lesson: GRASS Tools


In this lesson we will present a selection of tools to give you an idea of the capabilities of GRASS.

12.2.1 Follow Along: Set Raster Colors

- Open the GRASS Tools dialog.
- Look for the r.colors.table module by searching for it in the *Filter* field of the *Modules List* tab.
- Open the tool and set it up like this:

Name of input raste	er map			
	nw@grass_mapset)			
Type of color table				
	Shuttle Radar Topograph	y Mission elevation		\$
	Run		Close	

When you run the tool, it will recolor your raster:

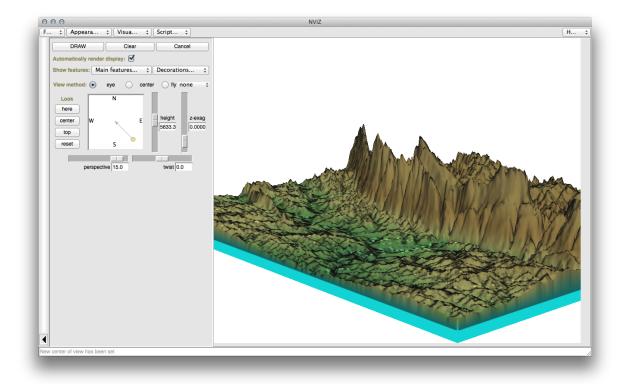
12.2.2 Follow Along: Visualize Data in 3D

GRASS allows you to use a DEM to visualize your data in three dimensions. The tool you'll use for this operates on the GRASS Region, which at the moment is set to the whole extent of South Africa, as you set it up before.

• To redefine the extent to cover only our raster dataset, click this button:

When this tool is activated, your cursor will turn into a cross when over the QGIS map canvas.

- Using this tool, click and drag a rectangle around the edges of the GRASS raster.
- Click OK in the GRASS Region Settings dialog when done.
- Search for the nviz tool:


00	GRASS Tools: SouthAfrica/grass_mapset	
	Modules Tree Modules List Browser	
Filter nviz		
nviz 3D-Viewer (NVIZ		
		Close

• Set it up as shown:

	Options Output	ut Manual	
Name of raste	r map(s) for Elevation		
g_demw (g	_demw@grass_mapset)		÷ 🞞
Name of raste	r map(s) for Color		
g_demw (g	_demw@grass_mapset)		÷ []
Name of vecto	r lines/areas overlay map(s)		
g_roads (g_	_roads@grass_mapset 1 line)		*
	Run	Clos	e

- Remember to enable both *Use region of this map* buttons to the right of the two raster selection dropdown menus. This will allow NVIZ to correctly assess the resolution of the rasters.
- Click the Run button.

NVIZ will set up a 3D environment using the raster and vector selected. This may take some time, depending on your hardware. When it's done, you will see the map rendered in 3D in a new window:

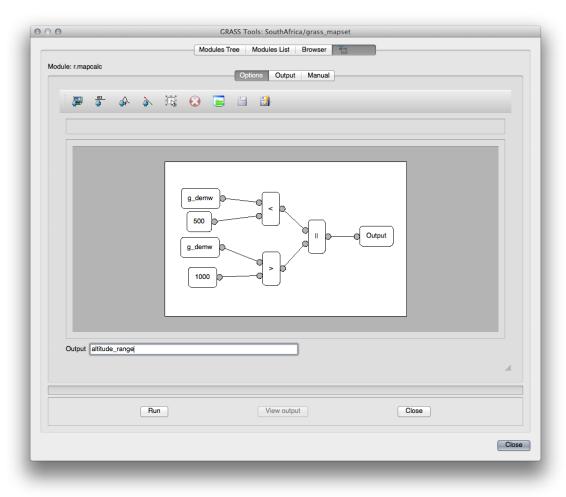
Experiment with the *height*, *z*-*exag*, and *View method* settings to change your view of the data. The navigation methods may take some getting used to.

After experimenting, close the NVIZ window.

12.2.3 Follow Along: The Mapcalc Tool

- Open the GRASS Tools dialog's Modules List tab and search for calc.
- From the list of modules, select *r.mapcalc* (not *r.mapcalculator*, which is more basic).
- Start the tool.

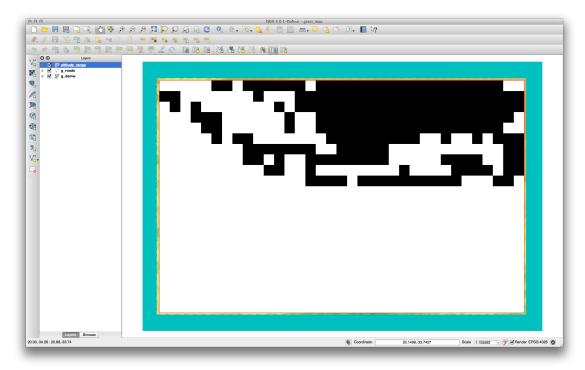
The Mapcalc dialog allows you to construct a sequence of analyses to be performed on a raster, or collection of rasters. You will use these tools to do so:



In order, they are:

- Add map: Add a raster file from your current GRASS mapset.
- Add constant value: Add a constant value to be used in functions.
- Add operator or function: Add an operator or function to be connected to inputs and outputs.
- Add connection: Connect elements. Using this tool, click and drag from the red dot on one item to the red dot on another item. Dots that are correctly connected to a connector line will turn gray. If the line or dot is red, it is not properly connected!
- Select item: Select an item and move selected items.
- Delete selected item: Removes the selected item from the current mapcalc sheet, but not from the mapset (if it is an existing raster).

Using these tools:


• Construct the following algorithm:

• When you click *Run*, your output should look like this:

Modules Tree Modules List Browser	0	GRASS Tools: SouthAfrica/grass_mapset
Options Output Manual rmapcelc *altitude_range = (((g_demw@grass_mapset-500)I)(g_demw@grass_mapset-1000)))* Successfully finished Successfully Inished Successfully Inished Inished Successfully Run View output Cose		Modules Tree Modules List Browser
Options Output Manual fmapcelc *altitude_range = (((g_demw@grass_mapset-500))((g_demw@grass_mapset>1000)))* Successfully finished Successfully fmished Successfully Image = ((g_demw@grass_mapset-500))((g_demw@grass_mapset>1000)))* Successfully Image = ((g_demw@grass_mapset-500)((g_demw@grass_mapset>1000)))* Successfully Image = ((g_demw@grass_mapset>1000)((g_demw@grass_mapset>1000))* Successfully Image = ((g_demw@grass_mapset>1000)((g_demw@grass_mapset>1000))* Successfully Image = ((g_demw@grass_mapset>1000)((g_demw@grass_mapset>10	Module: r.mapcalc	
Run View output Ciose		
Run View output Close	Successfully finished	
	Run	View output Close
Cios	Hui	
		Clos

• Click *View output* to see the output displayed in your map:

This shows all the areas where the terrain is lower than 500 meters or higher than 1000 meters.

12.2.4 In Conclusion

In this lesson, we have covered only a few of the many tools GRASS offers. To explore the capabilities of GRASS for yourself, open the *GRASS Tools* dialog and scroll down the *Modules List*. Or for a more structured approach, look under the *Modules Tree* tab, which organizes tools by type.

Module: Valutazione

Usa i tuoi dati per questa sezione. Avrai bisogno di:

- un insieme di dati vettoriali puntuali fatto di punti di interesse, con i nomi dei punti e categorie multiple
- un dataset vettoriale lineare delle strade
- un dataset vettoriale poligonale dell'uso del suolo (utilizzando i confini delle proprietà)
- un'immagine con lo spettro visivo (come una foto aerea)
- un DEM (scaricabile da this URL se non ne hai uno tuo)

13.1 Crea una mappa di base

Prima di fare qualsiasi analisi di dati, ti servirà una mappa di base, che ti fornirà il risultato della tua analisi nel contesto.

13.1.1 Aggiungi il layer puntuale

• Prendi il layer puntuale. In base al livello in cui stai facendo il corso, fai solo quello che è elencato nella sezione appropriata sotto:

- Etichetta i punti secondo un solo attributo, come il nome del luogo. Usa un carattere piccolo e mantieni le etichette in maniera discreta. L'informazione deve essere disponibile, ma non dovrebbe essere l'elemento principale della mappa.
- Classifica i punti con differenti colori basati su una categoria. Ad esempio, le categorie potrebbero includere "destinazione turistica", "stazione di polizia" e "centro della città".

- Fai lo stesso della sezione
- Classifica la dimensione dei punti per importanza: più un elemento è significativo, più deve essere largo il suo punto. Comunque non superare la dimensione dei punti 2.00.
- Per gli elementi che non sono localizzati in un punto singolo (ad esempio, nomi di province/regioni, o nomi di città ad una scala ampia), non assegnare nessun punto.

- Non usare i simboli puntuali per la simbolizzazione del layer. Invece, usa etichette centrate al di sopra dei punti; i simboli dei punti stessi non devono avere una dimensione.
- Usa Impostazioni definite dei dati per disegnare le etichette in categorie significative.
- Aggiungi le colonne degli attributi appropriate se necessario. Quando fai questo non creare dati inventati piuttosto, usa il *Calcolatore di campi* per popolare le nuove colonne, basate su valori appropriati esistenti nel dataset.

13.1.2 Aggiungi il layer di linee

• Aggiungi il layer delle strade e cambia la sua simbologia. Non etichettare le strade.

• Cambia la simbologia delle strade in un colore lineare con una linea ampia. Dagli anche una trasparenza.

- Crea un simbolo con i layer a simboli multipli. Il simbolo risultante dovrebbe somigliare ad una strada reale. Tu puoi usare un simbolo semplice per questo; ad esempio, una linea nera con una linea continua bianca posta al centro di quella nera. Può essere anche più elaborata, ma la mappa risultante non deve essere troppo occupata.
- Se il tuo dataset ha un'alta densità di strade alla scala che tu vuoi mostrare nella mappa, dovresti avere due layer delle strade: un simbolo simile alle strade elaborato e un simbolo più semplice per la scala più piccola. (Usa la visibilità basata sulla scala per fargli cambiare simbologia in base alla scala appropriata.)
- Tutti i simboli dovrebbero avere layer con simboli multipli. Usa i simboli per visualizzarli correttamente.

- Fai lo stesso come nella sezione sopra
- In più, le strade dovrebbero venir classificaate. Quando si usano simboli realistici delle strade, ogni tipo di strada dovrebbe avere un simbolo appropriato; ad esempio, per una autostrada dovrebbero apparire due corsie per le due direzioni.

13.1.3 Agiungi il vettore di poligoni

• Aggiungi il vettore dell'uso del suolo e modifica la sua simbologia.

• Classifica il layer secondo l'uso del suolo. Usa colori pieni.

• Classifica il layer secondo l'uso del suolo. Dove appropriato, incormpora i vettori dei simboli, diversi tipi di simboli, ecc. Conserva i risultati che sembrano attenuati ed uniformi. Tieni in mente che questo sarà parte di uno sfondo!

• Usa una classificazione basata su regole per classificare l'uso del suolo in categorie generali, quali "urbano", "rurale", "riserva naturale", ecc.

13.1.4 Crea lo sfondo raster

• Crea una ombreggiatura dal DEM ed usala in sovrapposizione per una versione classificata dello stesso DEM. Tu puoi anche usare il plugin *Rilievo* (come mostrato nella nezione sui plugin).

13.1.5 Completa la mappa di base

• Usando le risorse di cui sopra, crea una mappa di base usando alcuni o tutti i layers. Questa mappa dovrebbe includere tutte le informazioni di base necessarie per orientare l'utente, così come per essere unificate / semplici.

13.2 Analizza i dati

- Stai cercaundo una proprietà che soddisfi alcuni criteri.
- Puoi decidere sulla base dei tuoi criteri, quelli che devi documentare.
- Ci sono alcune linee guida per questi criter:
 - la proprietà di destinazione dovrebbe avere un certo tipo di uso del suolo
 - dovrebbe essere ad una certa distanza dalle strade o dovrebbe essere attraversata da una strada
 - dovrebbe essere ad una certa distanza daalcune categorie di punti, quale un ospedale ad esempio

• Includi l'analisi raster nei tuoi risultati. Considera almeno una caratteristica derivata dal raster, come l'esposizione o la pendenza.

13.3 Mappa finale

- Usa il Compositore di Mappa per creare una mappa finale, che incorpori i risultati delle tue analisi.
- Includi questa mappa in un documento insieme con i tuoi criteri attestati. Se la mappa è diventata troppo piena visualmente per via dei layer aggiunti, deseleziona il(i) layer che tu pensi siano strettamente necessari.
- La tua mappa deve includere un titolo ed una legenda.

Module: Applicazioni nel settore forestale

Nei moduli da 1 a 13, hai imparato molto su QGIS e il suo utilizzo. Se sei interessato ad imparare alcune applicazioni GIS nel settore forestale, questo modulo ti darà la possiibilità di applicare ciò che hai imparato e ti mostrerà alcuni strumenti utili.

Lo sviluppo di questo modulo è stato sponsorizzato dall' Unione Europea.

14.1 Lesson: Presentazione del modulo forestale

All'interno di questo modulo dedicato alle applicazioni forestali verranno richieste nozioni imparate via via nei moduli da 1 a 11 di questo manuale pratico. Gli esercizi contenuti nelle prossime lezioni prevedono che tu conosca già molte delle operazioni di base in QGIS e verranno approfonditi solo gli strumenti che non sono mai stati usati in precedenza.

Ciò nonostante, il modulo manterrà un livello base in tutte le lezioni in modo che, se hai già una precedente esperienza con QGIS, puoi molto probabilmente seguire le istruzioni senza problemi.

Nota che per questo modulo è necessario scaricare un pacchetto di dati aggiuntivo.

14.1.1 Forestry Sample Data

Nota: The sample data used in this module is part of the training manual data set and can be downloaded here. Download the zip file and extract the forestry folder into your exercise_data folder.

I dati utilizzati sono stati forniti dalla scuola forestale EVO-HAMK forestry school e modificati per adattarsi alle necessità delle lezioni.

The general sample data (aerial images, LiDAR data, basic maps) has been obtained from the National Land Survey of Finland open data service, and adapted for the purposes of the exercises. The open data file download service can be accessed in English here.

Avvertimento: As for the rest of the training manual, this module includes instructions on adding, deleting and altering GIS datasets. We have provided training datasets for this purpose. Before using the techniques described here on your own data, always ensure you have proper backups!

14.2 Lesson: Georeferencing a Map

A common forestry task would be the update of the information for a forestry area. It is possible that the previous information for that area dates several years back and was collected analogically (that is, in paper) or perhaps it was digitized but all you have left is the paper version of that inventory data.

Most likely you would like to use that information in your GIS to, for example, compare later with later inventories. This means that you will need to digitize the information at hand using your GIS software. But before you can start the digitizing, there is an important first step to be done, scanning and georeferencing your paper map.

The goal for this lesson: To learn to use the Georeferencer tool in QGIS.

The first task you will have to do is to scan your map. If your map is too big, then you can scan it in different parts but keep in mind that you will have to repeat preprocessing and georeferencing tasks for each part. So if possible, scan the map in as few parts as possible.

If you are going to use a different map that the one provided with this manual, use your own scanner to scan the map as an image file, a resolution of 300 DPI will do. If your map has colors, scan the image in color so that you can later use those colors to separate information from your map into different layers (for ex., forest stands, contour lines, roads...).

For this exercise you will use a previously scanned map, you can find it as <code>rautjarvi_map.tif</code> in the data folder <code>exercise_data/forestry</code>

Open QGIS and set the project's CRS to ETRS89 / ETRS-TM35FIN in Project \rightarrow Project Properties \rightarrow CRS, which is the currently used CRS in Finland. Make sure that Enable 'on the fly' CRS transformation is checked, since we will be working with old data that is another CRS.

General			
CRS	Filter ETRS-TM35FIN		∞
Identify layers	Recently used coordinate reference system	IS	
	Coordinate Reference System	Authority ID	
Default styles	ETRS89 / ETRS-TM35FIN	EPSG:3067	
OWS server			
Macros	•		
📰 Relations	Coordinate reference systems of the world		precated CRSs
	Coordinate Reference System	Authority ID	
	Projected Coordinate System		
	Universal Transverse Mercator (U		
	ETRS89 / ETRS-TM35FIN	EPSG:3067	
	•		
	Selected CRS: ETRS89 / ETRS-TM35FIN		
		wgs84=0,0,0,0,0,0,0 +units=m +no_de	fs
	+proj=duli +zone=35 +elips=GRS80 +to		
	+proj=uun +zone=so +eiips=GKSoo +to		

Save the QGIS project as map_digitizing.qgs.

You will use the georeferencing plugin from QGIS, the plugin is already installed in QGIS. Activate the plugin using the plugin manager as you have done in previous modules. The plugin is named *Georeferencer GDAL*.

To georeference the map:

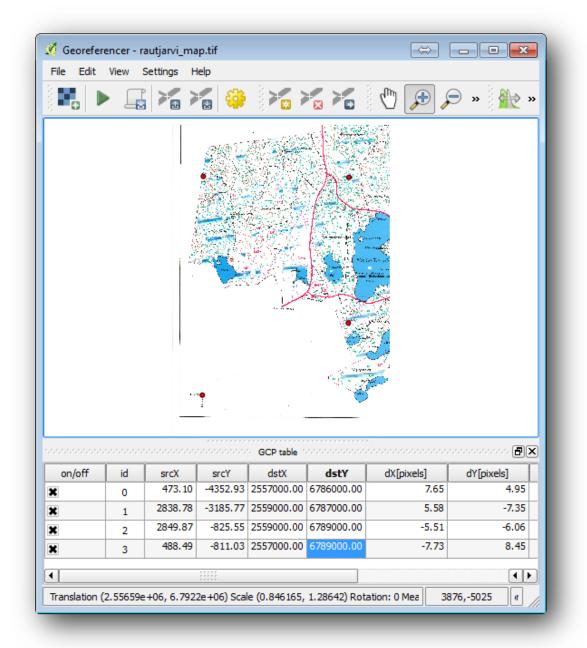
- Open the georeference tool, $Raster \rightarrow Georeferencer \rightarrow Georeferencer$.
- Add the map image file, raut jarvi_map.tif, as the image to georeferenciate, *File* → *Open raster*.
- When prompted find and select the KKJ / Finland zone 2 CRS, it is the CRS that was used in Finland back in 1994 when this map was created.
- Click OK.

Next you should define the transformation settings for georeferencing the map:

- Open Settings \rightarrow Transformation settings.
- Click the icon next to the Output raster box, go to the folder and create the folder exercise_data\forestry\digitizing and name the file as rautjarvi_georef.tif.
- Set the rest of parameters as shown below.

Transformation type:	Linear 💌
Resampling method:	Nearest neighbour 🔹
Compression:	NONE
Create world file	
Output raster:	data/forestry/digitizing/rautjarvi_georef.tif
Target SRS:	EPSG:2392
Generate pdf map:	
Generate pdf report:	
Set Target Resolu	tion
Horizontal	1.00000
Vertical	-1.00000
Use 0 for transpar	rency when needed
Load in QGIS when	n done
	OK Cancel Help

• Click OK.


The map contains several cross-hairs marking the coordinates in the map, we will use those to georeferenciate this image. You can use the zooming and panning tools as you usually do in QGIS to inspect the image in the Georeferencer's window.

- Zoom in to the left lower corner of the map and note that there is a cross-hair with a coordinate pair, x and y, that as mentioned before are in KKJ / Finland zone 2 CRS. You will use this point as the first ground control point for the georeferencing your map.
- Select the Add point tool and click in the intersection of the cross-hairs (pan and zoom as needed).
- In the *Enter map coordinates* dialogue write the coordinates that appear in the map (X: 2557000 and Y: 6786000).
- Click OK.

The first coordinate for the georeferencing is now ready.

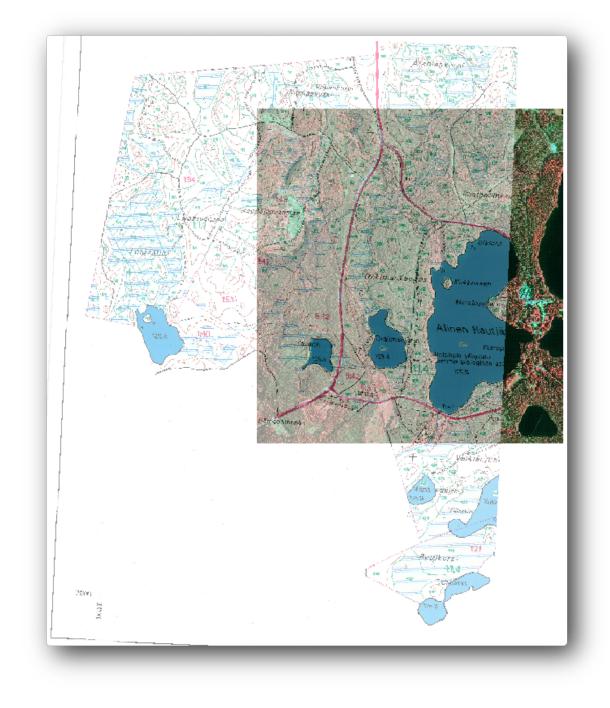
Look for other cross-hairs in the black lines image, they are separated 1000 meters from each other both in North and East direction. You should be able to calculate the coordinates of those points in relation to the first one.

Zoom out in the image and move to the right until you find other cross-hair, and estimate how many kilometres you have moved. Try to get ground control points as far from each other as possible. Digitize at least three more ground control points in the same way you did the first one. You should end up with something similar to this:

With already three digitized ground control points you will be able to see the georeferencing error as a red line coming out of the points. The error in pixels can be seen also in the *GCP table* in the dX[pixels] and dY[pixels] columns. The error in pixels should not be higher than 10 pixels, if it is you should review the points you have digitized and the coordinates you have entered to find what the problem is. You can use the image above as a guide.

Once you are happy with your control points save your ground control points, in case that you will need them later, and you will:

• $File \rightarrow Save \ GCP \ points \ as...$


• In the folder exercise_data\forestry\digitizing, name the file rautjarvi_map.tif.points.

Finally, georeference you map:

- $File \rightarrow Start$ georeferencing.
- Note that you named the file already as rautjarvi_georef.tif when you edited the Georeferencer settings.

Now you can see the map in QGIS project as a georeferenced raster. Note that the raster seems to be slightly rotated, but that is simply because the data is KKJ / Finland zone 2 and your project is in ETRS89 / ETRS-TM35FIN.

To check that your data is properly georeferenced you can open the aerial image in the exercise_data\forestry folder, named rautjarvi_aerial.tif. Your map and this image should match quite well. Set the map transparency to 50% and compare it to the aerial image.

Save the changes to your QGIS project, you will continue from this point for the next lesson.

14.2.3 In Conclusion

As you have seen, georeferencing a paper map is a relatively straight forward operation.

14.2.4 What's Next?

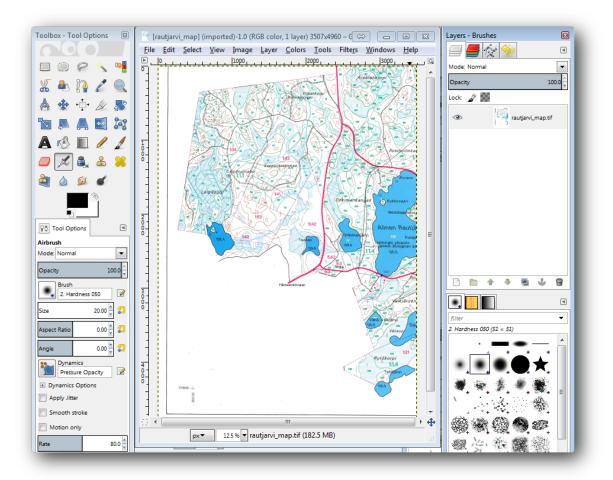
In the next lesson, you will digitize the forest stands in your map as polygons and add the inventory data to them

14.3 Lesson: Digitizing Forest Stands

Unless you are going to use your georeferenced map as a simple background image, the next natural step is to digitize elements from it. You have already done so in the exercises about creating vector data in *Lesson: Creating a New Vector Dataset*, when you digitized the school fields. In this lesson, you are going to digitize the forest stands' borders that appear in the map as green lines but instead of doing it using an aerial image, you will use your georeferenced map.

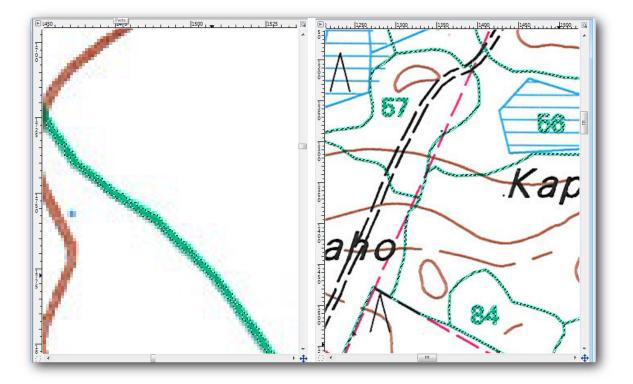
The goal for this lesson: Learn a technique to help the digitizing task, digitizing forest stands and finally adding the inventory data to them.

14.3.1 Follow Along: Extracting the Forest Stands Borders

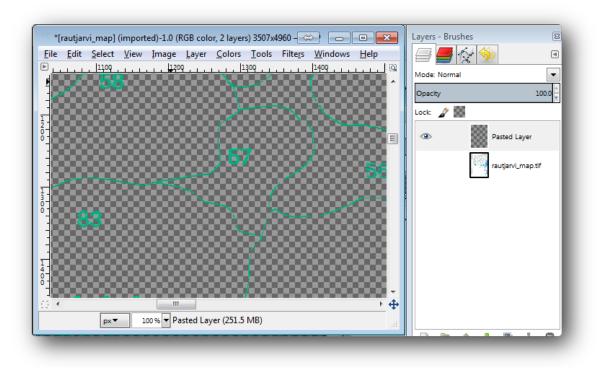

Open your map_digitizing.qgs project in QGIS, that you saved from the previous lesson.

Once you have scanned and georeferenced your map you could start to digitize directly by looking at the image as a guide. That would most likely be the way to go if the image you are going to digitize from is, for example, an aerial photograph.

If what you are using to digitize is a good map, as it is in our case, it is likely that the information is clearly displayed as lines with different colors for each type of element. Those colors can be relatively easy extracted as individual images using an image processing software like GIMP. Such separate images can be used to assist the digitizing, as you will see below.


The first step will be to use GIMP to obtain an image that contains only the forest stands, that is, all those greenish lines that you could see in the original scanned map:

- Open GIMP (if you don't have it installed yet, download it from the internet or ask your teacher).
- Open the original map image, *File* → *Open*, rautjarvi_map.tif in the exercise_data/forestry folder. Note that the forest stands are represented as green lines (with the number of the stand also in green inside each polygon).


Now you can select the pixels in the image that are making up the forest stands' borders (the greenish pixels):

- Open the tool *Select* \rightarrow *By color*.
- With the tool active, zoom into the image (*Ctrl* + *mouse wheel*) so that a forest stand line is close enough to differentiate the pixels forming the line. See the left image below.
- Click and drag the mouse cursor in the middle of the line so that the tool will collect several pixel color values.
- Release the mouse click and wait a few seconds. The pixels matching the colors collected by the tool will be selected through the whole image.
- Zoom out to see how the greenish pixels have been selected throughout the image.
- If you are not happy with the result, repeat the click and drag operation.
- Your pixel selection should look something like the right image below.

Once you are done with the selection you need to copy this selection as a new layer and then save it as separate image file:

- Copy (Ctr+C) the selected pixels.
- And paste the pixels directly (*Ctr*+*V*), GIMP will display the pasted pixels as a new temporary layer in the *Layers Brushes* panel as a *Floating Selection (Pasted Layer)*.
- Right click that temporary layer and select *To New Layer*.
- Click the "eye" icon next to the original image layer to switch it off, so that only the Pasted Layer is visible:

• Finally, select *File* → *Export...*, set *Select File Type* (*By Extension*) as a *TIFF image*, select the digitizing folder and name it rautjarvi_map_green.tif. Select no compression when asked.

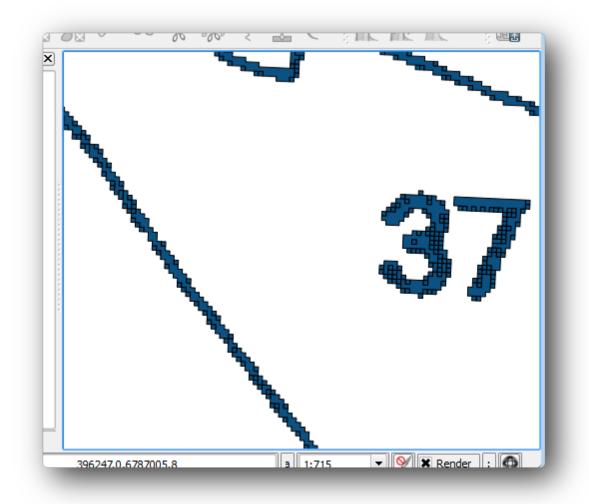
You could do the same process with other elements in the image, for example extracting the black lines that represent roads or the brown ones that represent the terrain' contour lines. But for us, the forest stands is enough.

14.3.2 **C** Try Yourself Georeference the Green Pixels Image

As you did in the previous lesson, you need to georeference this new image to be able to use it with the rest of your data.

Note that you don't need to digitize the ground control points any more because this image is basically the same image as the original map image, as far as the Georeferencer tool is concerned. Here are some things you should remember:

- This image is also, of course, in KKJ / Finland zone 2 CRS.
- You should use the ground control points you saved, *File* \rightarrow *Load GCP points*.
- Remember to review the *Transformation settings*.
- Name the output raster as rautjarvi_green_georef.tif in the digitizing folder.


Check that the new raster is fitting nicely with the original map.

14.3.3 Follow Along: Creating Supporting Points for Digitizing

Having in mind the digitizing tools in QGIS, you might already be thinking that it would be helpful to snap to those green pixels while digitizing. That is precisely what you are going to do next create points from those pixels to use them later to help you follow the forest stands' borders when digitizing, by using the snapping tools available in QGIS.

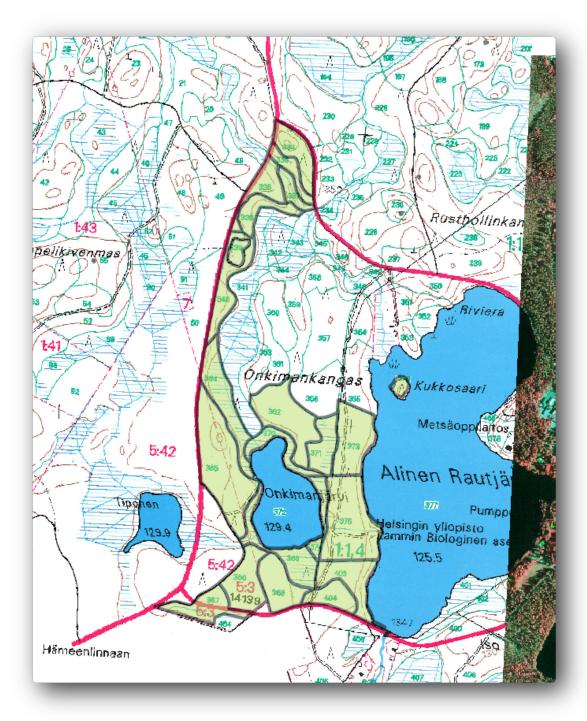
- Use the *Raster* → *Conversion* → *Polygonize* (*Raster to Vector*) tool to vectorize your green lines to polygons. If you don't remember how, you can review it in *Lesson: Raster to Vector Conversion*.
- Save as rautjarvi_green_polygon.shp inside the digitizing folder.

Zoom in and see what the polygons look like. You will get something like this:

Next one option to get points out of those polygons is to get their centroids:

- Open Vector \rightarrow Geometry tools \rightarrow Polygon centroids.
- Set the polygon layer you just got as the input file for the tool.
- Name the output as green_centroids.shp inside the digitizing folder.
- Check Add result to canvas.
- Run the tool to calculate the centroids for the polygons.

Now you can remove the *rautjarvi_green_polygon* layer from the TOC.


Change the symbology of the centroids layer as:

- Open the Layer Properties for green_centroids.
- Go to the *Style* tab.
- Set the *Unit* to Map unit.
- Set the *Size* to 1.

It is not necessary to differentiate points from each other, you just need them to be there for the snapping tools to use them. You can use those points now to follow the original lines much easily than without them.

14.3.4 Follow Along: Digitize the Forest Stands

Now you are ready to start with the actual digitizing work. You would start by creating a vector file of *polygon type*, but for this exercise, there is a shapefile with part of the area of interest already digitized. You will just finish digitizing the half of the forest stands that are left between the main roads (wide pink lines) and the lake:

- Go to the digitizing folder using your file manager browser.
- Drag and drop the forest_stands.shp vector file to your map.

Change the new layer's symbology so that it will be easier to see what polygons have already been digitized:

- The filling of the polygon to green.
- The polygons' borders to 1 mm.
- and set the transparency to 50%.

Now, if you remember past modules, we have to set up and activate the snapping options:

• Go to Settings \rightarrow Snapping options....

- Activate the snapping the green_centroids and the forest_stands layers.
- Set their *Tolerance* to 5 map units.
- Check the Avoid Int. box for the forest_stands layer.
- Check Enable topological editing.
- Click Apply.

$\overline{\nabla}$	Layer	Mode		Tolerance	Units			Avoid Int.
	green_centroids	to vertex	-	5	map units	-		Avoid intersections of new polygons
	forest_stands	to vertex	-	5	map units	•	×	
E	nable topological edi	ting 🗌 Enable sna	apping on	intersection	0	ĸ		Cancel Apply

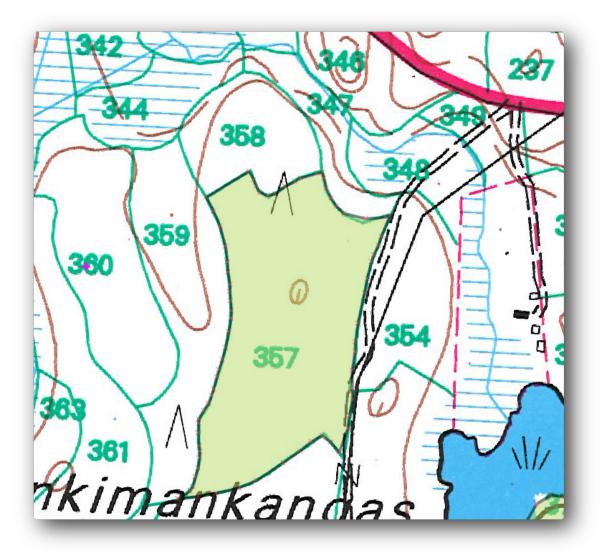
With these snapping settings, whenever you are digitizing and get close enough to one of the points in the centroids layer or any vertex of your digitized polygons, a pink cross will appear on the point that will be snapped to.

Finally, turn off the visibility of all the layers except forest_stands and rautjarvi_georef. Make sure that the map image has not transparency any more.

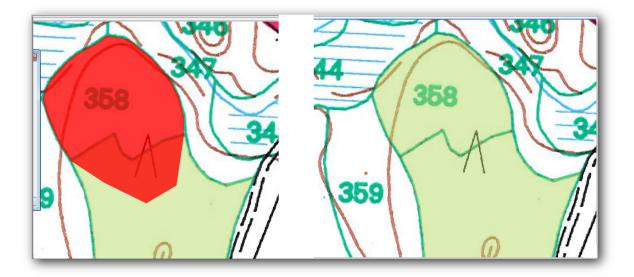
A couple of important things to note before you start digitizing:

- Don't try to be too accurate with the digitizing of the borders.
- If a border is a straight line, digitize it with just two nodes. In general, digitize using as few nodes as possible.
- Zoom in to close ranges only if you feel that you need to be accurate, for example, at some corners or when you want a polygon to connect with another polygon at a certain node.
- Use the mouse's middle button to zoom in/out and to pan as you digitize.
- Digitize only one polygon at a time.
- After digitizing one polygon, write the forest stand id that you can see from the map.

Now you can start digitizing:


- Locate the forest stand number 357 in the map window.
- Enable editing for the forest_stands.shp layer.
- Select the *Add feature* tool.
- Start digitizing the stand 357 by connecting some of the dots.
- Note the pink crosses indicating the snapping.

- When you are done, right click to end digitizing that polygon.
- Enter the forest stand id (in this case 357).
- Click OK.


If you were not prompted for the polygon id when you finished digitizing it, go to Settings \rightarrow Options \rightarrow Digitizing and make sure that the Suppress attribute form pop-up after feature creation is not checked.

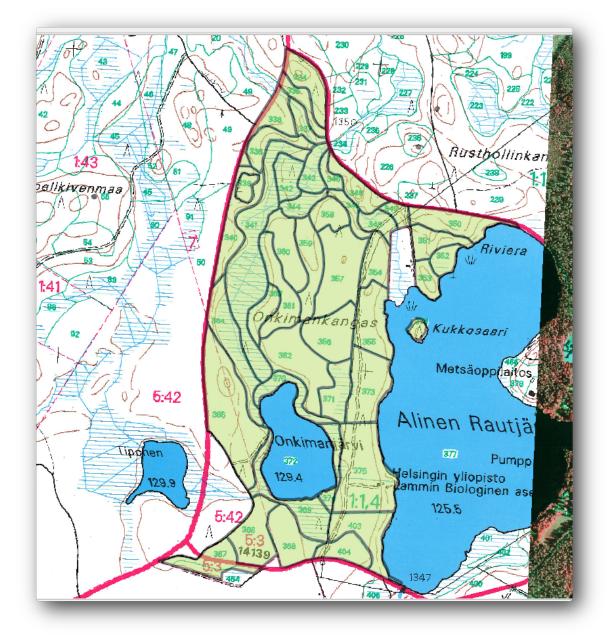
Your digitized polygon will look like this:

Now for the second polygon, pick up the stand number 358. Make sure that the *Avoid int*. is checked for the forest_stands layer. This option does not allow intersecting polygons at digitizing, so that if you digitize over an existing polygon, the new polygon will be trimmed to meet the border of the already existing polygons. You can use this characteristic to automatically obtain a common border.

- Begin digitizing the stand 358 at one of the common corners with the stand 357.
- Then continue normally until you get to the other common corner for both stands.
- Finally, digitize a few points inside polygon 357 making sure that the common border is not intersected. See left image below.
- Right click to finish editing the forest stand 358.
- Enter the id as 358.
- Click *OK*, your new polygon should show a common border with the stand 357 as you can seen in the image on the right.

The part of the polygon that was overlapping the existing polygon has been automatically trimmed out and you are left with a common border, as you intended it to be.

14.3.5 Try Yourself Finish Digitizing the Forest Stands


Now you have two forest stands ready. And a good idea on how to proceed. Continue digitizing on your own until you have digitized all the forest stands that are limited by the main road and the lake.

It might look like a lot of work, but you will soon get used to digitizing the forest stands. It should take you about 15 minutes.

During the digitizing you might need to edit or delete nodes, split or merge polygons. You learned about the necessary tools in *Lesson: Feature Topology*, now is probably a good moment to go read about them again.

Remember that having *Enable topological editing* activated, allows you to move nodes common to two polygons so that the common border is edited at the same time for both polygons.

Your result will look like this:

14.3.6 Follow Along: Joining the Forest Stand Data

It is possible that the forest inventory data you have for you map is also written in paper. In that case, you would have to first write that data to a text file or a spreadsheet. For this exercise, the information from the inventory for 1994 (the same inventory as the map) is ready as a comma separated text (csv) file.

Open the rautjarvi_1994.csv file from the exercise_data\forestry directory in a text editor and note that the inventory data file has an attribute called ID that has the numbers of the forest stands. Those numbers are the same as the forest stands ids you have entered for your polygons and can be used to link the data from the text file to your vector file. You can see the metadata for this inventory data in the file rautjarvi_1994_legend.txt in the same folder.

• Open the .csv in QGIS with the Layer \rightarrow Add Delimited Text Layer... tool. In the dialog, set it as follows:

ayer name rautjarvi_1994 Encoding UTF-8 ille format © CSV (comma separated values) © Custom delimiters Regular expression delimiter tecord options Number of header lines to discard 0 © First record has field names ield options Trim fields Discard empty fields Decimal separator is comma Seometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) ayer settings Use spatial index Use subset index Watch file 1 376 4 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
tecord options Number of header lines to discard
ield options Trim fields Discard empty fields Decimal separator is comma geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) aver settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 Image: Construction of the second
ield options Trim fields Discard empty fields Decimal separator is comma geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) aver settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 Image: Construction of the second
ield options Trim fields Discard empty fields Decimal separator is comma geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) aver settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 Image: Construction of the second
ield options Trim fields Discard empty fields Decimal separator is comma geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) aver settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 Image: Construction of the second
ield options Trim fields Discard empty fields Decimal separator is comma geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) aver settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 Image: Construction of the second
Geometry definition Point coordinates Well known text (WKT) No geometry (attribute only table) ayer settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 336 4 50 0 0 0 1 0
ayer settings Use spatial index Use subset index Watch file ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 336 4 S0 0 0 1 0 0
ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 336 4 S0 0 0 1 0
ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 336 4 S0 0 0 1 0
ID Hab Devl Age BA Vol MainSp MainPerc 1 376 4 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 336 4 S0 0 0 1 0
1 376 4 0 0 0 0 2 334 4 Y1 15 7.4 54 1 100 3 335 4 S0 0 0 1 0
2 334 4 Y1 15 7.4 54 1 100
3 336 4 50 0 0 0 1 0
3 336 4 SO 0 0 0 1 0

To add the data from the $\verb".csv"$ file:

- Open the Layer Properties for the forest_stands layer.
- Go to the *Joins* tab.
- Click the plus sign on the bottom of the dialog box.
- Select raut jarvi_1994.csv as the *Join layer* and ID as the *Join* field.
- Make sure that the *Target* field is also set to id.
- Click OK two times.

The data from the text file should be now linked to your vector file. To see what has happened, open the attribute table for the forest_stands layer. You can see that all the attributes from the inventory data file are now linked to your digitized vector layer.

14.3.7 Try Yourself Renaming Attribute Names and Adding Area and Perimeter

The data from the .csv file is just linked to your vector file. To make this link permanent, so that the data is actually recorded to the vector file you need to save the forest_stands layer as a new vector file. Close the attribute table and right click the forest_stands layer to save it as forest_stands_1994.shp.

Open your new forest_stands_1994.shp in your map if you did not added yet. Then open the attribute table. You notice that the names of the columns that you just added are no very useful. To solve this:

• Add the plugin Table Manager as you have done with other plugins before.

- Make sure the plugin is activated.
- In the TOC select the layer forest_stands_1994.shp.
- Then, go to $Vector \rightarrow Table Manager \rightarrow Table manager$.
- Use the dialogue box to edit the names of the columns to match the ones in the .csv file.

4	Name ID	Туре	Move Up
_		String	Move Down
2	Hab	Integer	Rename
3	Devl	String	Delete
4	Age	Integer	Insert
5	ва	Real	Clone
6	Vol	Integer	
7	MainSp	Integer	
8	MainPerc	Integer	

- Click on Save.
- Select *Yes* to keep the layer style.
- Close the *Table Manager* dialogue.

To finish gathering the information related to these forest stands, you might calculate the area and the perimeter of the stands. You calculated areas for polygons in *Lesson: Supplementary Exercise*. Go back to that lesson if you need to and calculate the areas for the forest stands, name the new attribute Area and make sure that the values calculated are in hectares.

Now your forest_stands_1994.shp layer is ready and packed with all the available information.

Save your project to keep the current map presentation in case you need to come back later to it.

14.3.8 In Conclusion

It has taken a few clicks of the mouse but you now have your old inventory data in digital format and ready for use in QGIS.

14.3.9 What's Next?

You could start doing different analysis with your brand new dataset, but you might be more interested in performing analysis in a dataset more up to date. The topic of the next lesson will be the creation of forest stands using current aerial photos and the addition of some relevant information to your dataset.

14.4 Lesson: Updating Forest Stands

Now that you have digitized the information from the old inventory maps and added the corresponding information to the forest stands, the next step would be to create the inventory of the current state of the forest.

You will digitize new forest stands from scratch following an aerial photo from that forest area. The forestry map you digitized in the previous lesson was created from an aerial Color Infrared (CIR) photograph. This type of imagery, where the infrared light is recorded instead of the blue light, are widely used to study vegetated areas. You will also use a CIR photograph in this lesson.

After digitizing the forest stands, you will add information such as new constraints given by conservation regulations.

The goal for this lesson: To digitize a new set of forest stands from CIR aerial photographs and add information from other data-sets.

14.4.1 Comparing the Old Forest Stands to Current Aerial Photographs

The National Land Survey of Finland has an open data policy that allows you downloading a variety of geographical data like aerial imagery, traditional topographic maps, DEM, LiDAR data, etc. The service can be accessed also in English here. The aerial image used in this exercise has been created from two orthorectified CIR images downloaded from that service (M4134F_21062012 and M4143E_21062012).

- Open QGIS and set the project's CRS to ETRS89 / ETRS-TM35FIN in Project \rightarrow Project Properties \rightarrow CRS.
- Make sure that Enable 'on the fly' CRS transformation is checked.
- From the exercise_data\forestry\ folder, add the CIR image rautjarvi_aerial.tif that is containing the digitized lakes.
- Then save the QGIS project as digitizing_2012.qgs.

The CIR images are from 2012. You can compare the stands that were created in 1994 with the situation almost 20 years later.

- Add your forest_stands_1994.shp layer.
- Set its styling so that you can see through your polygons.
- Review how the old forest stands follow (or not) what you might visually interpret as an homogeneous forest.

Zoom and pan around the area. You probably will notice that some of the old forest stands might be still corresponding with the image but others are not.

This is a normal situation, as some 20 years have passed by and different forest operations have been done (harvesting, thinning...). It is also possible that the forest stands looked homogeneous back in 1992 to the person who

digitized them but as time has passed some forest has developed in different ways. Or simply the priorities for the forest inventory were different that they are today.

Next, you will create new forest stands for this image without using the old ones. Later you can compare them to see the differences.

14.4.2 **P** Interpreting the CIR Image

Let's digitize the same area that was covered by the old inventory, limited by the roads and the lake. You don't have to digitize the whole area, as in the previous exercise you can start with a vector file that already contains most of the forest stands.

- Remove the forest_stands_1994.shp layer.
- Add the forest_stands_2012.shp layer, located in the exercise_data\forestry\ folder.
- Set the styling of this layer so that the polygons have no fill and the borders are visible.

You can see that a region to the North of the inventory area is still missing. That will be your task, digitizing the missing forest stands.

But before you start, spend some time reviewing the forest stands already digitized and the corresponding forest in the image. Try to get an idea about how the stands borders are decided, it helps if you have some forestry knowledge.

Some ideas about what you could identify from the images:

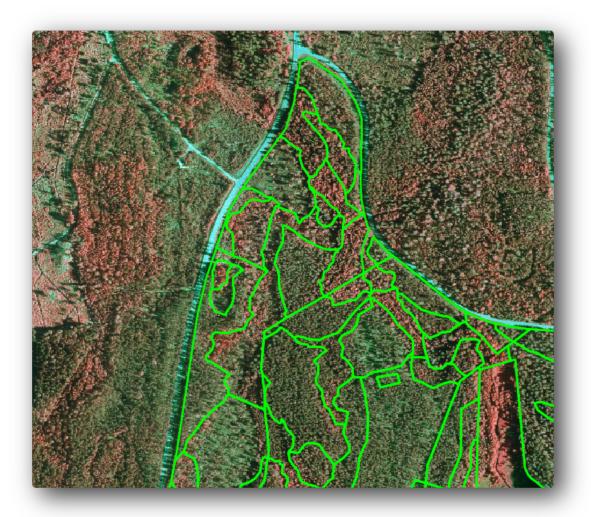
- What forests are deciduous species (in Finland mostly birch forests) and which ones are conifers (in this region pine or spruce). In CIR images, deciduous species will often come as bright red color whereas conifers present dark green colors.
- When a forest stand age changes, by looking at the sizes of the tree crowns that can be identified in the imagery.
- The different forest stands' densities, for example forest stand were a thinning operation has recently been done would clearly show spaces between the tree crowns and should be easy to differentiate from other

forest stands around it.

- Blueish areas indicate barren terrain, roads and urban areas, crops that have not started to grow etc.
- Don't use zooms too close to the image when trying to identify forest stands. A scale between 1:3 000 and 1: 5 000 should be enough for this imagery. See the image below (1 : 4 000 scale):

14.4.3 Try Yourself Digitizing Forest Stands from CIR Imagery

When digitizing the forest stands, you should try to get forest areas that are as homogeneous as possible in terms of tree species, forest age, stand density... Don't be too detailed though, or you will end up making hundreds of small forest stands that would not be useful at all. You should try to get stands that are meaningful in the context of forestry, not too small (at least 0.5 ha) but not too big either (no more than 3 ha).


With this indications in mind, you can now digitize the missing forest stands.

- Enable editing for forest_stands_2012.shp.
- Set up the snapping and topology options as in the image.
- Remember to click *Apply* or *OK*.

	Layer 🛆	Mode	Tolerance	Units	Avoid Int.
×	forest_stands_2012	to vertex 🗸 🗸	5	map units 🔻	×
K E	nable topological editing	Enable snapping on intersection	Ok	() C	ancel Apply

Start digitizing as you did in the previous lesson, with the only difference that you don't have any point layer that you are snapping to. For this area you should get around 14 new forest stands. While digitizing, fill in the Stand_id field with numbers starting at 901.

When you are finished your layer should look something like:

Now you have a new set of polygons defining the different forest stands for the current situation as can interpreted from the CIR images. But you are obviously still missing the forest inventory data, right? For that you will still need to visit the forest and get some sample data that you will use to estimate the forest attributes for each of the forest stands. You will see how to do that in the next lesson.

For the moment, you still can improve your vector layer with some extra information that you have about conservation regulation that should be taken into account for this area.

14.4.4 Follow Along: Updating Forest Stands with Conservation Informa-

For the area you are working with, it has been researched that the following conservation regulations must be taken into account while doing the forest planning:

- Two locations of a protected species of Siberian flying squirrel (Pteromys volans) have been identified. According to the regulation, an area of 15 meters around the spots must be left untouched.
- A riparian forest of special interest growing along a stream in the area must be protected. In a visit to the field, it was found that 20 meters to both sides of the stream must be protected.

You have one vector file containing the information about the squirrel locations and another containing the digitized stream running in the North area towards the lake. From the exercise_data\forestry\ folder, add the vector files squirrel.shp and stream.shp.

For the protection of the squirrels locations, you are going to add a new attribute (column) to your new forest stands that will contain information about point locations that have to be protected. That information will later be available whenever a forest operation is planned, and the field team will be able to mark the area that has to be left untouched before the work starts.

- Open the attribute table for the squirrel layer.
- You can see that there are two locations that are defined as Siberian flying squirrel, and that the area to be protected is indicated by a distance of 15 meters from the locations.

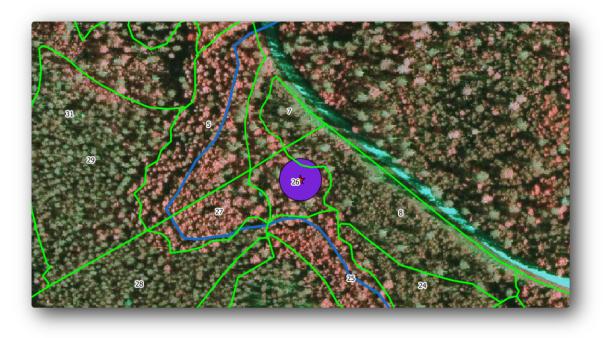
To join the information about the squirrels to your forest stands, you can use the Join attributes by location:

- Open Vector \rightarrow Data Management Tools \rightarrow Join attributes by location.
- Set the forest_stands_2012.shp layer as the *Target vector layer*.
- As Join vector layer select the squirrel.shp point layer.
- Name the output file as stands_squirrel.shp.
- In *Output table* select *Keep all records (including non-matching target records).* So that you keep all the forest stands in the layer instead of only keeping those that are spatially related to the squirrel locations.
- Click OK.
- Select Yes when prompted to add the layer to the TOC.
- Close the dialogue box.

🕺 Join attributes by location
Target vector layer
forest_stands_2012 🔹
Join vector layer
forest_stands_2012 🔹
Attribute Summary
Take attributes of first located feature
 Take summary of intersecting features
🗶 Mean 🗌 Min 📄 Max 📄 Sum 📄 Median
Output Shapefile
Browse
Output table
 Only keep matching records
• Keep all records (including non-matching target records)
0% OK Close

Now you have a new forest stands layer, stands_squirrel where there are new attributes corresponding to the protection information related to the Siberian flying squirrel.

Open the table of the new layer and order it so that the forest stands with information for the *Protection* attribute are on top. You should have now two forest stands where the squirrel has been located:


Ø		E 🛃	🗟 😵 🞾		: 2
	Stand_id	id_pr	Protection 🗸	Distance	
83	78	2	liito-orava	15	
22	26	1	liito orava	15	
D	1	NULL	NULL	NULL	
1	33	NULL	NULL	NULL	
2	32	NULL	NULL	NULL	-
	Show All Features				

Although this information might be enough, look at what areas related to the squirrels should be protected. You know that you have to leave a buffer of 15 meters around the squirrels location:

- Open Vector \rightarrow Geoprocessing Tools \rightarrow Buffer.
- Make a buffer of 15 meters for the squirrel layer.
- Name the result squirrel_15m.shp.

🕺 Buffer(s)	? 💌
Input vector layer	
squirrel	-
Use only selected featu	res
Segments to approximate	5
Buffer distance	15
O Buffer distance field	
[id_pr	
Dissolve buffer results	
Output shapefile	
orestry/digitizing/squirrel_1	5m.shp Browse
X Add result to canvas	
0%	OK Close
_	

You will notice that if you zoom in to the location in the Northern part of the area, the buffer area extends to the neighbouring stand as well. This means that whenever a forest operation would take place in that stand, the protected location should also be taken into account.

From your previous analysis, you did not get that stand to register information about the protection status. To solve this problem:

- Run the Join attributes by location tool again.
- But this time use the squirrel_15m layer as join layer.
- Name the output file as stands_squirrel_15m.shp.

1	Join attributes by location
Tar	get vector layer
fo	vrest_stands_2012 🔹
Joi	n vector layer
so	quirrel_15m 💌
_	Attribute Summary
	Take attributes of first located feature
	 Take summary of intersecting features
	🗶 Mean 🗌 Min 📄 Max 📄 Sum 📄 Median
_	itput Shapefile
ta	/forestry/digitizing/stands_squirrel_15m.shp Browse
$\lceil c \rceil$	Dutput table
	Only keep matching records
	Keep all records (including non-matching target records)
	0% OK Close

Open the attribute table for the this new layer and note that now you have three forest stands that have the information about the protection locations. The information in the forest stands data will indicate to the forest manager that there are protection considerations to be taken into account. Then he or she can get the location from the squirrel dataset, and visit the area to mark the corresponding buffer around the location so that the operators in the field can avoid disturbing the squirrels environment.

14.4.5 **Provide a stream** 14.5 **Provide a stream 14.5 Provide a stream 14.5 Provide a stream** 14.5 **Provide a**

Following the same approach as indicated for the protected squirrel locations you can now update your forest stands with protection information related to the stream identified in the field:

• Remember that the buffer in this case is 20 meters around it.

- You want to have all the protection information in the same vector file, so use the stands_squirrel_15m layer as the target.
- Name your output as forest_stands_2012_protect.shp.

Open the attributes table for the new vector layer and confirm that you now have all the protection information for the stands that are affected by the protection measures to protect the riparian forest associated with the stream.

Save your QGIS project.

14.4.6 In Conclusion

You have seen how to interpret CIR images to digitize forest stands. Of course it would take some practice to make more accurate stands and usually using other information like soil maps would give better results, but you know now the basis for this type of task. And adding information from other datasets resulted to be quite a trivial task.

14.4.7 What's Next?

The forest stands you digitized will be used for planning forestry operations in the future, but you still need to get more information about the forest. In the next lesson, you will see how to plan a set of sampling plots to inventory the forest area you just digitized, and get the overall estimate of forest parameters.

14.5 Lesson: Systematic Sampling Design

You have already digitized a set of polygons that represent the forest stands, but you don't have information about the forest just yet. For that purpose you can design a survey to inventory the whole forest area and then estimate its parameters. In this lesson you will create a systematic set of sampling plots.

When you start planning your forest inventory it is important to clearly define the objectives, the types of sample plots that will be used, and the data that will be collected to achieve the objectives. For each individual case, those will depend on the type of forest and the management purpose; and should be carefully planned by someone with forestry knowledge. In this lesson, you will implement a theoretical inventory based on a systematic sampling plot design.

The goal for this lesson: To create a systematic sampling plot design to survey the forest area.

14.5.1 Inventorying the Forest

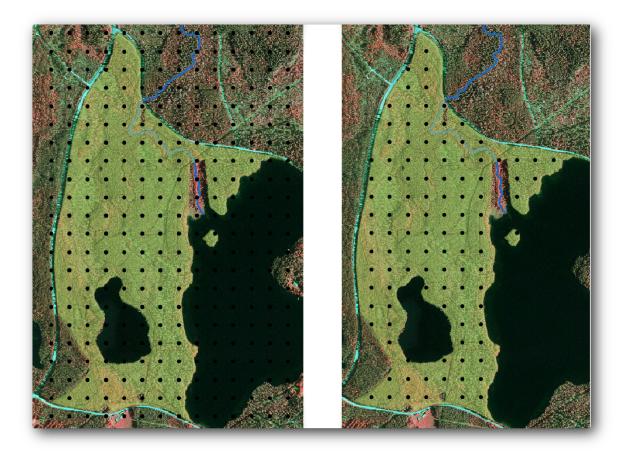
There are several methods to inventory forests, each of them suiting different purposes and conditions. For example, one very accurate way to inventory a forest (if you consider only tree species) would be to visit the forest and make a list of every tree and their characteristics. As you can imagine this is not commonly applicable except for some small areas or some special situations.

The most common way to find out about a forest is by sampling it, that is, taking measurements in different locations at the forest and generalizing that information to the whole forest. These measurements are often made in *sample plots* that are smaller forest areas that can be easily measured. The sample plots can be of any size (for ex. 50 m2, 0.5 ha) and form (for ex. circular, rectangular, variable size), and can be located in the forest in different ways (for ex. randomly, systematically, along lines). The size, form and location of the sample plots are usually decided following statistical, economical and practical considerations. If you have no forestry knowledge, you might be interested in reading this Wikipedia article.

14.5.2 **Follow Along: Implementing a Systematic Sampling Plot Design**

For the forest you are working with, the manager has decided that a systematic sampling design is the most appropriate for this forest and has decided that a fixed distance of 80 meters between the sample plots and sampling lines will yield reliable results (for this case, +- 5% average error at a probability of 68%). Variable size plots has been decided to be the most effective method for this inventory, for growing and mature stands, but a 4 meters fixed radius plots will be used for seedling stands.

In practice, you simply need to represented the sample plots as points that will be used by the field teams later:


- Open your digitizing_2012.qgs project from the previous lesson.
- Remove all the layers except for forest_stands_2012.
- Save your project now as forest_inventory.qgs

Now you need to create a rectangular grid of points separated 80 meters from each other:

- Open Vector \rightarrow Research Tools \rightarrow Regular points.
- In the Area definitions select Input Boundary Layer.
- And as input layer set the forest_stands_2012 layer.
- In the Grid Spacing settings, select Use this point spacing and set it to 80.
- Save the output as systematic_plots.shp in the forestry\sampling\ folder.
- Check Add result to canvas.
- Click OK.

Nota: The suggested *Regular points* creates the systematic points starting in the corner upper-left corner of the extent of the selected polygon layer. If you want to add some randomness to this regular points, you could use a randomly calculated number between 0 and 80 (80 is the distance between our points), and then write it as the *Initial inset from corner (LH side)* parameter in the tool's dialog.

You notice that the tool has used the whole extent of your stands layer to generate a rectangular grid of points. But you are only interested on those points that are actually inside your forest area (see the images below):

- Open Vector \rightarrow Geoprocessing Tools \rightarrow Clip.
- Select systematic_plots as Input vector layer.
- Set forest_stands_2012 as the Clip layer.
- Save the result as systematic_plots_clip.shp.
- Check Add result to canvas.
- Click OK.

You have now the points that the field teams will use to navigate to the designed sample plots locations. You can still prepare these points so that they are more useful for the field work. At the least you will have to add meaningful names for the points and export them to a format that can be used in their GPS devices.

Lets start with the naming of the sample plots. If you check the *Attribute table* for the plots inside the forest area, you can see that you have the default *id* field automatically generated by the *Regular points* tool. Label the points to see them in the map and consider if you could use those numbers as part of your sample plot naming:

- Open the Layer Properties -> Labels for your systematic_plots_clip.
- Check Label this layer with and select the field ID.
- Go to the *Buffer* options and check the *Draw text buffer*, set the *Size* to 1.
- Click OK.

Now look at the labels on your map. You can see that the points have been created and numbered first West to East and then North to South. If you look at the attribute table again, you will notice that the order in the table is following also that pattern. Unless you would have a reason to name the sample plots in a different way, naming them in a West-East/North-South fashion follows a logical order and is a good option.

Nota: If you would like to order or name them in a different way, you could use a spreadsheet to be able to order and combine rows and columns in any different way.

Nevertheless, the number values in the id field are not so good. It would be better if the naming would be something like p_1 , p_2 ... You can create a new column for the systematic_plots_clip layer:

- Go to the Attribute table for systematic_plots_clip.
- Enable the edit mode.
- Open the *Field calculator* and name the new column Plot_id.
- Set the Output field type 'to :kbd: 'Text (string).
- In the *Expression* field, write, copy or construct this formula concat ('P_', \$rownum). Remember that you can also double click on the elements inside the *Function list*. The concat function can be found under *String* and the \$rownum parameter can be found under *Record*.
- Click OK.
- Disable the edit mode and save your changes.

Now you have a new column with plot names that are meaningful to you. For the <code>systematic_plots_clip</code> layer, change the field used for labeling to your new <code>Plot_id</code> field.

14.5.3 Follow Along: Exporting Sample Plots as GPX format

The field teams will be probably using a GPS device to locate the sample plots you planned. The next step is to export the points you created to a format that your GPS can read. QGIS allows you to save your point and line vector data in *GPS eXchange Format* (*GPX*)<<u>http://en.wikipedia.org/wiki/GPS_Exchange_Format</u>>, which is an standard GPS data format that can be read by most of the specialized software. You need to be careful with selecting the CRS when you save your data:

- Right click systematic_plots_clip and select Save as.
- In Format select GPS eXchange Format [GPX].

- Save the output as plots_wgs84.gpx.
- In CRS select Selected CRS.
- Browse for WGS 84 (EPSG:4326).

..note:: The GPX format accepts only this CRS, if you select a different one, QGIS will give no error but you will get an empty file.

- Click OK.
- In the dialog that opens, select only the waypoints layer (the rest of the layers are empty).

Format	GPS eXchange Forma	+ [CDV]	-		
ormat	GF3 EXchange Forma	ir [dev]	•		
Save as					
_data/forestry/samp	ling/plots_wgs84.gpx	Browse			
Encoding	System 💌				
CRS	Selected CRS	-			
WGS 84		Browse			
Symbology export		No symbology	•		
Scale	1:50000				
Skip attribute cre	ation				
X Add saved file to	map				
	More Options >	>			

The inventory sample plots are now in a standard format that can be managed by most of the GPS software. The field teams can now upload the locations of the sample plots to their devices. That would be done by using the specific devices own software and the plots_wgs84.gpx file you just saved. Other option would be to use the *GPS Tools* plugin but it would most likely involve setting the tool to work with your specific GPS device. If you are working with your own data and want to see how the tool works you can find out information about it in the section Working with GPS Data in the *QGIS User Manual*.

Save your QGIS project now.

14.5.4 In Conclusion

You just saw how easily you can create a systematic sampling design to be used in a forest inventory. Creating other types of sampling designs will involve the use of different tools within QGIS, spreadsheets or scripting to calculate the coordinates of the sample plots, but the general idea remains the same.

14.5.5 What's Next?

In the next lesson you will see how to use the Atlas capabilities in QGIS to automatically generate detailed maps that the field teams will be using to navigate to the sample plots assigned to them.

14.6 Lesson: Creating Detailed Maps with the Atlas Tool

The systematic sampling design is ready and the field teams have loaded the GPS coordinates in their navigation devices. They also have a field data form where they will collect the information measured at every sample plot. To easier find their way to every sample plot, they have requested a number of detail maps where some ground information can be clearly seen along with a smaller subset of sample plots and some information about the map area. You can use the Atlas tool to automatically generate a number of maps with a common format.

The goal for this lesson: Learn to use the Atlas tool in QGIS to generate detailed printable maps to assist in the field inventory work.

14.6.1 *Follow Along: Preparing the Map Composer*

Before we can automate the detailed maps of the forest area and our sampling plots, we need to create a map template with all the elements we consider useful for the field work. Of course the most important will be a properly styled but, as you have seen before, you will also need to add lots of other elements that complete the printed map.

Open the QGIS project from the previous lesson forest_inventory.qgs. You should have at least the following layers:

- forest_stands_2012 (with a 50% transparency, green fill and darker green border lines).
- systematic_plots_clip.
- rautjarvi_aerial.

Save the project with a new name, map_creation.qgs.

To create a printable map, remember that you use the Composer Manager:

- Open $Project \rightarrow Composer Manager...$
- In the *Composer manager* dialog.
- Click the Add button and name your composer forest_map.
- Click OK.
- Click the Show button.

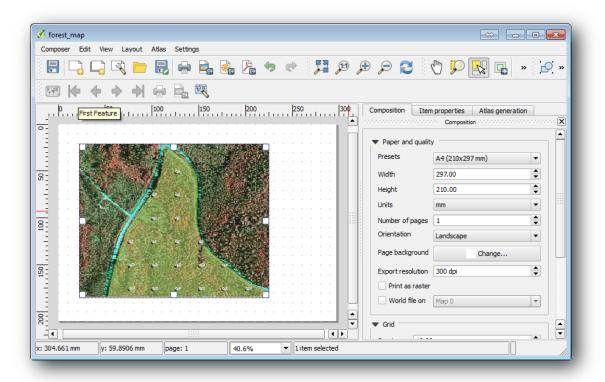
Set up the printer options so that your maps will suit your paper and margins, for an A4 paper:

- Open menuselection: Composer -> Page Setup.
- *Size* is *A4* (217 x 297 mm).
- Orientation is Landscape.
- *Margins (milimeters)* are all set to 5.

In the *Print Composer* window, go to the *Composition* tab (on the right panel) and make sure that these settings for *Paper and quality* are the same you defined for the printer:

- *Size*: A4 (210x297mm).
- Orientation: Landscape.
- Quality: 300dpi.

Composing a map is easier if you make use of the canvas grid to position the different elements. Review the settings for the composer grid:


- In the *Composition* tab expand the *Grid* region.
- Check that Spacing is set to 10 mm.
- And that *Tolerance* is set to 2 mm.

You need to activate the use of the grid:

- Open the View menu.
- Check Show grid.
- Check Snap to grid.
- Notice that options for using *guides* are checked by default, which allows you to see red guiding lines when you are moving elements in the composer.

Now you can start to add elements to your map canvas. Add first a map element so you can review how it looks as you will be making changes in the layers symbology:

- Click on the Add New Map button:
- Click and drag a box on the canvas so that the map occupies most of it.

Notice how the mouse cursor snaps to the canvas grid. Use this function when you add other elements. If you want to have more accuracy, change the grid *Spacing* setting. If for some reason you don't want to snap to the grid at some point, you can always check or uncheck it in the *View* menu.

14.6.2 Follow Along: Adding Background Map

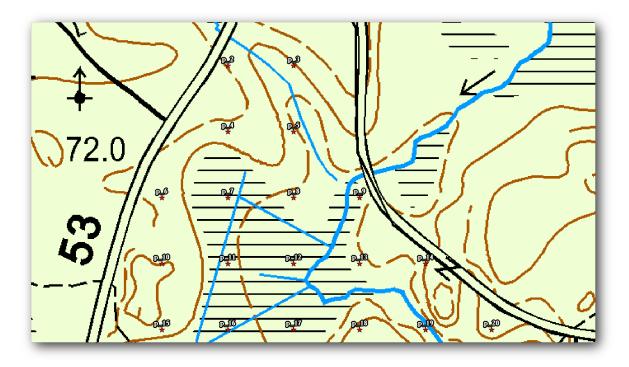
Leave the composer open but go back to the map. Lets add some background data and create some styling so that the map content is as clear as possible.

- Add the background raster <code>basic_map.tif</code> that you can find in the <code>exercise_data\forestry\</code> folder.
- When prompted select the ETRS89 / ETRS-TM35FIN CRS for the raster.

As you can see the background map is already styled. This type of ready to use cartography raster is very common. It is created from vector data, styled in a standard format and stored as a raster so that you don't have to bother styling several vector layers and worrying about getting a good result.

• Now zoom to your sample plots, so that you can see only about four or five lines of plots.

The current styling of the sample plots is not the best, but how does it look in the map composer?:

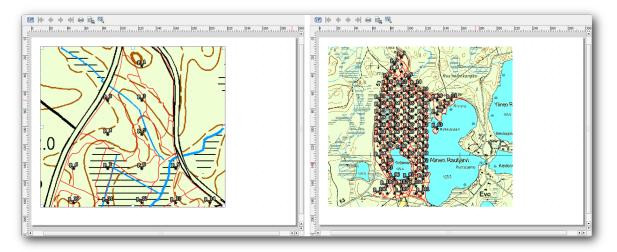

While during the last exercises, the white buffer was OK on top of the aerial image, now that the background image is mostly white you barely can see the labels. You can also check how it looks like on the composer:

- Go to the *Print Composer* window.
- Use the button to select the map element in the composer.
- Go to the Item properties tab.
- Under Extents click on Set to map canvas extent.
- If you need to refresh the element, under Main properties click on the Update preview.

Obviously this is not good enough, you want to make the plot numbers as clearly visible as possible for the field teams.

14.6.3 Try Yourself Changing the Symbology of the Layers

You have been working in *Module: Creazione di una Mappa di Base* with symbology and in *Module: Classifying Vector Data* with labeling. Go back to those modules if you need to refresh about some of the available options and tools. Your goal is to get the plots locations and their name to be as clearly visible as possible but always allowing to see the background map elements. You can take some guidance from this image:

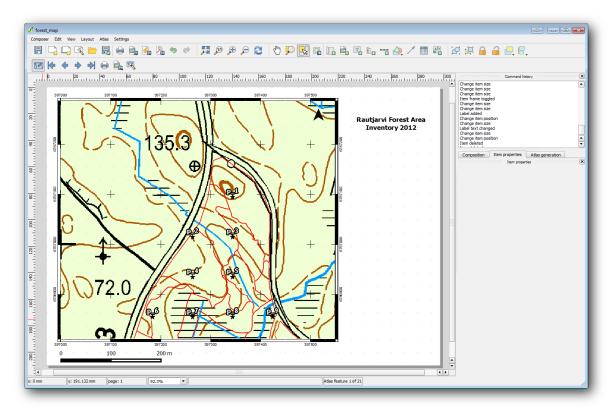


You will use later the the green styling of the forest_stands_2012 layer. In order to keep it, and have a visualization of it that shows only the stand borders:

- Right click on forest_stands_2012 and select Duplicate
- you get a new layer named forest_stands_2012 copy that you can use to define a different style, for example with no filling and red borders.

Now you have two different visualizations of the forest stands and you can decide which one to display for your detail map.

Go back to the *Print composer* window often to see what the map would look like. For the purposes of creating detailed maps, you are looking for a symbology that looks good not at the scale of the whole forest area (left image below) but at a closer scale (right image below). Remember to use *Update preview* and *Set to map canvas extent* whenever you change the zoom in your map or the composer.



14.6.4 **Create a Basic Map Template**

Once you have a symbology your happy with, you are ready to add some more information to your printed map. Add at least the following elements:

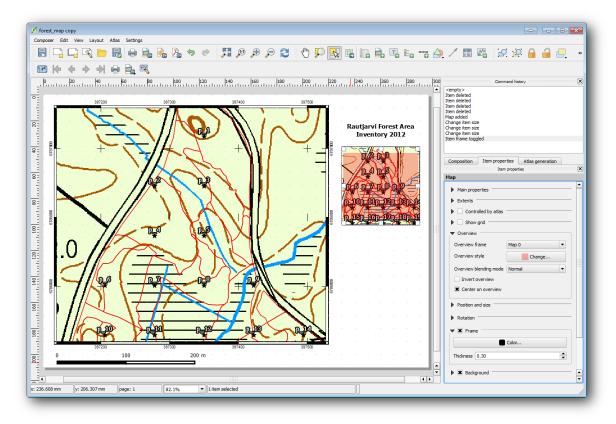
- Title.
- A scale bar.
- Grid frame for your map.
- Coordinates on the sides of the grid.

You have created a similar composition already in *Module: Creazione di Mappe*. Go back to that module as you need. You can look at this example image for reference:

Export your map as an image and look at it.

- Composer \rightarrow Export as Image.
- Use for example the JPG format.

That is what it will look like when printed.


14.6.5 Follow Along: Adding More Elements to the Composer

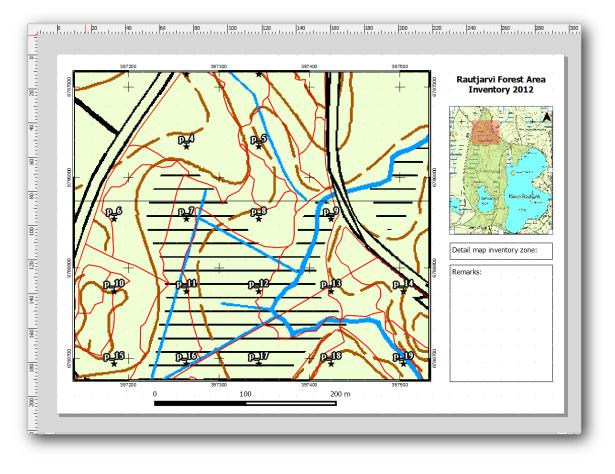
As you probably noticed in the suggested map template images, there are plenty of room on the right side of the canvas. Lets see what else could go in there. For the purposes of our map, a legend is not really necessary, but an overview map and some text boxes could add value to the map.

The overview map will help the field teams place the detail map inside the general forest area:

- Add another map element to the canvas, right under the title text.
- In the *Item properties* tab, open the *Overview* dropdown.

- Set the *Overview frame* to *Map 0*. This creates a shadowed rectangle over the smaller map representing the extent visible in the bigger map.
- Check also the *Frame* option with a black color and a *Thickness* of 0.30.

Notice that your overview map is not really giving an overview of the forest area which is what you want. You want this map to represent the whole forest area and you want it to show only the background map and the forest_stands_2012 layer, and not display the sample plots. And also you want to lock its view so it does not change anymore whenever you change the visibility or order of the layers.


- Go back to the map, but don't close the *Print composer*.
- Right click the forest_stands_2012 layer and click on Zoom to Layer Extent.
- Deactivate all layers except for basic_map and forest_stands_2012.
- Go back to the *Print composer*.
- With the small map selected, click the *Set to map canvas extent* to set its extents to what you can see in the map window.
- Lock the view for the overview map by checking Lock layers for map item under Main properties.

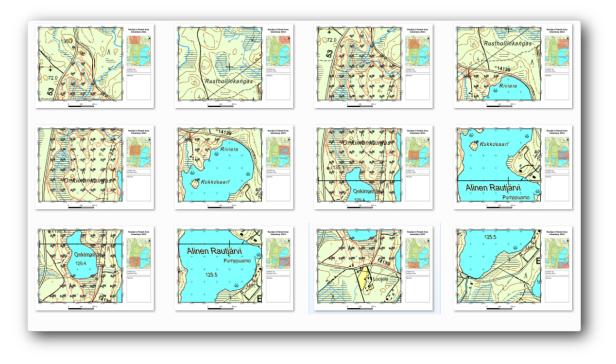
Now your overview map is more what you expected and its view will not change anymore. But, of course, now your detail map is not showing anymore the stand borders nor the sample plots. Lets fix that:

- Go to the map window again and select the layers you want to be visible (systematic_plots_clip, forest_stands_2012 copy and Basic_map).
- Zoom again to have only a few lines of sample plots visible.
- Go back to the Print composer window.
- Select the bigger map in your composer (🖄).
- In Item properties click on Update preview and Set to map canvas extent.

Notice that only the bigger map is displaying the current map view, and the small overview map is keeping the same view you had when you locked it.

Note also that the overview is showing a shaded frame for the extent shown in the detail map.

Your template map is almost ready. Add now two text boxes below the map, one containing the text 'Detailed map zone: ' and the other one 'Remarks: '. Place them as you can see in the image above.

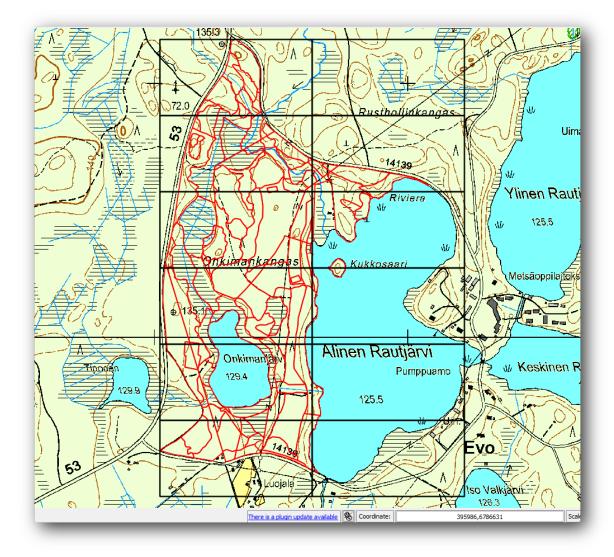

You can also add a North arrow to the overview map:

- Use the *Add image* tool, =
- Click at the upper right corner of the overview map.
- In Item properties open Search directories and browse for an arrow image.
- Under Image rotation, check the Sync with map and select Map 1 (the overview map).
- Uncheck Background.
- Resize the arrow image to a size that looks good on the small map.

The basic map composer is ready, now you want to make use of the Atlas tool to generate as many detail maps in this format as you consider necessary.

14.6.6 Follow Along: Creating an Atlas Coverage

The Atlas coverage is just a vector layer that will be used to generate the detail maps, one map for every feature in the coverage. To get an idea of what you will do next, here is a full set of detail maps for the forest area:


The coverage could be any existing layer, but usually it makes more sense to create one for the specific purpose. Let's create a grid of polygons covering the forest area:

- In the QGIS map view, open *Vector* \rightarrow *Research Tools* \rightarrow *Vector grid*.
- Set the tool as shown in this image:

Grid ex	tent		
fores	t_stands_2012		-
Alig	gn extents and resolution	on to sel	lected raster layer
Upda	te extents from layer	Upda	ate extents from canvas
X Min	397024.141	Y Min	6785465.69525
X Max	398082.827472	Y Max	6787173.746
	Y 300.0000000000 Itput grid as polygons Itput grid as lines	•	
output s	hapefile		
ise_dat	a/forestry/sampling/atl	as_cove	rage.shp Browse
Add r	esult to canvas		
1	0%)	OK Close

- Save the output as atlas_coverage.shp.
- Style the new atlas_coverage layer so that the polygons have no filling.

The new polygons are covering the whole forest area and they give you an idea of what each map (created from each polygon) will contain.

14.6.7 **Follow Along: Setting Up the Atlas Tool**

The last step is to set up the Atlas tool:

- Go back to the *Print Composer*.
- In the panel on the right, go to the *Atlas generation* tab.
- Set the options as follows:

Composition	Item properties Atlas genera	Atlas generation	anan.
🗶 Generate a	-		
▼ Configurat	ion		
Coverage lay	ver atlas_covera	age 💌	
🗙 Hidden co	overage layer		
Filter with	n 🗌		3
'fieldmap_'	me expression \$feature export when possib		ε
Sort by	ID		

That tells the Atlas tool to use the features (polygons) inside atlas_coverage as the focus for every detail map. It will output one map for every feature in the layer. The *Hidden coverage layer* tells the Atlas to not show the polygons in the output maps.

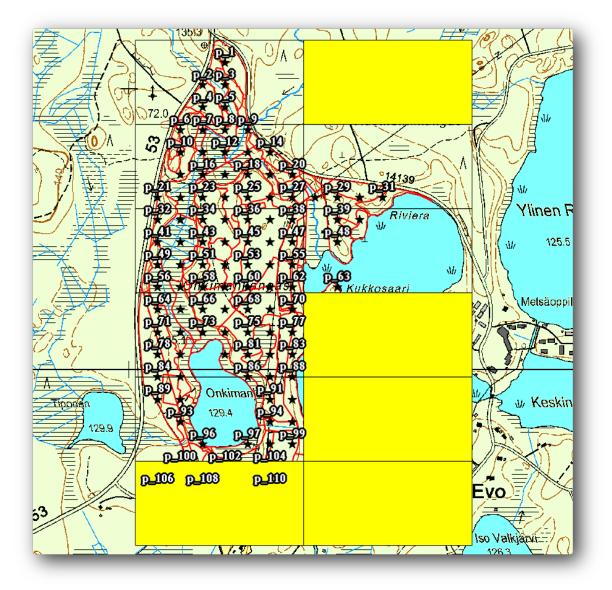
One more thing needs to be done. You need to tell the Atlas tool what map element is going to be updated for every output map. By now, you probably can guess that the map to be changed for every feature is the one you have prepared to contain detail views of the sample plots, that is the bigger map element in your canvas:

- Select the bigger map element.
- Go to the *Item properties* tab.
- In the list, check *Controlled by atlas*.
- And set the *Marging around feature* to 10%. The view extent will be 10% bigger than the polygons, which means that your detail maps will have a 10% overlap.

Composition	Item properties	Atlas generation]
	Item proper	ties and a second second	anana 🗙
1ap			
Main prop	erties		
Extents			
🗢 🗶 Contro	olled by atlas		
Margin a	around feature 10)%	•
O Fixed so	ale		
Show	grid		
Overview			[
Position ar	nd size		
Rotation			
Frame			🛋

Now you can use the preview tool for Atlas maps to review what your maps will look like:

- Activate the Atlas previews using the button \bigcirc or if your Atlas toolbar is not visible, via *Atlas* \rightarrow *Preview Atlas*.
- You can use the arrows in the Atlas tool bar or in the Atlas menu to move through maps that will be created.


Note that some of them cover areas that are not interesting. Lets do something about it and save some trees by not printing those useless maps.

14.6.8 Follow Along: Editing the Coverage Layer

Besides removing the polygons for those areas that are not interesting, you can also customize the text labels in your map to be generated with content from the *Attribute table* of your coverage layer:

- Go back to the map view.
- Enable editing for the atlas_coverage layer.

- Select the polygons that are selected (in yellow) in the image below.
- Remove the selected polygons.
- Disable editing and save the edits.

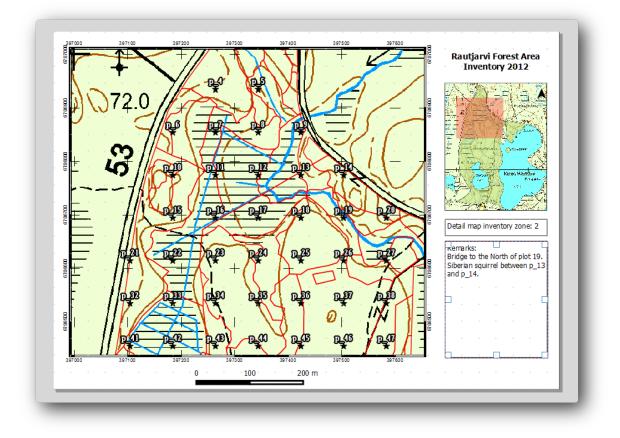
You can go back to the *Print Composer* and check that the previews of the Atlas use only the polygons you left in the layer.

The coverage layer you are using does not yet have useful information that you could use to customize the content of the labels in your map. The first step is to create them, you can add for example a zone code for the polygon areas and a field with some remarks for the field teams to have into account:

- Open the Attribute table for the atlas_coverage layer.
- Enable editing.
- Use the 🔤 calculator to create and populate the following two fields.
- Create a field named Zone and type Whole number (integer).
- In the *Expression* box write/copy/construct \$rownum.
- Create another field named Remarks, of type Text (string) and a width of 255.

• In the *Expression* box write 'No remarks.'. This will set all the default value for all the polygons.

The forest manager will have some information about the area that might be useful when visiting the area. For example, the existence of a bridge, a swamp or the location of a protected species. The atlas_coverage layer is probably in edit mode still, add the following text in the Remarks field to the corresponding polygons (double click the cell to edit it):


- For the Zone 2: Bridge to the North of plot 19. Siberian squirrel between p_{13} and p_{14} .
- For the Zone 6: Difficult to transit in swamp to the North of the lake..
- For the Zone 7: Siberian squirrel to the South East of p_94..
- Disable editing and save your edits.

Almost ready, now you have to tell the Atlas tool that you want some of the text labels to use the information from the atlas_coverage layer's attribute table.

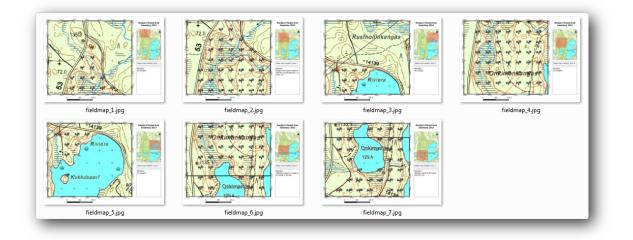
- Go back to the Print Composer.
- Select the text label containing Detailed map....
- Set the *Font* size to 12.
- Set the cursor at the end of the text in the label.
- In the Item properties tab, inside the Main properties click on Insert an expression.
- In the Function list double click on the field Zone under Field and Values.
- Click OK.
- The text inside the box in the *Item properties* should show Detail map inventory zone: [% "Zone" %]. Note that the [% "Zone" %] will be substituted by the value of the field Zone for the corresponding feature from the layer atlas_coverage.

Test the contents of the label by looking at the different Atlas preview maps.

Do the same for the labels with the text Remarks: using the field whit the zone information. You can leave a break line before you enter the expression. You can see the result for the preview of zone 2 in the image below:

Use the Atlas preview to browse through all the maps you will be creating soon and enjoy!

14.6.9 Follow Along: Printing the Maps


Last but not least, printing or exporting your maps to image files or PDF files. You can use the $Atlas \rightarrow Export$ Atlas as Images... or Atlas $\rightarrow Export$ Atlas as PDF.... Currently the SVG export format is not working properly and will give a poor result.

Lets print the maps as a single PDF that you can send to the field office for printing:

- Go to the *Atlas generation* tab on the right panel.
- Under the *Output* check the *Single file export when possible*. This will put all the maps together into a PDF file, if this option is not checked you will get one file for every map.
- Open *Composer* \rightarrow *Export as PDF....*
- Save the PDF file as inventory_2012_maps.pdf in your exercise_data\forestry\samplig\map_creation\folder.

Open the PDF file to check that everything went as expected.

You could just as easily create separate images for every map (remember to uncheck the single file creation), here you can see the thumbnails of the images that would be created:

In the *Print Composer*, save your map as a composer template as forestry_atlas.qpt in your exercise_data\forestry\map_creation\ folder. Use *Composer* \rightarrow *Save as Template*. You will be able to use this template again and again.

Close the Print Composer and save your QGIS project.

14.6.10 In Conclusion

You have managed to create a template map that can be used to automatically generate detail maps to be used in the field to help navigate to the different plots. As you noticed, this was not an easy task but the benefit will come when you need to create similar maps for other regions and you can use the template you just saved.

14.6.11 What's Next?

In the next lesson, you will see how you can use LiDAR data to create a DEM and then use it to your enhance your data and maps visibility.

14.7 Lesson: Calculating the Forest Parameters

Estimating the parameters of the forest is the goal of the forest inventory. Continuing the example from previous lesson, you will use the inventory information gathered in the field to calculate the forest parameters, for the whole forest first, and then for the stands you digitized before.

The goal for this lesson: Calculate forest parameters at general and stand level.

14.7.1 Follow Along: Adding the Inventory Results

The field teams visited the forest and with the help of the information you provided, gathered information about the forest at every sample plot.

Most often the information will be collected into paper forms in the field, then typed to a spreadsheet. The sample plots information has been condensed into a .csv file that can be easily open in QGIS.

Continue with the QGIS project from the lesson about designing the inventory, you probably named it forest_inventory.qgs.

First, add the sample plots measurements to your QGIS project:

• Go to Layer \rightarrow Add Delimited Text Layer....

- Browse to the file systematic_inventory_results.csv located in exercise_data\forestry\results\.
- Make sure that the *Point coordinates* option is checked.
- Set the fields for the coordinates to the X and Y fields.
- Click OK.
- When prompted, select ETRS89 / ETRS-TM35FIN as the CRS.
- Open the new layer's Attribute table and have a look at the data.

You can read the type of data that is contained in the sample plots measurements in the text file legend_2012_inventorydata.txt located in the exercise_data\forestry\results\ folder.

The systematic_inventory_results layer you just added is actually just a virtual representation of the text information in the .csv file. Before you continue, convert the inventory results to a real shapefile:

- Right click on the systematic_inventory_results layer.
- Browse to exercise_data\forestry\results\ folder.
- Name the file sample_plots_results.shp.
- Check Add saved file to map.
- Remove the systematic_inventory_results layer from your project.

14.7.2 Follow Along: Whole Forest Parameters Estimation

You can calculate the averages for this whole forest area from the inventory results for the some interesting parameters, like the volume and the number of stems per hectare. Since the systematic sample plots represent equal areas, you can directly calculate the averages of the volumes and number of stems per hectare from the sample_plots_results layer.

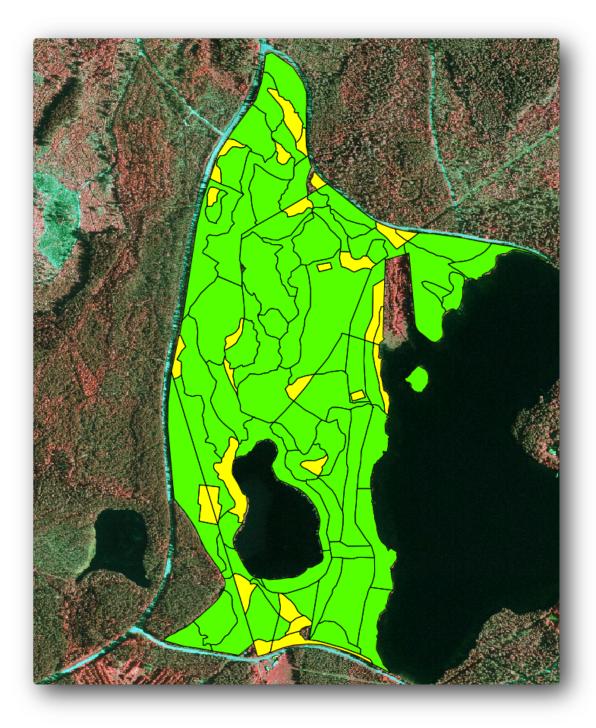
You can calculate the average of a field in a vector layer using the Basic statistics tool:

- Open Vector \rightarrow Analysis Tools \rightarrow Basic statistics.
- Select the sample_plots_results as the Input Vector Layer.
- Select Vol as Target field.
- Click OK.

The average volume in the forest is 135.2 m3/ha.

You can calculate the average for the number of stems in the same way, 2745 stems/ha.

input Vector Layer sample_plots_results		Input Vector Layer sample_plots_results		•
Use only selected features		Use only selected fe	atures	
Target field		Target field		
Vol		Stems		•
Statistics output		Statistics output		
Parameter	Value	Pa	arameter Value	^
Mean	135.153153153	Mean	2744.657657	66
StdDev	69.966941769	StdDev	2775.639809	35 🛄
Sum	15002.0	Sum	304657.0	
Min	15.0	Min	167.0	_
Max	333.0	Max	11400.0	▲ ▼
Press Ctrl+C to copy results to the dipboard		Press Ctrl+C to copy re	sults to the clipboard	


14.7.3 Follow Along: Estimating Stand Parameters

You can make use of those same systematic sample plots to calculate estimates for the different forest stands you digitized previously. Some of the forest stands did not get any sample plot and for those you will not get information. You could have planned some extra sample plots when you planned the systematic inventory, so that the field teams would have measured a few extra sample plots for this purpose. Or you could send a field team later to get estimates of the missing forest stands to complete the stand inventory. Nevertheless, you will get information for a good number of stands just using the planned plots.

What you need is to get the averages of the sample plots that are falling within each of the forest stands. When you want to combine information based on their relative locations, you perform a spatial join:

- Open the Vector \rightarrow Data Management \rightarrow Join attributes by location tool.
- Set forest_stands_2012 as the *Target vector layer*. The layer you want the results for.
- Set sample_plots_results as the *Join vector layer*. The layer you want to calculate estimates from.
- Check Take summary of intersecting features.
- Check to calculate only the Mean.
- Name the result as forest_stands_2012_results.shp and save it in the <code>exercise_data/forestry/results/folder</code>.
- Finally select Keep all records..., so you can check later what stands did not get information.
- Click OK.
- Accept adding the new layer to your project when prompted.
- Close the Join attributes by location tool.

Open the *Attribute table* for forest_stands_2012_results and review the results you got. Note that a number of forest stands have NULL as the value for the calculations, those are the ones having no sample plots. Select them all review them in the map, they are some of the smaller stands:

Lets calculate now the same averages for the whole forest as you did before, only this time you will use the averages you got for the stands as the bases for the calculation. Remember that in the previous situation, each sample plot represented a theoretical stand of 80×80 m. Now you have to consider the area of each of the stands individually instead. That way, again, the average values of the parameters that are in, for example, m3/ha for the volumes are converted to total volumes for the stands.

You need to first calculate the areas for the stands and then calculate total volumes and stem numbers for each of them:

- In the *Attribute table* enable editing.
- Open the *Field calculator*.
- Create a new field called area.

- Leave the Output field type to Decimal number (real).
- Set the *Precision* to 2.
- In the *Expression* box, write <code>\$area / 10000</code>. This will calculate the area of the forest stands in ha.
- Click OK.

Now calculate a field with the total volumes and number of stems estimated for every stand:

- Name the fields s_vol and s_stem.
- The fields can be integer numbers or you can use real numbers also.
- Use the expressions "area" * "MEANVol" and "area" * "MEANStems" for total volumes and total stems respectively.
- Save the edits when you are finished.
- Disable editing.

In the previous situation, the areas represented by every sample plot were the same, so it was enough to calculate the average of the sample plots. Now to calculate the estimates, you need to divide the sum of the stands volumes or number of stems by the sum of the areas of the stands containing information.

- In the *Attribute table* for the forest_stands_2012_results layer, select all the stands containing information.
- Open Vector \rightarrow Analysis Tools \rightarrow Basic statistics.
- Select the forest_stands_2012_results as the Input Vector Layer.
- Select area as Target field.
- Check the Use only selected features
- Click OK.

forest_stands_2012_results	•
Use only selected features	
arget field	
area	•
tatistics output	
Parameter	Value 🔺
Mean	0.971161764706
StdDev	0.688308297253
Sum	66.039
Min	0.181
Max	3.726

As you can see, the total sum of the stands' areas is 66.04 ha. Note that the area of the missing forest stands is only about 7 ha.

In the same way, you can calculate that the total volume for these stands is $8908 \text{ m}^3/\text{ha}$ and the total number of stems is 179594 stems.

Using the information from the forest stands, instead of directly using that from the sample plots, gives the following average estimates:

- 184.9 m3/ha and
- 2719 stems/ha.

Save your QGIS project, forest_inventory.qgs.

14.7.4 In Conclusion

You managed to calculate forest estimates for the whole forest using the information from your systematic sample plots, first without considering the forest characteristics and also using the interpretation of the aerial image into forest stands. And you also got some valuable information about the particular stands, which could be used to plan the management of the forest in the coming years.

14.7.5 What's Next?

In the following lesson, you will first create a hillshade background from a LiDAR dataset which you will use to prepare a map presentation with the forest results you just calculated.

14.8 Lesson: DEM da dati LiDAR

Puoi migliorare l'aspetto delle tue mappe utilizzando diverse immagini di sfondo. Puoi utilizzare la mappa di base o l'immagine aerea che hai utilizzato prima, ma in alcune situazioni sarà meglio un raster di ombreggiatura del terreno.

Puoi usare LAStools per ricavare un DEM da un insieme di dati LiDAR e quindi creare un raster di ombreggiatura da utilizzare nella tua mappa.

L'obiettivo di questa lezione: Installa LAStools e costruisci un DEM da dati LiDAR e un raster di ombreggiatura.

14.8.1 Follow Along: Installare Lastools

Puoi gestire dei dati LiDAR all'interno QGIS utilizzando Processing e gli algoritmi forniti da LAStools .

Puoi ottenere un modello digitale di elevazione (DEM) da una nuvola di punti LiDAR e quindi creare un raster di ombreggiatura che è visivamente più intuitivo per le presentazioni. Innanzitutto dovrai impostare lo strumento *Processing* per funzionare correttamente con LAStools:

- Se è aperto, chiudi QGIS.
- Un vecchio lidar plugin potrebbe essere installato di default nel tuo sistema nella cartella C:/Program Files/QGIS Valmiera/apps/qgis/python/plugins/processing/.
- Se disponi di una cartella denominata lidar, eliminala. Questo è valido per alcune installazioni di QGIS 2.2 e 2.4.

Organize 🔻 😭 Open 🛛 In	clude in library 🔻 Share with 🔻	Burn »		. ?
Name	Date modified	Туре	Size	
퉬 admintools	6/5/2014 3:20 PM	File folder		
🌗 algs	6/5/2014 3:20 PM	File folder		
🐌 commander	6/5/2014 3:20 PM	File folder		
퉬 core	6/5/2014 3:20 PM	File folder		
퉬 exampleprovider	6/5/2014 3:20 PM	File folder		
鷆 gdal	6/5/2014 3:20 PM	File folder		
鷆 grass	6/5/2014 3:20 PM	File folder		
鷆 gui	6/5/2014 3:20 PM	File folder		
퉬 images	6/5/2014 3:20 PM	File folder		L
🌗 lidar	6/5/2014 3:20 PM	File folder		
퉬 modeler	6/5/2014 3:20 PM	File folder		
🌗 otb	6/5/2014 3:20 PM	File folder		
퉬 outputs	6/5/2014 3:20 PM	File folder		
鷆 parameters	6/5/2014 3:20 PM	File folder		
퉲 r	6/5/2014 3:20 PM	File folder		
<u> </u>	6 /E /2014 2:20 DM	Pile Zellales		

- Vai a exercise_data\forestry\lidar\ folder, dove puoi trovare il file QGIS_2_2_toolbox.zip. Aprilo ed estrai la cartella lidar da sostituire a quella cancellata.
- Se utilizzi una versione diversa QGIS, puoi vedere le istruzioni di installazione in questo tutorial.

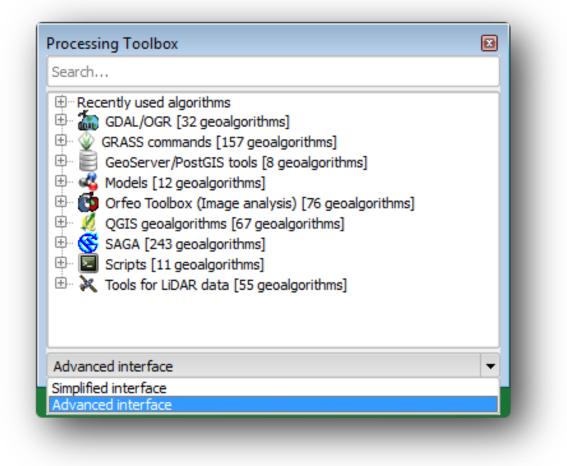
Ora devi installare LAStools sul tuo computer. Ottieni l'ultima versione lastools qui e estrai il contenuto di lastools.zip in una cartella del tuo sistema,per esempio, c:\lastools\. Il percorso alla cartella lastools non può avere spazi o caratteri speciali.

Nota: Leggi il file LICENSE.txt dentro la cartella lastools. Alcuni dei LAStools sono open source e altri sono closed source e richiedono di licenza per l'uso commerciale e governativo. Ai fini educativi o di valutazione puoi usare e provare LAStools quanto è necessario.

Il plugin e gli algoritmi sono ora installati nel tuo computer e quasi pronto per l'uso, è sufficiente impostare lo strumento Processing per iniziare a utilizzarli:

- Apri un nuovo progetto in QGIS
- Imposta SR del progetto come ETRS89 / ETRS-TM35FIN.
- Salva il progetto come forest_lidar.qgs.

Per configurare LAStools in QGIS

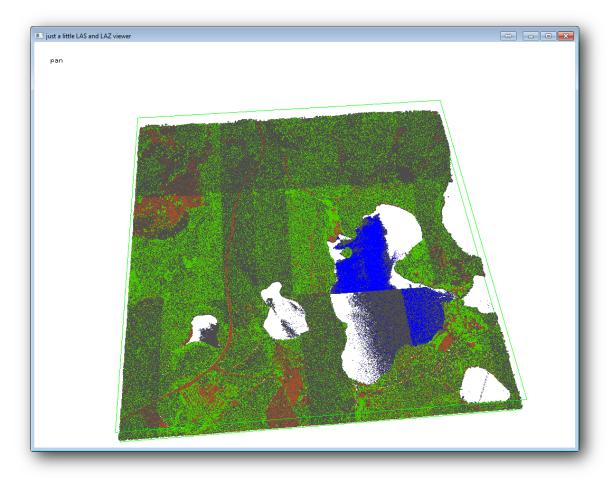

- Vai a *Processing* \rightarrow *Opzioni*....
- Nella finestra Opzioni di Processing vai a Programmi'e poi a :guilabel: 'Strumenti per i dati LiDAR.
- Spunta Attiva.
- Per cartella LAStools scegli c:\lastools\ (o la cartella dove hai estratto LAStools).

etting	Value	
🗠 🍘 General		
Models		
Providers		
🗄 🚠 GDAL/OGR		
🕀 🔮 GRASS commands		
🕀 📄 GeoServer/PostGIS tools		
🕀 🐗 Modeler-only tools		
🕀 🚯 Orfeo Toolbox (Image anal	ysis)	
🐵 💋 QGIS geoalgorithms		
🕀 😨 R scripts		
🗄 🔇 SAGA		
🗄 🕡 TauDEM (hydrologic analys	sis)	
🖻 🦮 Tools for LiDAR data		
🗠 🔀 Activate	×	
🚽 🔀 Fusion folder		
🛶 💥 LAStools folder	C:\lastools	
🗄 🔽 Scripts		

14.8.2 Follow Along: Costruire un DEM con LAStools

Hai già utilizzato lo strumento *Processing* in: doc: ' ../ vector_analysis / spatial_statistics ' per eseguire algoritmi SAGA. Ora lo userai per eseguire programmi LAStools:

- Apri *Processing* \rightarrow *Strumenti*.
- Nel menu a tendina in basso seleziona: Advanced interface.
- Dovresti vedere la categoira :guilabel::Strumenti per dati LiDAR



- Espandi per vedere gli strumenti a disposizione, e espandi anche la sottocategoria *LAStools* (il numero di algoritmi possono variare).
- Scorri fino a trovare l'algoritmo lasview, fai doppio clic su di esso per aprirlo.
- A *Input LAS/LAZ file*, scorri exercise_data\forestry\lidar\ e seleziona il file rautjarvi_lidar.laz.

arameters Log Help			lasduplicate
			···· lasground
verbose			···· lasheight ···· lasindex
C			lasinfo
No		· · · · · · · · · · · · · · · · · · ·	···· lasmerge
input LAS/LAZ file			lasnoise
Colonia Constructorentias de	a ta Manana ta Midan basuti an di Kalan bas		···· lasoverage ···· lasoverlap
C: (dgis_forestry (exercise_da	ata \forestry \idar \rautjarvi_lidar.laz		lasprecision
			···· lasquery
			lassort
			···· lassplit ···· lasthin
			lastile
			lasvalidate
	0%	 	lasview
	0%		

• Click Run.

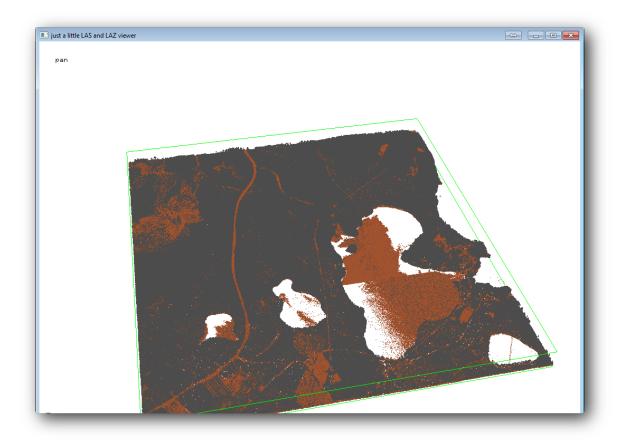
Ora puoi vedere i dati LiDAR nella finestra di dialogo just a little LAS and LAZ viewer.

Ci sono molte cose che puoi fare con questo visualizzatore, ma per ora puoi fare clic su di esso per muovere la nuvola di punti LiDAR.

Nota: Se vuoi conoscere ulteriori dettagli su come funziona LAStools, puoi leggere il file testo README su

ciascuno degli strumenti, nella cartella C:\lastools\bin\. Esercitazioni e altri materiali sono disponibili presso il sito Rapidlasso.

• Chiudi il visualizzatore quando hai finito.


Puoi creare un DEM con LAStools in due fasi: la prima classifica la nuvola di punti in ground e no ground e la seconda calcola il DEM utilizzando solo i punti ground.

- Torna a Strumenti di Processing.
- Segna su Cerca... lasground.
- Fai dopio click per aprire la finestra *lasground* tool e compilala come nell'immagine:

arameters Log Help		
verbose		
No	-	
input LAS/LAZ file		
C:\qgis_forestry\exercise_data\forestry\lidar\rautjarvi_lidar.laz]	
horizontal feet		
No	•	
vertical feet		
No	-	
airborne LiDAR		
Yes	-	
terrain type		
wilderness	-	
preprocessing		
default	•	
		•
0%		
	Close Car	

• Salvi l'output nella stessa cartella di rautjarvi_lidar.laz e lo chiami rautjarvi_lidar_1.las.

Puoi aprirlo con *lasview* per il controllo.

I punti marrone sono quelli classificati come terra e quelli grigi sono il resto; puoi fare click sulla lettera g per visualizzare solo i punti terra o sullla lettera u peri vedere solo i punti non classificati. Fa click sulla lettera a per vedere di nuovo tutti i punti. Controlla il file lasview_README.txt per altri comandi. Se sei interessato, anche questa *esercitazione <http://www.rapidlasso.com/2014/03/02/tutorial-manual-lidar-editing/>* sulla modifica manuale dei punti LiDAR ti mostrerà diverse operazioni con il visualizzatore.

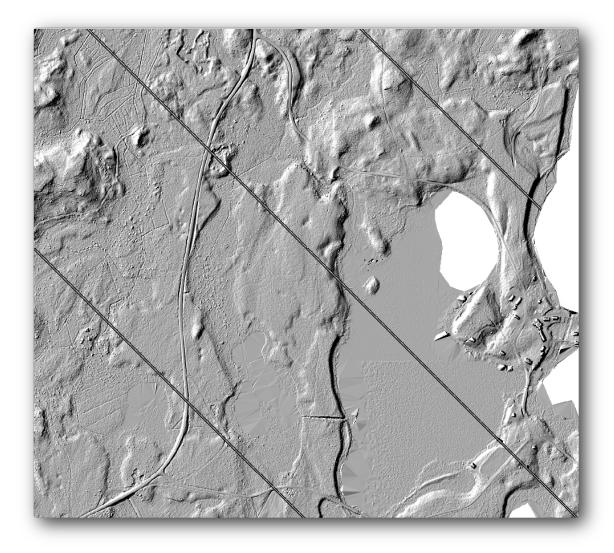
- Chiudi il visualizzatore.
- In Strumenti di Processing, cerca per las2dem.
- Apri la finestra *las2dem* tool e compilala come nell'immagine:

verbos	e		
No			-
input L	AS/LAZ file		
C:\qg	s_forestry\exercise_data\forestry\lidar\rautjarvi_lidar_1	.las	
filter (l	y return, classification, flags)		
			-
step si	re / pixel size		
1.0	0000		•
Attribu	te		
eleva	ion		-
Produc	t		
actua	values		-
Outpu	raster file		
C:/qg	s_forestry/exercise_data/forestry/results/rautjarvi_dem	.tif	
X Op	en output file after running algorithm		
	0%		

Il DEM che ne risulta è aggiunto alla mappa con il nome generico Output raster file.

Nota: I moduli *lasground* e *las2dem* tools richiedono la licenza. Puoi utilizzare lo strumento come indicato nel file di licenza e comunque puoi apprezzarne i risultati

14.8.3 Follow Along: Creare un'ombreggiatura del suolo


Per la visualizzazzione, un'ombreggiatura generata dal DEM, da una migliore immagine del terreno.

- Apri $Raster \rightarrow Analisi \rightarrow DEM$ (Analisi morfologica).
- Come *File di uscita*, scegli la cartella exercise_data\forestry\lidar\ e chiama il file hillshade.tif.
- Lascia gli altri parametri con le impostazioni predefinite.

Elevation layer	rautjarvi_dem 🔻
Output layer	estry/lidar/rautjarvi_hillshade.tif
Output format	GeoTIFF
Z factor	1
المحتجمة والطاريح والبارية 👽	
 Add result to project Illumination Azimuth (horizontal and 	gle) 300.00
-Illumination	Jle) 300.00 ★ 40.00 ★

• Scegli ETRS89 / ETRS-TM35FIN come SR quando richiesto.

Nonostante le linee diagonali che rimangono nel risultato di ombreggiamento del raster, puoi vedere un rilievo preciso della zona. Puoi anche vedere i diversi canali di scolo dei terreni che sono stati scavati nelle foreste.

14.8.4 In Conclusion

L'uso di dati LiDAR per ottenere un DEM, specialmente in aree forestali, da buoni risultati con poco sforzo. Puoi anche usare DEM derivati da dati LiDAR o da alrte fonti come SRTM 9m resolution DEMs. Comunqu puoi usare entrambi per l'ombreggiatura delle tue mappa

14.8.5 What's Next?

Nella prossima e ultima lezione di questo modulo userai l'ombreggiamento raster e i risultati dell'inventario forestale per creare una mappa di presentazione dei risultati.

14.9 Lesson: Map Presentation

In the previous lessons you have imported an old forest inventor as a GIS project, updated it to the current situation, designed a forest inventory, created maps for the field work and calculated forest parameters from the field measurements.

It is often important to create maps with the results of a GIS project. A map presenting the results of the forest inventory will make it easier for anyone to have a good idea of what the results are in a quick glance, without looking at the specific numbers.

The goal for this lesson: Create a map to present the inventory results using a hillshade raster as background.

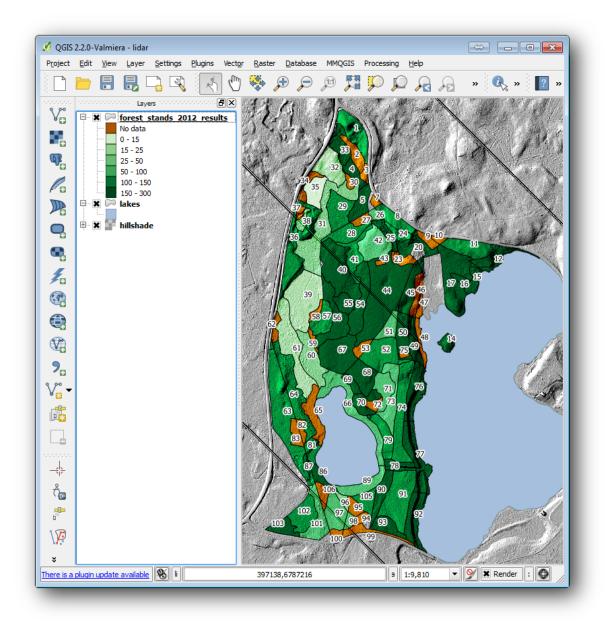
14.9.1 Follow Along: Preparing the Map Data

Open the QGIS project from the parameters calculations lesson, forest_inventory.qgs. Keep at least the following layers:

- forest_stands_2012_results.
- basic_map.
- rautjarvi_aerial.
- lakes (if you don't have it, add it from the exercise_data\forestry\ folder).

You are going to present the average volumes of your forest stands in a map. If you open the *Attribute table* for the forest_stands_2012_results layer, you can see the NULL values for the stands without information. To be able to get also those stands into your styling you should change the NULL values to, for example, -999, knowing that those negative numbers mean there is no data for those polygons.

For the forest_stands_2012_results layer:


- Open the Attribute table and enable editing.
- Select the polygons with NULL values.
- Use the calculator to update the values of the MEANVol field to -999 only for the selected features.
- Disable editing and save the changes.

Now you can use a saved style for this layer:

- Go to the *Style* tab.
- Click on *Load Style*.
- Select the forest_stands_2012_results.qml from the exercise_data\forestry\results\ folder.
- Click OK.

	orest_stands_2012							-?-(×
🤇 General	Layer rel	-	-						
🖌 Style	Layer trans	sparency	0					0	+
style Style	Layer blen	ding mode	Hard light	:	▼ Featu	re blending mode	Normal		•
Labels									
	🔒 Graduat	ted 🔻							
Fields					~				
	Column	MEANp_vol		-	£				
Rendering	Symbol			Change			Classes	7	
Display	Symbol			Change	•		Cidsses	/	
	Color ramp	[source]		🔻 🗌 In	wert		Mode	Natural Breaks (Jenks))
Actions		- 1							_
	Symbol	✓ Value	Label						
Joins 🗧			No data 0 - 15						
_			15 - 25						
Diagrams	i —		25 - 50						
		50.0000 - 100.0000							
Metadata		100.0000 - 150.000							
		150.0000 - 300.00							
	Classify	Add class	Delete	Delete all				Advance	2d
		Load Style		Save As Default		Restore Default Style		Save Style	-
		Loud Style		Save As Delbart		restore berdare style		Suve Style	-
						OK Ca	ncel	Apply Help	

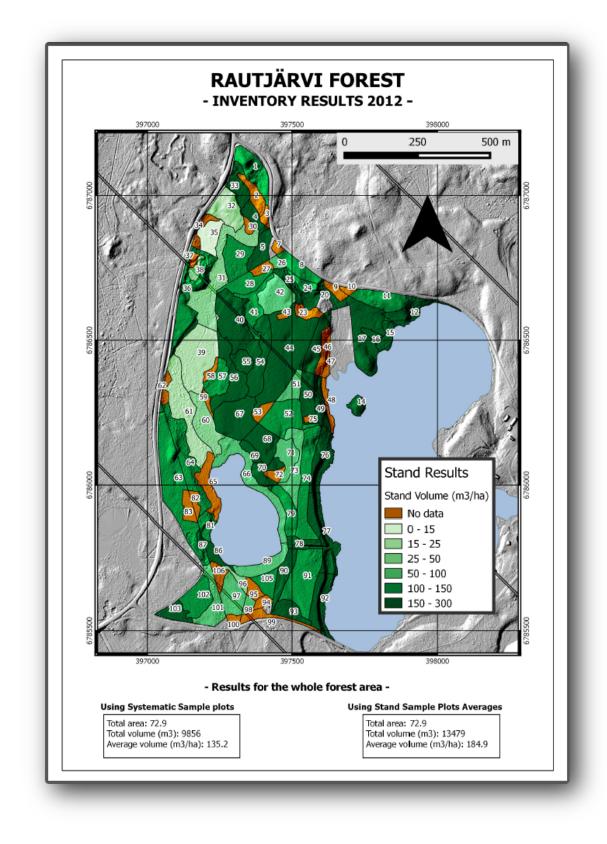
Your map will look something like this:

14.9.2 **C** Try Yourself Try Different Blending Modes

The style you loaded:

🙋 Layer Properties - for								-?	×
General	Layer ren Layer trans	-	^					0	¢
😻 Style	Layer blend		Hard light	t	▼ Feature	blending mode	Normal		•
abc Labels	Craduate	ed 💌							
Fields		MEANp_vol		•	£				
Kendering	Symbol			Change			Classes	7	÷
🗩 Display	Color ramp	[source]		•	Invert		Mode	Natural Breaks (Jenks)) 🔻
Actions	Symbol	Value	Label						-
📢 Joins 📝 Diagrams 👔 Metadata		-999.0000 - 0.0000 0.0000 - 15.0000 15.0000 - 25.0000	100 - 150						
	Classify	Add class	Delete	Delete all				Advance	d 🔻
		Load Style		Save As Default		Restore Default Style		Save Style	•
						OK Car	ncel	Apply Help	

is using the Hard light mode for the *Layer blending mode*. Note that the different modes apply different filters combining the underlying and overlying layers, in this case the hillshade raster and your forest stands are used. You can read about these modes in the User Guide.


Try with different modes and see the differences in your map. Then choose the one you like better for your final map.

14.9.3 **C** Try Yourself Using a Composer Template to Create the Map result

Use a template prepared in advanced to present the results. The template forest_map.qpt is located in the exercise_data\forestry\results\ folder. Load it using the $Project \rightarrow Composer Manager...$ dialog.

Composer man	Create unique print co (title generated if left e	mposer title empty)	8 23
	results OK	Cancel	
 New from templa Specific 	ate		Add
Specific	try/results/forest_map.qp		Add

Open the map composer and edit the final map to get a result you are happy with. The map template you are using will give a map similar to this one:

Save your QGIS project for future references.

14.9.4 In Conclusion

Through this module you have seen how a basic forest inventory can be planned and presented with QGIS. Many more forest analysis are possible with the variety of tools that you can access, but hopefully this manual has given you a good starting point to explore how you could achieve the specific results you need.

Module: Database Concepts with PostgreSQL

Relational Databases are an important part of any GIS system. In this module, you'll learn about Relational Database Management System (RDBMS) concepts and you will use PostgreSQL to create a new database to store data, as well as learning about other typical RDBMS functions.

15.1 Lesson: Introduction to Databases

Before using PostgreSQL, let's make sure of our ground by covering general database theory. You will not need to enter any of the example code; it's only there for illustration purposes.

The goal for this lesson: To understand fundamental database concepts.

15.1.1 What is a Database?

A database consists of an organized collection of data for one or more uses, typically in digital form. - Wikipedia

A database management system (DBMS) consists of software that operates databases, providing storage, access, security, backup and other facilities. - *Wikipedia*

15.1.2 Tables

In relational databases and flat file databases, a table is a set of data elements (values) that is organized using a model of vertical columns (which are identified by their name) and horizontal rows. A table has a specified number of columns, but can have any number of rows. Each row is identified by the values appearing in a particular column subset which has been identified as a candidate key. - *Wikipedia*

```
id | name | age
----+-----
1 | Tim | 20
2 | Horst | 88
(2 rows)
```

In SQL databases a table is also known as a relation.

15.1.3 Columns / Fields

A column is a set of data values of a particular simple type, one for each row of the table. The columns provide the structure according to which the rows are composed. The term field is often used interchangeably with column, although many consider it more correct to use field (or field value) to refer specifically to the single item that exists at the intersection between one row and one column. - *Wikipedia*

A column:

| name | +----+ | Tim | | Horst |

A field:

| Horst |

15.1.4 Records

A record is the information stored in a table row. Each record will have a field for each of the columns in the table.

2 | Horst | 88 <-- one record

15.1.5 Datatypes

Datatypes restrict the kind of information that can be stored in a column. - Tim and Horst

There are many kinds of datatypes. Let's focus on the most common:

- String to store free-form text data
- Integer to store whole numbers
- Real to store decimal numbers
- Date to store Horst's birthday so no one forgets
- Boolean to store simple true/false values

You can tell the database to allow you to also store nothing in a field. If there is nothing in a field, then the field content is referred to as a **'null' value**:

```
insert into person (age) values (40);
```

select * from person;

Result:

There are many more datatypes you can use - check the PostgreSQL manual!

15.1.6 Modelling an Address Database

Let's use a simple case study to see how a database is constructed. We want to create an address database.

Write down the properties which make up a simple address and which we would want to store in our database.

Check your results

Address Structure

The properties that describe an address are the columns. The type of information stored in each column is its datatype. In the next section we will analyse our conceptual address table to see how we can make it better!

15.1.7 Database Theory

The process of creating a database involves creating a model of the real world; taking real world concepts and representing them in the database as entities.

15.1.8 Normalisation

One of the main ideas in a database is to avoid data duplication / redundancy. The process of removing redundancy from a database is called Normalisation.

Normalization is a systematic way of ensuring that a database structure is suitable for general-purpose querying and free of certain undesirable characteristics - insertion, update, and deletion anomalies - that could lead to a loss of data integrity. - *Wikipedia*

There are different kinds of normalisation 'forms'.

Let's take a look at a simple example:

```
Table "public.people"
```

Column	21 -	 +	Modifiers							
id	integer	not null defa								
<pre>name character varying(50) address character varying(200) not null phone_no character varying Indexes: "people_pkey" PRIMARY KEY, btree (id) select * from people;</pre>										
id na	ame a		phone_no							
1 Tim Sutton 3 Buirski Plein, Swellendam 071 123 123 2 Horst Duester 4 Avenue du Roix, Geneva 072 121 122 (2 rows)										

Imagine you have many friends with the same street name or city. Every time this data is duplicated, it consumes space. Worse still, if a city name changes, you have to do a lot of work to update your database.

Redesign the theoretical *people* table above to reduce duplication and to normalise the data structure.

You can read more about database normalisation here

Check your results

15.1.10 Indexes

A database index is a data structure that improves the speed of data retrieval operations on a database table. - *Wikipedia*

Imagine you are reading a textbook and looking for the explanation of a concept - and the textbook has no index! You will have to start reading at one cover and work your way through the entire book until you find the information you need. The index at the back of a book helps you to jump quickly to the page with the relevant information:

create index person_name_idx on people (name);

Now searches on name will be faster:

```
Table "public.people"
```

Column | Tvpe | Modifiers | not null default id | integer | nextval('people_id_seq'::regclass) name | character varying(50) | address | character varying(200) | not null phone_no | character varying Indexes: "people_pkey" PRIMARY KEY, btree (id) "person_name_idx" btree (name)

15.1.11 Sequences

A sequence is a unique number generator. It is normally used to create a unique identifier for a column in a table.

In this example, id is a sequence - the number is incremented each time a record is added to the table:

15.1.12 Entity Relationship Diagramming

In a normalised database, you typically have many relations (tables). The entity-relationship diagram (ER Diagram) is used to design the logical dependencies between the relations. Consider our non-normalised *people* table from earlier in the lesson:

With a little work we can split it into two tables, removing the need to repeat the street name for individuals who live in the same street:

and:

We can then link the two tables using the 'keys' streets.id and people.streets_id.

If we draw an ER Diagram for these two tables it would look something like this:

The ER Diagram helps us to express 'one to many' relationships. In this case the arrow symbol show that one street can have many people living on it.

Try Yourself

Our *people* model still has some normalisation issues - try to see if you can normalise it further and show your thoughts by means of an ER Diagram.

Check your results

15.1.13 Constraints, Primary Keys and Foreign Keys

A database constraint is used to ensure that data in a relation matches the modeller's view of how that data should be stored. For example a constraint on your postal code could ensure that the number falls between 1000 and 9999.

A Primary key is one or more field values that make a record unique. Usually the primary key is called id and is a sequence.

A Foreign key is used to refer to a unique record on another table (using that other table's primary key).

In ER Diagramming, the linkage between tables is normally based on Foreign keys linking to Primary keys.

If we look at our people example, the table definition shows that the street column is a foreign key that references the primary key on the streets table:

```
Table "public.people"
```

```
| Modifiers
 Column |
              Туре
_____+
   | integer | not null default
id
                       | nextval('people_id_seq'::regclass)
      _____
street_id | integer
                       | not null
phone_no | character varying
                        Indexes:
"people_pkey" PRIMARY KEY, btree (id)
Foreign-key constraints:
"people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)
```

15.1.14 Transactions

When adding, changing, or deleting data in a database, it is always important that the database is left in a good state if something goes wrong. Most databases provide a feature called transaction support. Transactions allow you to create a rollback position that you can return to if your modifications to the database did not run as planned.

Take a scenario where you have an accounting system. You need to transfer funds from one account and add them to another. The sequence of steps would go like this:

- remove R20 from Joe
- add R20 to Anne

If something goes wrong during the process (e.g. power failure), the transaction will be rolled back.

15.1.15 In Conclusion

Databases allow you to manage data in a structured way using simple code structures.

15.1.16 What's Next?

Now that we've looked at how databases work in theory, let's create a new database to implement the theory we've covered.

15.2 Lesson: Implementing the Data Model

Now that we've covered all the theory, let's create a new database. This database will be used for our exercises for the lessons that will follow afterwards.

The goal for this lesson: To install the required software and use it to implement our example database.

15.2.1 Install PostgreSQL

Nota: Although outside the scope of this document, Mac users can install PostgreSQL using Homebrew. Windows users can use the graphical installer located here: http://www.postgresql.org/download/windows/. Please note that the documentation will assume users are running QGIS under Ubuntu.

Under Ubuntu:

sudo apt-get install postgresql-9.1

You should get a message like this:

```
[sudo] password for qgis:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
postgresql-client-9.1 postgresql-client-common postgresql-common
Suggested packages:
oidentd ident-server postgresql-doc-9.1
The following NEW packages will be installed:
postgresql-9.1 postgresql-client-9.1 postgresql-client-common postgresql-common
0 upgraded, 4 newly installed, 0 to remove and 5 not upgraded.
Need to get 5,012kB of archives.
After this operation, 19.0MB of additional disk space will be used.
Do you want to continue [Y/n]?
```

Press Y and Enter and wait for the download and installation to finish.

15.2.2 Guida

PostgreSQL has very good online documentation.

15.2.3 Create a database user

Under Ubuntu:

After the installation is complete, run this command to become the postgres user and then create a new database user:

sudo su - postgres

Type in your normal log in password when prompted (you need to have sudo rights).

Now, at the postgres user's bash prompt, create the database user. Make sure the user name matches your unix login name: it will make your life much easier, as postgres will automatically authenticate you when you are logged in as that user:

createuser -d -E -i -l -P -r -s qgis

Enter a password when prompted. You should use a different password to your login password.

What do those options mean?

```
-d, --createdb role can create new databases
-E, --encrypted encrypt stored password
-i, --inherit role inherits privileges of roles it is a member of (default)
-1, --login role can login (default)
-P, --pwprompt assign a password to new role
-r, --createrole role can create new roles
-s, --superuser role will be superuser
```

Now you should leave the postgres user's bash shell environment by typing:

exit

15.2.4 Verify the new account

psql -l

Should return something like this:

				5		Collation		11	Ι
	-+		-+-		-+-		-+-		-+
postgres		postgres		UTF8		en_ZA.utf8		en_ZA.utf8	
template0		postgres		UTF8		en_ZA.utf8		en_ZA.utf8	
template1		postgres		UTF8		en_ZA.utf8		en_ZA.utf8	
(3 rows)									

Type q to exit.

15.2.5 Create a database

The createdb command is used to create a new database. It should be run from the bash shell prompt:

```
createdb address -O qgis
```

You can verify the existence of your new database by using this command:

psql -l

Which should return something like this:

Type q to exit.

15.2.6 Starting a database shell session

You can connect to your database easily like this:

psql address

To exit out of the psql database shell, type:

/d

For help in using the shell, type:

\?

For help in using sql commands, type:

\help

To get help on a specific command, type (for example):

```
\help create table
```

See also the Psql cheat sheet - available online here.

15.2.7 Make Tables in SQL

Let's start making some tables! We will use our ER Diagram as a guide. First, connect to the address db:

psql address

Then create a streets table:

create table streets (id serial not null primary key, name varchar(50));

serial and varchar are **data types**. serial tells PostgreSQL to start an integer sequence (auto-number) to populate the id automatically for every new record. varchar(50) tells PostgreSQL to create a character field of 50 characters in length.

You will notice that the command ends with a ; - all SQL commands should be terminated this way. When you press enter, psql will report something like this:

That means your table was created successfully, with a primary key streets_pkey using streets.id.

Note: If you hit return without entering a ;, then you will get a prompt like this: address-#. This is because PG is expecting you to enter more. Enter ; to run your command.

To view your table schema, you can do this:

\d streets

Which should show something like this:

To view your table contents, you can do this:

select * from streets;

Which should show something like this:

id | name

(O rows)

As you can see, our table is currently empty.

Use the approach shown above to make a table called people:

Add fields such as phone number, home address, name, etc. (these aren't all valid names: change them to make them valid). Make sure you give the table an ID column with the same data-type as above.

Check your results

15.2.8 Create Keys in SQL

The problem with our solution above is that the database doesn't know that people and streets have a logical relationship. To express this relationship, we have to define a foreign key that points to the primary key of the streets table.

There are two ways to do this:

- Add the key after the table has been created
- Define the key at time of table creation

Our table has already been created, so let's do it the first way:

```
alter table people
  add constraint people_streets_fk foreign key (street_id) references streets(id);
```

That tells the people table that its street_id fields must match a valid street id from the streets table.

The more usual way to create a constraint is to do it when you create the table:

\d people

After adding the constraint, our table schema looks like this now:

```
Table "public.people"
 Column |
                Type
                            Modifiers
_____+
     | integer | not null default
id
                            | nextval('people_id_seq'::regclass)
        name | character varying(50) |
house_no | integer | not null
street id | integer | not null
                            | not null
street_id | integer
phone_no | character varying
                            1
Indexes:
 "people_pkey" PRIMARY KEY, btree (id)
Foreign-key constraints:
 "people_streets_fk" FOREIGN KEY (id) REFERENCES streets(id)
```

15.2.9 Create Indexes in SQL

We want lightning fast searches on peoples names. To provide for this, we can create an index on the name column of our people table:

create index people_name_idx on people(name);

\d people

Which results in:

```
Table "public.people"
```

15.2.10 Dropping Tables in SQL

If you want to get rid of a table you can use the drop command:

drop table streets;

Nota: In our current example, the above command would not work. Why not? See why

If you used the same drop table command on the people table, it would be successful:

drop table people;

Nota: If you actually did enter that command and dropped the people table, now would be a good time to rebuild it, as you will need it in the next exercises.

15.2.11 A word on pgAdmin III

We are showing you the SQL commands from the *psql* prompt because it's a very useful way to learn about databases. However, there are quicker and easier ways to do a lot of what we are showing you. Install pgAdmin III and you can create, drop, alter etc tables using 'point and click' operations in a GUI.

Under Ubuntu, you can install it like this:

sudo apt-get install pgadmin3

pgAdmin III will be covered in more detail in another module.

15.2.12 In Conclusion

You have now seen how to create a brand new database, starting completely from scratch.

15.2.13 What's Next?

Next you'll learn how to use the DBMS to add new data.

15.3 Lesson: Adding Data to the Model

The models we've created will now need to be populated with the data they're intended to contain.

The goal for this lesson: To learn how to insert new data into the database models.

15.3.1 Insert statement

How do you add data to a table? The sql INSERT statement provides the functionality for this:

insert into streets (name) values ('High street');

A couple of things to note:

- After the table name (streets), you list the column names that you will be populating (in this case only the name column).
- After the values keyword, place the list of field values.
- Strings should be quoted using single quotes.
- Note that we did not insert a value for the id column; this is because it is a sequence and will be autogenerated.
- If you do manually set the id, you may cause serious problems with the integrity of your database.

You should see INSERT 0 1 if it is successful.

You can see the result of your insert action by selecting all the data in the table:

```
select * from streets;
```

Result:

Use the INSERT command to add a new street to the streets table.

Check your results

15.3.2 Sequencing Data Addition According to Constraints

15.3.3 Try Yourself

Try to add a person object to the people table with the following details:

```
Name: Joe Smith
House Number: 55
Street: Main Street
Phone: 072 882 33 21
```

Nota: Recall that in this example, we defined phone numbers as strings, not integers.

At this point, you should have an error report if you try to do this without first creating a record for Main Street in the streets table.

You should have also noticed that:

- You can't add the street using its name
- You can't add a street using a street id before first creating the street record on the streets table

Remember that our two tables are linked via a Primary/Foreign Key pair. This means that no valid person can be created without there also being a valid corresponding street record.

Using the above knowledge, add the new person to the database.

Check your results

15.3.4 Select data

We have already shown you the syntax for selecting records. Let's look at a few more examples:

select name from streets; select * from streets; select * from streets where name='Main Road';

In later sessions we will go into more detail on how to select and filter data.

15.3.5 Update data

What if you want to make a change to some existing data? For example, a street name is changed:

update streets set name='New Main Road' where name='Main Road';

Be very careful using such update statements - if more than one record matches your WHERE clause, they will all be updated!

A better solution is to use the primary key of the table to reference the record to be changed:

update streets set name='New Main Road' where id=2;

It should return UPDATE 1.

Nota: the WHERE statement criteria are case sensitive Main Road is not the same as Main road

15.3.6 Delete Data

In order to delete an object from a table, use the DELETE command:

```
delete from people where name = 'Joe Smith';
```

Let's look at our people table now:

address=# select * from people;

Use the skills you have learned to add some new friends to your database:

name	I	house_no		street_id		pł	none_	_no	
	+-		+-		-+-				
Joe Bloggs	I	3		2		072	887	23	45
Jane Smith	I	55		3		072	837	33	35
Roger Jones	I	33		1		072	832	31	38
Sally Norman	I	83		1		072	932	31	32

15.3.8 In Conclusion

Now you know how to add new data to the existing models you created previously. Remember that if you want to add new kinds of data, you may want to modify and/or create new models to contain that data.

15.3.9 What's Next?

Now that you've added some data, you'll learn how to use queries to access this data in various ways.

15.4 Lesson: Queries

When you write a SELECT ... command it is commonly known as a query - you are interrogating the database for information.

The goal of this lesson: To learn how to create queries that will return useful information.

Nota: If you did not do so in the previous lesson, add the following people objects to your people table. If you receive any errors related to foreign key constraints, you will need to add the 'Main Road' object to your streets table first

```
insert into people (name,house_no, street_id, phone_no)
values ('Joe Bloggs',3,2,'072 887 23 45');
insert into people (name,house_no, street_id, phone_no)
values ('Jane Smith',55,3,'072 837 33 35');
insert into people (name,house_no, street_id, phone_no)
values ('Roger Jones',33,1,'072 832 31 38');
insert into people (name,house_no, street_id, phone_no)
values ('Sally Norman',83,1,'072 932 31 32');
```

15.4.1 Ordering Results

Let's retrieve a list of people ordered by their house numbers:

select name, house_no from people order by house_no;

Result:

name		house_no
	+-	
Joe Bloggs		3
Roger Jones		33
Jane Smith		55
Sally Norman		83
(4 rows)		

You can sort the results by the values of more than one column:

select name, house_no from people order by name, house_no;

Result:

name	house_no
	+
Jane Smith	55
Joe Bloggs	3
Roger Jones	33
Sally Norman	83
(4 rows)	

15.4.2 Filtering

Often you won't want to see every single record in the database - especially if there are thousands of records and you are only interested in seeing one or two.

Here is an example of a numerical filter which only returns objects whose house_no is less than 50:

select name, house_no from people where house_no < 50;</pre>

```
name | house_no
Joe Bloggs | 3
Roger Jones | 33
(2 rows)
```

You can combine filters (defined using the WHERE clause) with sorting (defined using the ORDER BY clause):

select name, house_no from people where house_no < 50 order by house_no;

name		house_no
Joe Bloggs	-+-	3
Roger Jones (2 rows)		33

You can also filter based on text data:

select name, house_no from people where name like '%s%';

name	house_no
	+
Joe Bloggs	3
Roger Jones	33
(2 rows)	

Here we used the LIKE clause to find all names with an s in them. You'll notice that this query is case-sensitive, so the Sally Norman entry has not been returned.

If you want to search for a string of letters regardless of case, you can do a case in-sensitive search using the ILIKE clause:

select name, house_no from people where name ilike '%r%';

name			house_	no
		+-		
Roger .	Jones			33
Sally N	Norman			83
(2 rows))			

That query returned every *people* object with an r or R in their name.

15.4.3 Joins

What if you want to see the person's details and their street's name instead of the ID? In order to do that, you need to join the two tables together in a single query. Lets look at an example:

```
select people.name, house_no, streets.name
from people,streets
where people.street_id=streets.id;
```

Nota: With joins, you will always state the two tables the information is coming from, in this case people and streets. You also need to specify which two keys must match (foreign key & primary key). If you don't specify that, you will get a list of all possible combinations of people and streets, but no way to know who actually lives on which street!

Here is what the correct output will look like:

```
name | house_no | name

Joe Bloggs | 3 | Low Street

Roger Jones | 33 | High street

Sally Norman | 83 | High street

Jane Smith | 55 | Main Road

(4 rows)
```

We will revisit joins as we create more complex queries later. Just remember they provide a simple way to combine the information from two or more tables.

15.4.4 Sub-Select

Sub-selections allow you to select objects from one table based on the data from another table which is linked via a foreign key relationship. In our case, we want to find people who live on a specific street.

First, let's do a little tweaking of our data:

```
insert into streets (name) values('QGIS Road');
insert into streets (name) values('OGR Corner');
insert into streets (name) values('Goodle Square');
update people set street_id = 2 where id=2;
update people set street_id = 3 where id=3;
```

Let's take a quick look at our data after those changes: we can reuse our query from the previous section:

```
select people.name, house_no, streets.name
from people,streets
where people.street_id=streets.id;
```

Result:

```
name | house_no | name

Roger Jones | 33 | High street

Sally Norman | 83 | High street

Jane Smith | 55 | Main Road

Joe Bloggs | 3 | Low Street

(4 rows)
```

Now let's show you a sub-selection on this data. We want to show only people who live in street_id number 1:

```
select people.name
from people, (
    select *
    from streets
    where id=1
) as streets_subset
where people.street_id = streets_subset.id;
```

Result:

```
name
Roger Jones
Sally Norman
(2 rows)
```

Although this is a very simple example and unnecessary with our small data-sets, it illustrates how useful and important sub-selections can be when querying large and complex data-sets.

15.4.5 Aggregate Queries

One of the powerful features of a database is its ability to summarise the data in its tables. These summaries are called aggregate queries. Here is a typical example which tells us how many people objects are in our people table:

```
select count(*) from people;
```

Result:

```
count
```

4 (1 row)

If we want the counts to be summarised by street name we can do this:

```
select count(name), street_id
from people
group by street_id;
```

Result:

```
count | street_id


2 | 1

1 | 3

1 | 2

(3 rows)
```

Nota: Because we have not used an ORDER BY clause, the order of your results may not match what is shown here.

Summarise the people by street name and show the actual street names instead of the street_ids.

Check your results

15.4.6 In Conclusion

You've seen how to use queries to return the data in your database in a way that allows you to extract useful information from it.

15.4.7 What's Next?

Next you'll see how to create views from the queries that you've written.

15.5 Lesson: Views

When you write a query, you need to spend a lot of time and effort formulating it. With views, you can save the definition of an SQL query in a reusable 'virtual table'.

The goal for this lesson: To save a query as a view.

15.5.1 Creating a View

You can treat a view just like a table, but its data is sourced from a query. Let's make a simple view based on the above:

```
create view roads_count_v as
  select count(people.name), streets.name
  from people, streets where people.street_id=streets.id
  group by people.street_id, streets.name;
```

As you can see the only change is the create view roads_count_v as part at the beginning. We can now select data from that view:

select * from roads_count_v;

Result:

```
count | name

1 | Main Road

2 | High street

1 | Low Street

(3 rows)
```

15.5.2 Modifying a View

A view is not fixed, and it contains no 'real data'. This means you can easily change it without impacting on any data in your database:

```
CREATE OR REPLACE VIEW roads_count_v AS
SELECT count(people.name), streets.name
FROM people, streets WHERE people.street_id=streets.id
GROUP BY people.street_id, streets.name
ORDER BY streets.name;
```

(This example also shows the best practice convention of using UPPER CASE for all SQL keywords.)

You will see that we have added an ORDER BY clause so that our view rows are nicely sorted:

15.5.3 Dropping a View

If you no longer need a view, you can delete it like this:

```
drop view roads_count_v;
```

15.5.4 In Conclusion

Using views, you can save a query and access its results as if it were a table.

15.5.5 What's Next?

Sometimes, when changing data, you want your changes to have effects elsewhere in the database. The next lesson will show you how to do this.

15.6 Lesson: Rules

Rules allow the "query tree" of an incoming query to be rewritten. One common usage is to implement views, including updatable view. - *Wikipedia*

The goal for this lesson: To learn how to create new rules for the database.

15.6.1 Materialised Views (Rule based views)

Say you want to log every change of phone_no in your people table in to a people_log table. So you set up a new table:

create table people_log (name text, time timestamp default NOW());

In the next step, create a rule that logs every change of a phone_no in the people table into the people_log table:

```
create rule people_log as on update to people
  where NEW.phone_no <> OLD.phone_no
  do insert into people_log values (OLD.name);
```

To test that the rule works, let's modify a phone number:

update people set phone_no = '082 555 1234' where id = 2;

Check that the people table was updated correctly:

Now, thanks to the rule we created, the people_log table will look like this:

Nota: The value of the time field will depend on the current date and time.

15.6.2 In Conclusion

Rules allow you to automatically add or change data in your database to reflect changes in other parts of the database.

15.6.3 What's Next?

The next module will introduce you to Spatial Database using PostGIS, which takes these database concepts and applies them to GIS data.

Module: Spatial Database Concepts with PostGIS

Spatial Databases allow the storage of the geometries of records inside a Database as well as providing functionality for querying and retrieving the records using these Geometries. In this module we will use PostGIS, an extension to PostgreSQL, to learn how to setup a spatial database, import data from shapefiles into the database and make use of the geographic functions that PostGIS offers.

While working through this section, you may want to keep a copy of the PostGIS cheat sheet available from Boston GIS user group. Another useful resource is the online PostGIS documentation.

There are also some more extensive tutorials on PostGIS and Spatial Databases available from Boundless Geo:

- Introduction to PostGIS
- Spatial Database Tips and Tricks

See also PostGIS online.

16.1 Lesson: PostGIS Setup

Setting up PostGIS functions will allow you to access spatial functions from within PostgreSQL.

The goal for this lesson: To install spatial functions and briefly demo their effects.

Nota: We will assume the use of PostGIS version 2.1 in this exercise. The installation and database configuration are different for older versions, but the rest of this material in this module will still work. Consult the documentation for your platform for help with installation and database configuration.

16.1.1 Installing under Ubuntu

Postgis is easily installed from apt.

\$ sudo apt-get install postgis \$ sudo apt-get install postgresql-9.1-postgis

Really, it's that easy ...

Nota: Depending on which version of Ubuntu you are using, and which repositories you have configured, these commands will install PostGIS 1.5, or 2.x. You can find the version installed by issuing a select PostGIS_full_version(); query with psql or another tool.

To install the absolute latest version of PostGIS, you can use the following commands.

```
$ sudo apt-add-repository ppa:sharpie/for-science
$ sudo apt-add-repository ppa:sharpie/postgis-nightly
```

```
$ sudo apt-get update
$ sudo apt-get install postgresql-9.1-postgis-nightly
```

16.1.2 Installing under Windows

Installing on Windows is a little more complicated, but still not hard. Note that you need to be online to install the postgis stack.

First Visit the download page.

Then follow this guide.

More information about installing on Windows can be found on the PostGIS website.

16.1.3 Installing on Other Platforms

The PostGIS website download has information about installing on other platforms including MacOSX and on other linux distributions

16.1.4 Configuring Databases to use PostGIS

Once PostGIS is installed, you will need to configure your database to use the extensions. If you have installed PostGIS version > 2.0, this is as simple as issuing the following command with psql using the address database from our previous exercise.

\$ psql -d address -c "CREATE EXTENSION postgis;"

Nota: If you are using PostGIS 1.5 and a version of PostgreSQL lower than 9.1, you will need to follow a different set of steps in order to install the postgis extensions for your database. Please consult the PostGIS Documentation for instructions on how to do this. There are also some instructions in the previous version of this manual.

16.1.5 Looking at the installed PostGIS functions

PostGIS can be thought of as a collection of in-database functions that extend the core capabilities of PostgreSQL so that it can deal with spatial data. By 'deal with', we mean store, retrieve, query and manipulate. In order to do this, a number of functions are installed into the database.

Our PostgreSQL address database is now geospatially enabled, thanks to PostGIS. We are going to delve a lot deeper into this in the coming sections, but let's give you a quick little taster. Let's say we want to create a point from text. First we use the psql command to find functions relating to point. If you are not already connected to the address database, do so now. Then run:

df *point*

This is the command we're looking for: st_pointfromtext. To page through the list, use the down arrow, then press q to quit back to the psql shell.

Try running this command:

```
select st_pointfromtext('POINT(1 1)');
```

Result:

Three things to note:

- We defined a point at position 1,1 (EPSG:4326 is assumed) using POINT (1 1),
- We ran an sql statement, but not on any table, just on data entered from the SQL prompt,
- The resulting row does not make much sense.

The resulting row is in the OGC format called 'Well Known Binary' (WKB). We will look at this format in detail in the next section.

To get the results back as text, we can do a quick scan through the function list for something that returns text:

\df *text

The query we're looking for now is st_astext. Let's combine it with the previous query:

```
select st_astext(st_pointfromtext('POINT(1 1)'));
```

Result:

```
st_astext
-----
POINT(1 1)
(1 row)
```

Here, we entered the string POINT(1,1), turned it into a point using st_pointfromtext(), and turned it back into a human-readable form with st_astext(), which gave us back our original string.

One last example before we really get into the detail of using PostGIS:

```
select st_astext(st_buffer(st_pointfromtext('POINT(1 1)'),1.0));
```

What did that do? It created a buffer of 1 degree around our point, and returned the result as text.

16.1.6 Spatial Reference Systems

In addition to the PostGIS functions, the extension contains a collection of spatial reference system (SRS) definitions as defined by the European Petroleum Survey Group (EPSG). These are used during operations such as coordinate reference system (CRS) conversions.

We can inspect these SRS definitions in our database as they are stored in normal database tables.

First, let's look at the schema of the table by entering the following command in the psql prompt:

\d spatial_ref_sys

The result should be this:

```
Table "public.spatial_ref_sys"
Column | Type | Modifiers
srid | integer | not null
auth_name | character varying(256) |
auth_srid | integer |
srtext | character varying(2048) |
proj4text | character varying(2048) |
Indexes:
"spatial_ref_sys_pkey" PRIMARY KEY, btree (srid)
```

You can use standard SQL queries (as we have learned from our introductory sections), to view and manipulate this table - though its not a good idea to update or delete any records unless you know what you are doing.

One SRID you may be interested in is EPSG:4326 - the geographic / lat lon reference system using the WGS 84 ellipsoid. Let's take a look at it:

select * from spatial_ref_sys where srid=4326;

Result:

```
srid | 4326
auth_name | EPSG
auth_srid | 4326
srtext | GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],TOWGS84[0,
0,0,0,0,0,0],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,
AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]
proj4text | +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
```

The srtext is the projection definition in well known text (you may recognise this from .prj files in your shapefile collection).

16.1.7 In Conclusion

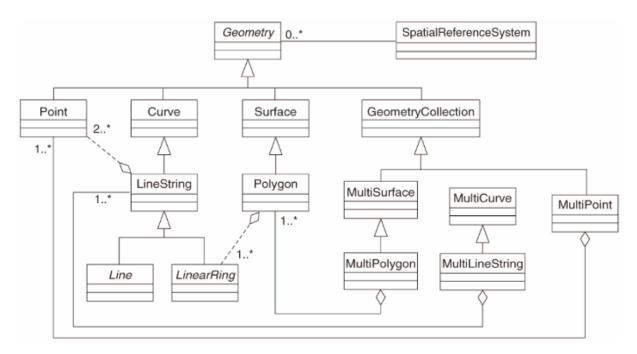
You now have PostGIS functions installed in your copy of PostgreSQL. With this you'll be able to make use of PostGIS' extensive spatial functions.

16.1.8 What's Next?

Next you'll learn how spatial features are represented in a database.

16.2 Lesson: Simple Feature Model

Come memorizziamo e rappresentiamo delle entità geografiche in un database? In questa lezione tratteremo di uno dei possibili approcci, il Simple Feature Model definito da OGC.


** Obiettivo di questa lezione: ** Imparare cosa è il modello SFS e come usarlo.

16.2.1 Cos'è OGC

Open Geospatial Consortium (OGC) è un'organizzazione internazionale no-profit, basata sul consenso volontario, che si occupa di definire specifiche tecniche per i servizi geospaziali e di localizzazione (location based). OGC è formato da oltre 370 membri (governi, industria privata, università) con l'obiettivo di sviluppare ed implementare standard per il contenuto, i servizi e l'interscambio di dati geografici (GIS - Sistema informativo geografico) che siano "aperti ed estensibili". Le specifiche definite da OGC sono pubbliche (PAS) e disponibili gratuitamente. - *Wikipedia*

16.2.2 Cos'è il modello SFS

Il Simple Feature per SQL (SFS) Model è un modo *non-topologico* per l'uso di dati geospaziali in un database e definisce le funzioni per l'accesso, il funzionamento e la costruzione di questi dati.

Il modello definisce dati geospaziali provenienti da Vettori di punti, linee, e Poligono (e aggregazioni multioggetto).

Per maggiori informazioni, guarda *Simple Feature OGC per SQL <http://www.opengeospatial.org/standards/sfs>* _ standard.

16.2.3 Aggiungi un campo geometria alla tavola

Aggiungi un campo punto alla nostra tabella people

```
alter table people add column the_geom geometry;
```

16.2.4 Aggiungi un vincolo in base al tipo di geometria

Nota che il tipo di campo di geometry non specifica implicitamente il *tipo* di geometria per il campo - per questo abbiamo bisogno di un vincolo

```
alter table people
add constraint people_geom_point_chk
    check(st_geometrytype(the_geom) = 'ST_Point'::text OR the_geom IS NULL);
```

Questo aggiunge un vincolo alla tabella in modo che accetterà solo una geometria punto o un valore nullo.

16.2.5 Prova

Crea una nuova tabella denominata cities e inserisci alcune colonne appropriate, tra cui un campo geometry per poligoni (i confini della città). Assicurarti che esiste un vincolo per rispettare geometrie poligoni.

Controlla i risultati

16.2.6 Compila la tabella geometry_columns

A questo punto dovresti aggiungere i dati nella tabella :kbd:'geometry_columns'

```
insert into geometry_columns values
('','public','people','the_geom',2,4326,'POINT');
```

Perché? : kbd:*geometry_columns* viene utilizzato da alcune applicazioni per sapere quali tabelle del database contengono dati geometrici.

Nota: Se : kbd: INSERT causa un errore, esegui prima questa interrogazione:

```
select * from geometry_columns;
```

```
If the column :kbd:`f_table_name` contains the value :kbd:`people`, then this table has already been registered and you don't need to do anything more.
```

Il valore: kbd:2 si riferisce al numero di dimensioni; in questo caso, due: x e y.

Il valore: kbd:4326 si riferisce alla proiezione che stai utilizzando; in questo caso, WGS 84, riferita con il numero 4326 (vedere la precedente discussione sul EPSG).

Prova

Aggiung un'appropriata geometry_columns per il tuo vettore new cities

Controlla i risultati

16.2.7 Aggiungi una riga alla tabella usando SQL

Ora che la tabella e geo-abilitata, puoi compilare le geometri in essa

Nota: Nei nuovi dati inseriti, dovrai specificare la proiezione (SRID) che desideri utilizzare. Questo è perché hai inserito la geometria del nuovo punto utilizzando una stringa di testo semplice ma che non aggiunge automaticamente le informazioni di proiezione corrette. Ovviamente, il nuovo punto deve utilizzare lo stesso SRID come i dati aggiunti, quindi devi specificarlo.

Se a questo punto stal utilizzando una interfaccia grafica, per esempio, specificando la proiezione per ciascun punto dovrebbe essere automatico. In altre parolenon ti preoccupererai di usare la proiezione corretta per ogni punto che desideri aggiungere, se lo hai già specificato.

Adesso apri QGIS e prova a vedere la tua tabella people. Puoi modificare/aggiungere/cancellare righe e interrogare il database per vedere come è cambiato.

Per caricare un layer PostGIS in QGIS usa l'opzione dal menu Layer \rightarrow Add PostGIS Layers oppure l'icona:

Queesto aprirà la finestra di dialogo:

Connectio	ns				
Conne	ect New	Edit Delete		Load	Save
Schema	 Table 	Column	Data Type	Spatial Type	SRID
Also list	tables with no ge	ometry			
Also list t	tables with no ge options	ometry			

Sscegli New per aprire questa finestra:

	Connection	Create a New PostGIS con	nnection		
000	Name				
Connecti	Service				
	Host				A T
Conr	Port	5432			Save
	Database				
Schema	SSL mode	disable		\$	SRID
	Username				
	Password				
			Test Connect s (GEOMETRY)		
_	Only lool	k in the 'public' schema			
Also lis	Also list	ables with no geometry			
Help	Use esti	nated table metadata			Close
	Help		Cancel	ĸ	
				///	

Quindi definisci una nuova connessione, per esempio:

```
Name: myPG
Service:
Host: localhost
Port: 5432
Database: address
User:
Password:
```

Per vedere se QGIS ha trovato il database address e che il tuo username e password sono corretti, scegli *Test Connect*. Se funziona scegli *Save Username* e *Save Password*. Quindi scegli *OK* per creare questa connessione.

Torna alla finestra Add PostGIS Layers, scegli Connect e aggiungi i layer al tuo progetto.

Formulate un'interrogaazione che mostre il nome di una persona, la strada e la posizione (da the-geom coloumn) come testo

Verifica i risultati

16.2.8 In Conclusion

hai visto come aggiungere oggetti spaziali database e visualizzarli nel GIS.

16.2.9 What's Next?

Nel prossimo vedrai come importare ed esportare i dati da e per il database.

16.3 Lesson: Import and Export

Of course, a database with no easy way to migrate data into it and out of it would not be of much use. Fortunately, there are a number of tools that will let you easily move data into and out of PostGIS.

16.3.1 shp2pgsql

shp2pgsql is a commandline tool to import ESRI shapefiles to the database. Under Unix, you can use the following command for importing a new PostGIS table:

```
shp2pgsql -s <SRID> -c -D -I <path to shapefile> <schema>. | \
psql -d <databasename> -h <hostname> -U <username>
```

Under Windows, you have to perform the import process in two steps:

```
shp2pgsql -s <SRID> -c -D -I <path to shapefile> <schema>. > import.sql
psql psql -d <databasename> -h <hostname> -U <username> -f import.sql
```

You may encounter this error:

```
ERROR: operator class "gist_geometry_ops" does not exist for access method "gist"
```

This is a known issue regarding the creation *in situ* of a spatial index for the data you're importing. To avoid the error, exclude the -I parameter. This will mean that no spatial index is being created directly, and you'll need to create it in the database after the data have been imported. (The creation of a spatial index will be covered in the next lesson.)

16.3.2 pgsql2shp

pgsql2shp is a commandline tool to export PostGIS Tables, Views or SQL select queries. To do this under Unix:

```
pgsql2shp -f <path to new shapefile> -g <geometry column name> \
    -h <hostname> -U <username> <databasename>
```

To export the data using a query:

16.3.3 ogr2ogr

ogr2ogr is a very powerful tool to convert data into and from postgis to many data formats. ogr2ogr is part of the GDAL/OGR Software and has to be installed separately. To export a table from PostGIS to GML, you can use this command:

```
ogr2ogr -f GML export.gml PG:'dbname=<databasename> user=<username>
    host=<hostname>' <Name of PostGIS-Table>
```

16.3.4 SPIT

SPIT is a QGIS plugin which is delivered with QGIS. You can use SPIT for uploading ESRI shapefiles to PostGIS. Once you've added the SPIT plugin via the *Plugin Manager*, look for this button:

Clicking on it or selecting *Database -> Spit -> Import Shapefiles to PostgreSQL* from the menu will give you the SPIT dialog:

	New	Edit		Remove
Import options and shapefi	le list			
Geometry column name	the_geom		🗹 Use default ge	ometry column nam
SRID	-1	A V	🗹 Use default SF	ND
Primary key column name	gid			
Global schema		\$		
File Name Feature Clas	s Features DB Relation	Name	Schema	
			Add Remove	Remove All

You can add shapefiles to the database by clicking the Add button, which will give you a file browser window.

16.3.5 DB Manager

You may have noticed another option in the *Database* menu labeled *DB Manager*. This is a new tool in QGIS 2.0 that provides a unified interface for interacting with spatial databases including PostGIS. It also allows you to import and export from databases to other formats. Since the next module is largely devoted to using this tool, we will only briefly mention it here.

16.3.6 In Conclusion

Importing and exporting data to and from the database can be done in many various ways. Especially when using disparate data sources, you will probably use these functions (or others like them) on a regular basis.

16.3.7 What's Next?

Next we'll look at how to query the data we've created before.

16.4 Lesson: Spatial Queries

Spatial queries are no different from other database queries. You can use the geometry column like any other database column. With the installation of PostGIS in our database, we have additional functions to query our database.

The goal for this lesson: To see how spatial functions are implemented similarly to "normal" non-spatial functions.

16.4.1 Spatial Operators

When you want to know which points are within a distance of 2 degrees to a point(X, Y) you can do this with:

```
select *
from people
where st_distance(the_geom,'SRID=4326;POINT(33 -34)') < 2;</pre>
```

Result:

Nota: the_geom value above was truncated for space on this page. If you want to see the point in human-readable coordinates, try something similar to what you did in the section "View a point as WKT", above.

How do we know that the query above returns all the points within 2 *degrees*? Why not 2 *meters*? Or any other unit, for that matter?

Check your results

16.4.2 Spatial Indexes

We also can define spatial indexes. A spatial index makes your spatial queries much faster. To create a spatial index on the geometry column use:

```
CREATE INDEX people_geo_idx
  ON people
  USING gist
  (the_geom);
```

\d people

Result:

```
Table "public.people"
 Column | Type
                                 Modifiers
  ____+
         | integer
                                | not null default
 id
                                 | nextval('people_id_seq'::regclass)
          | character varying(50) |
 name
 house_no | integer
                                 | not null
 street_id | integer
                                 | not null
 phone_no | character varying
                                 the_geom | geometry
                                 Indexes:
 "people_pkey" PRIMARY KEY, btree (id)
 "people_geo_idx" gist (the_geom) <-- new spatial key added
  "people_name_idx" btree (name)
Check constraints:
  "people_geom_point_chk" CHECK (st_geometrytype(the_geom) = 'ST_Point'::text
 OR the_geom IS NULL)
Foreign-key constraints:
  "people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)
```


Modify the cities table so its geometry column is spatially indexed.

Check your results

16.4.4 PostGIS Spatial Functions Demo

In order to demo PostGIS spatial functions, we'll create a new database containing some (fictional) data.

To start, create a new database (exit the psql shell first):

createdb postgis_demo

Remember to install the postgis extensions:

psql -d postgis_demo -c "CREATE EXTENSION postgis;"

Next, import the data provided in the exercise_data/postgis/ directory. Refer back to the previous lesson for instructions, but remember that you'll need to create a new PostGIS connection to the new database. You can import from the terminal or via SPIT. Import the files into the following database tables:

- points.shp into building
- lines.shp into road
- polygons.shp into region

Load these three database layers into QGIS via the *Add PostGIS Layers* dialog, as usual. When you open their attribute tables, you'll note that they have both an id field and a gid field created by the PostGIS import.

Now that the tables are imported, we can use PostGIS to query the data. Go back to your terminal (command line) and enter the psql prompt by running:

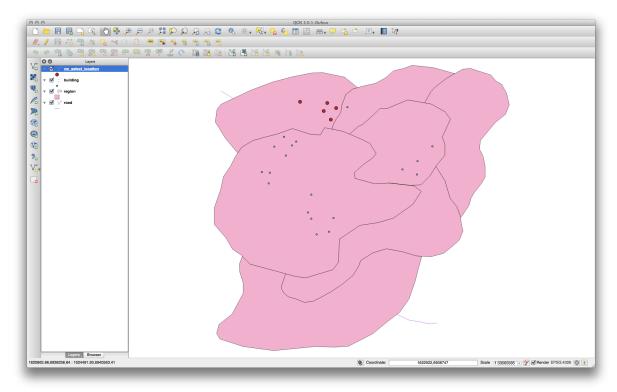
psql postgis_demo

We'll demo some of these select statements by creating views from them, so that you can open them in QGIS and see the results.

Select by location

Get all the buildings in the KwaZulu region:

```
SELECT a.id, a.name, st_astext(a.the_geom) as point
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
```


Result:

id name		point	
+	+-		
30 York		POINT (1622345.23785063	6940490.65844485)
33 York		POINT(1622495.65620524	6940403.87862489)
35 York		POINT (1622403.09106394	6940212.96302097)
36 York		POINT (1622287.38463732	6940357.59605424)
40 York		POINT (1621888.19746548	6940508.01440885)
(5 rows)			

Or, if we create a view from it:

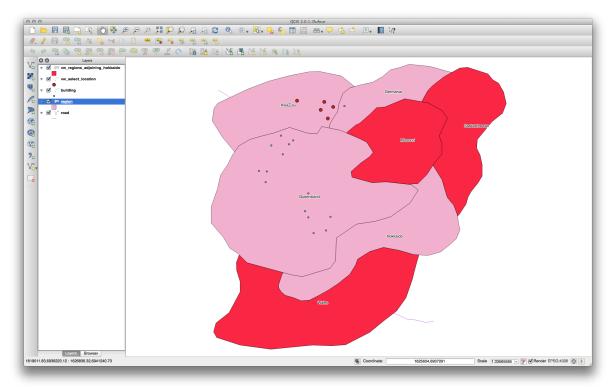
```
CREATE VIEW vw_select_location AS
SELECT a.gid, a.name, a.the_geom
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
```

Add the view as a layer and view it in QGIS:

Select neighbors

Show a list of all the names of regions adjoining the Hokkaido region:

```
SELECT b.name
FROM region a, region b
WHERE st_touches(a.the_geom, b.the_geom)
AND a.name = 'Hokkaido';
```

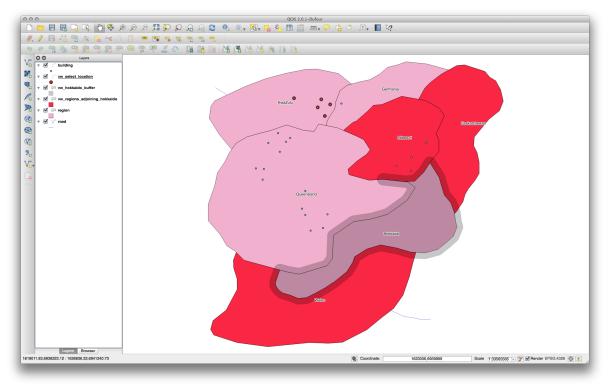

Result:

name Missouri Saskatchewan Wales (3 rows)

As a view:

CREATE VIEW vw_regions_adjoining_hokkaido AS SELECT b.gid, b.name, b.the_geom FROM region a, region b WHERE TOUCHES(a.the_geom, b.the_geom) AND a.name = 'Hokkaido';

In QGIS:

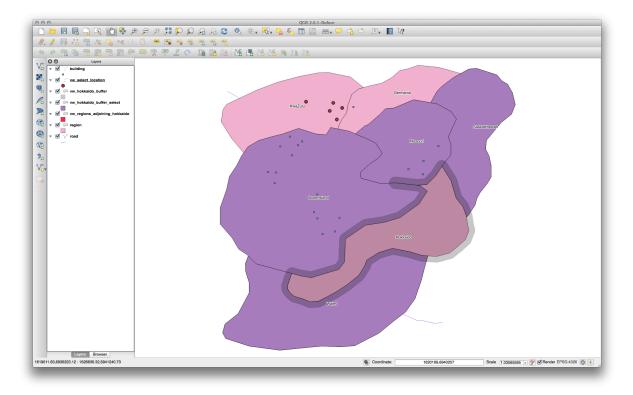


Note the missing region (Queensland). This may be due to a topology error. Artifacts such as this can alert us to potential problems in the data. To solve this enigma without getting caught up in the anomalies the data may have, we could use a buffer intersect instead:

```
CREATE VIEW vw_hokkaido_buffer AS
SELECT gid, ST_BUFFER(the_geom, 100) as the_geom
FROM region
WHERE name = 'Hokkaido';
```

This creates a buffer of 100 meters around the region Hokkaido.

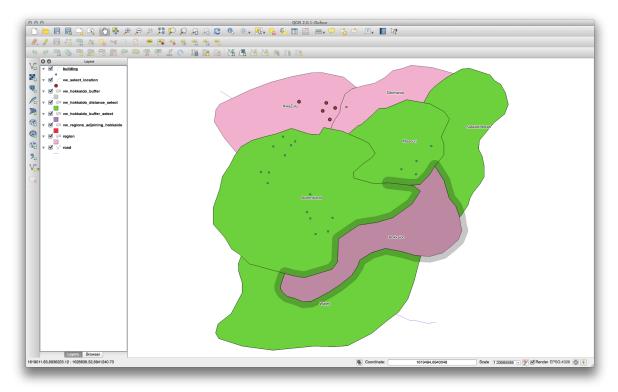
The darker area is the buffer:



Select using the buffer:

```
CREATE VIEW vw_hokkaido_buffer_select AS
SELECT b.gid, b.name, b.the_geom
FROM
(
SELECT * FROM
vw_hokkaido_buffer
) a,
region b
WHERE ST_INTERSECTS(a.the_geom, b.the_geom)
AND b.name != 'Hokkaido';
```

In this query, the original buffer view is used as any other table would be. It is given the alias a, and its geometry field, a.the_geom, is used to select any polygon in the region table (alias b) that intersects it. However, Hokkaido itself is excluded from this select statement, because we don't want it; we only want the regions adjoining it.


In QGIS:

It is also possible to select all objects within a given distance, without the extra step of creating a buffer:

```
CREATE VIEW vw_hokkaido_distance_select AS
SELECT b.gid, b.name, b.the_geom
FROM region a, region b
WHERE ST_DISTANCE (a.the_geom, b.the_geom) < 100
AND a.name = 'Hokkaido'
AND b.name != 'Hokkaido';
```

This achieves the same result, without need for the interim buffer step:

Select unique values

Show a list of unique town names for all buildings in the Queensland region:

```
SELECT DISTINCT a.name
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'Queensland';
```

Result:

name Beijing Berlin Atlanta (3 rows)

Further examples ...

```
CREATE VIEW vw_shortestline AS
 SELECT b.gid AS gid, ST_ASTEXT(ST_SHORTESTLINE(a.the_geom, b.the_geom)) as
    text, ST_SHORTESTLINE(a.the_geom, b.the_geom) AS the_geom
   FROM road a, building b
     WHERE a.id=5 AND b.id=22;
CREATE VIEW vw_longestline AS
 SELECT b.gid AS gid, ST_ASTEXT(ST_LONGESTLINE(a.the_geom, b.the_geom)) as
    text, ST_LONGESTLINE(a.the_geom, b.the_geom) AS the_geom
    FROM road a, building b
     WHERE a.id=5 AND b.id=22;
CREATE VIEW vw_road_centroid AS
 SELECT a.gid as gid, ST_CENTROID(a.the_geom) as the_geom
   FROM road a
     WHERE a.id = 1;
CREATE VIEW vw_region_centroid AS
 SELECT a.gid as gid, ST_CENTROID(a.the_geom) as the_geom
   FROM region a
     WHERE a.name = 'Saskatchewan';
SELECT ST_PERIMETER(a.the_geom)
 FROM region a
   WHERE a.name='Queensland';
SELECT ST_AREA(a.the_geom)
 FROM region a
   WHERE a.name='Queensland';
CREATE VIEW vw_simplify AS
 SELECT gid, ST_Simplify(the_geom, 20) AS the_geom
   FROM road;
CREATE VIEW vw_simplify_more AS
 SELECT gid, ST_Simplify(the_geom, 50) AS the_geom
   FROM road;
CREATE VIEW vw_convex_hull AS
 SELECT
   ROW_NUMBER() over (order by a.name) as id,
    a.name as town,
```

```
ST_CONVEXHULL(ST_COLLECT(a.the_geom)) AS the_geom
FROM building a
GROUP BY a.name;
```

16.4.5 In Conclusion

You have seen how to query spatial objects using the new database functions from PostGIS.

16.4.6 What's Next?

Next we're going to investigate the structures of more complex geometries and how to create them using PostGIS.

16.5 Lesson: Geometry Construction

In this section we are going to delve a little deeper into how simple geometries are constructed in SQL. In reality, you will probably use a GIS like QGIS to create complex geometries using their digitising tools; however, understanding how they are formulated can be handy for writing queries and understanding how the database is assembled.

The goal of this lesson: To better understand how to create spatial entities directly in PostgreSQL/PostGIS.

16.5.1 Creating Linestrings

Going back to our address database, let's get our streets table matching the others; i.e., having a constraint on the geometry, an index and an entry in the geometry_columns table.

16.5.2 Try Yourself

- Modify the streets table so that it has a geometry column of type ST_LineString.
- Don't forget to do the accompanying update to the geometry columns table!
- Also add a constraint to prevent any geometries being added that are not LINESTRINGS or null.
- · Create a spatial index on the new geometry column

Check your results

Now let's insert a linestring into our streets table. In this case we will update an existing street record:

```
update streets set the_geom = 'SRID=4326;LINESTRING(20 -33, 21 -34, 24 -33)' where streets.id=2;
```

Take a look at the results in QGIS. (You may need to right-click on the streets layer in the 'Layers' panel, and choose 'Zoom to layer extent'.)

Now create some more streets entries - some in QGIS and some from the command line.

16.5.3 Creating Polygons

Creating polygons is just as easy. One thing to remember is that by definition, polygons have at least four vertices, with the last and first being co-located:

```
insert into cities (name, the_geom)
values ('Tokyo', 'SRID=4326;POLYGON((10 -10, 5 -32, 30 -27, 10 -10))');
```

Nota: A polygon requires double brackets around its coordinate list; this is to allow you to add complex polygons with multiple unconnected areas. For instance

If you followed this step, you can check what it did by loading the cities dataset into QGIS, opening its attribute table, and selecting the new entry. Note how the two new polygons behave like one polygon.

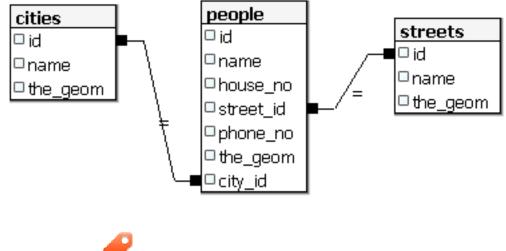
16.5.4 Exercise: Linking Cities to People

For this exercise you should do the following:

- Delete all data from your people table.
- Add a foreign key column to people that references the primary key of the cities table.
- Use QGIS to capture some cities.
- Use SQL to insert some new people records, ensuring that each has an associated street and city.

Your updated people schema should look something like this:

```
\d people
```


```
Table "public.people"
```

```
Column | Type
                            Modifiers
 _____+
 id | integer
                            | not null
        | default nextval('people_id_seq'::regclass)
      | character varying(50) |
 name
                            | not null
 house_no | integer
 street_id | integer
                            | not null
 phone_no | character varying
                            the_geom | geometry
                             | not null
 city_id
        | integer
Indexes:
 "people_pkey" PRIMARY KEY, btree (id)
 "people_name_idx" btree (name)
Check constraints:
 "people_geom_point_chk" CHECK (st_geometrytype(the_geom) =
                 'ST_Point'::text OR the_geom IS NULL)
Foreign-key constraints:
 "people_city_id_fkey" FOREIGN KEY (city_id) REFERENCES cities(id)
 "people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)
```

Check your results

16.5.5 Looking at Our Schema

By now our schema should be looking like this:

Create city boundaries by computing the minimum convex hull of all addresses for that city and computing a buffer around that area.

16.5.7 Access Sub-Objects

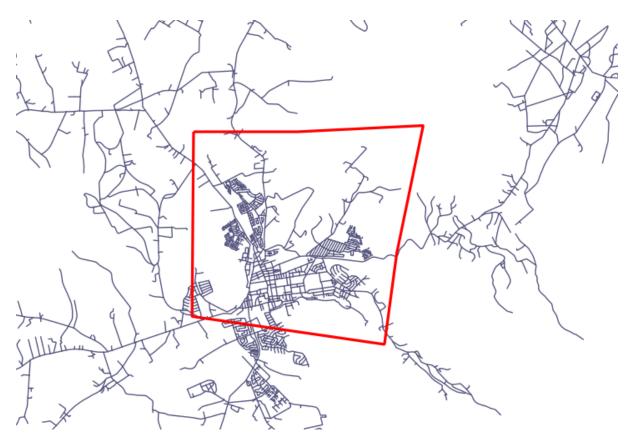
With the SFS-Model functions, you have a wide variety of options to access sub-objects of SFS Geometries. When you want to select the first vertex point of every polygon geometry in the table myPolygonTable, you have to do this in this way:

• Transform the polygon boundary to a linestring:

```
select st_boundary(geometry) from myPolygonTable;
```

• Select the first vertex point of the resultant linestring:

```
select st_startpoint(myGeometry)
from (
    select st_boundary(geometry) as myGeometry
    from myPolygonTable) as foo;
```

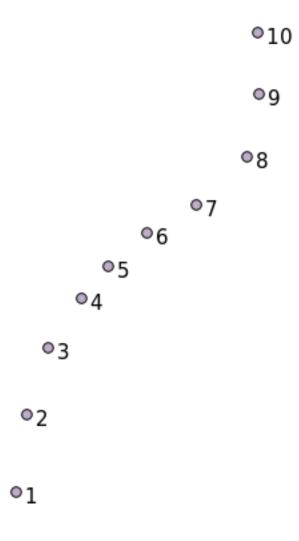

16.5.8 Data Processing

PostGIS supports all OGC SFS/MM standard conform functions. All these functions start with ST_.

16.5.9 Clipping

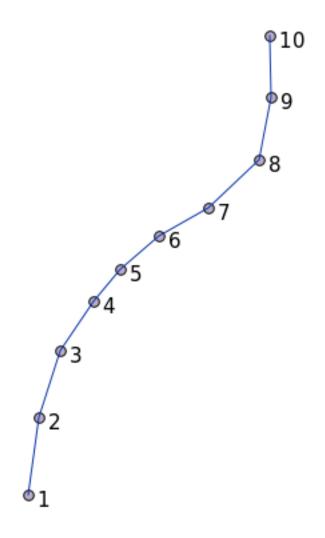
To clip a subpart of your data you can use the ST_INTERSECT () function. To avoid empty geometries, use:

where not st_isempty(st_intersection(a.the_geom, b.the_geom)) $% \left(\left(\left(x_{1}^{2}\right) \right) \right) =\left(\left(x_{1}^{2}\right) \right) \left(\left(x_{1}^{2}\right) \right) \right) \left(\left(x_{1}^{2}\right) \right) \left(\left(x_{1}^{2}\right) \right) \right) =\left(\left(x_{1}^{2}\right) \right) \left(\left(x_{1}^{2}\right) \right) \left(x_{1}^{2}\right) \right) \left(x_{1}^{2}\right) \left$



select st_intersection(a.the_geom, b.the_geom), b.*
from clip as a, road_lines as b
where not st_isempty(st_intersection(st_setsrid(a.the_geom, 32734),
 b.the_geom));

16.5.10 Building Geometries from Other Geometries


From a given point table, you want to generate a linestring. The order of the points is defined by their id. Another ordering method could be a timestamp, such as the one you get when you capture waypoints with a GPS receiver.

To create a linestring from a new point layer called 'points', you can run the following command:

```
select ST_LineFromMultiPoint(st_collect(the_geom)), 1 as id
from (
   select the_geom
   from points
   order by id
) as foo;
```

To see how it works without creating a new layer, you could also run this command on the 'people' layer, although of course it would make little real-world sense to do this.

16.5.11 Geometry Cleaning

You can get more information for this topic in this blog entry.

16.5.12 Differences between tables

To detect the difference between two tables with the same structure, you can use the PostgreSQL keyword EXCEPT:

```
select * from table_a
except
select * from table_b;
```

As the result, you will get all records from table_a which are not stored in table_b.

16.5.13 Tablespaces

You can define where postgres should store its data on disk by creating tablespaces:

CREATE TABLESPACE homespace LOCATION '/home/pg';

When you create a database, you can then specify which tablespace to use e.g.:

createdb --tablespace=homespace t4a

16.5.14 In Conclusion

You've learned how to create more complex geometries using PostGIS statements. Keep in mind that this is mostly to improve your tacit knowledge when working with geo-enabled databases through a GIS frontend. You usually won't need to actually enter these statements manually, but having a general idea of their structure will help you when using a GIS, especially if you encounter errors that would otherwise seem cryptic.

La guida di Processing di QGIS

Questo modulo è stato fornito da Victor Olaya e Paolo Cavallini.

Contenuti:

17.1 Introduzione

Questa guida descrive come usare l'ambiente Processing di QGIS. Non si presuppone precedente conoscenza dell'ambiente di Processing o di qualunque altra applicazione ad esso collegata. Si presuppone una conoscenza di base di QGIS. I capitoli riguardanti lo scripting danno per scontato che tu abbia conoscenze di base di Python e delle API Python di QGIS.

Questa guida è pensata per l'autoapprendimento o per essere utilizzata in un seminario su Processing.

Gli esempi in questa guida utilizzano QGIS 2.0, con aggiornamenti parziali alla 2.10. Possono non funzionare o non essere disponibili per versioni diverse da queste.

Questa guida comprende un insieme di piccoli esercizi a difficoltà crescente. Se non hai mai usato l'ambiente di Processing, dovresti cominciare dall'inizio. Se hai già una qualche esperienza precedente, sentiti libero di saltare alcune lezioni. Esse sono più o meno indipendenti le une dalle altre, e ognuna introduce alcuni concetti nuovi o qualche nuovo elemento, i quali sono indicati nel titolo del capitolo e nella breve introduzione all'inizio di ogni capitolo. Ciò dovrebbe rendere semplice individuare le lezioni che riguardano un particolare argomento.

Per una descrizione sistematica di tutti i componenti dell'ambiente e del loro utilizzo, è fortemente consigliato controllare il capitolo corrispondente nel manuale di QGIS. Usalo come testo di supporto durante questa guida.

Tutti gli esercizi in questa guida usano dati liberamente scaricabili dal sito web di QGIS. Il file zip da scaricare contiene diverse cartelle che corrispondono a ciascuna delle lezioni questa guida. In ognuna di esse troverai un file di progetto di QGIS. Semplicemente, aprilo e sarai pronto per iniziare la lezione.

Buon divertimento!

17.2 An important warning before starting

Just like the manual of a word processor doesn't teach you how to write a novel or a poem, or a CAD tutorial doesn't show you how to calculate the size of a beam for a building, this guide will not teach you spatial analysis. Instead, it will show you how to use the QGIS processing framework, a powerful tool for performing spatial analysis, but it is up to you to learn the required concepts that are needed to understand that type of analysis. Without them, there is no point on using the framework and its algorithms, although you might be tempted to try.

Let's show this more clearly with an example.

Given a set of points and a value of a given variable value at each point, you can calculate a raster layer from them using the *Kriging* geoalgorithm. The parameters dialog for that module is like the following one.

🦞 Ordinary kriging				×
Parameters Log Help				
Points				
points2 [EPSG:23030]			- 2	
Attribute				
POLY_NUM_B			-	
Create Variance Grid				
Yes			-	
Target Grid				
[0] user defined			-	
Variogram Model				
[0] Spherical Model			-	
Block Kriging				
Yes			-	
Block Size				
100			-	
Logarithmic Transformation				
Yes			-	
Nugget				
0.0				
Sill				
10.0				
Range				
100.0				
Linear Regression				
1.0				
Exponential Regression				
0.1				
Power Function - A				
1				
0%				
	Run	Close	Cano	el

It look complex, right?

By reading this manual, you will learn things such as how to use that module, how to run it in a batch process to create raster layers from hundreds of points layers in a single run, or what happens if the input layer has some points selected. However, the parameters themselves are not explained. A seasoned analyst with a good knowledge of geostatistics will have no problem understanding those parameters. If you are not one of them and *sill, range*, or *nugget* are not familiar concepts to you, then you should not use the *Kriging* module. More than that, you are far from being ready to use the *Kriging* module, since it requires learning about concepts such as spatial autocorrelation or semivariograms, which probably you also haven't heard before, or at least haven't studied long enough. You should first study and understand them, and then come back to QGIS to actually run it and perform the analysis. Ignoring this will result in wrong results and poor (and most likely useless) analysis.

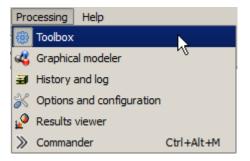
Although not all algorithms are as complex as kriging (but some of them are even more complex!), almost all of them require understanding the fundamental analysis ideas that they are based on. Without that knowledge, using them will most likely lead to poor results.

Using geoalgorithms without having a good foundation of spatial analysis is like trying to write a novel without

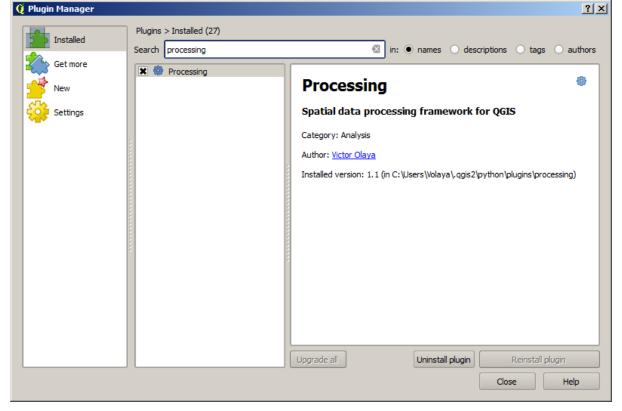
knowing anything about grammar or syntax, and having no knowledge about storytelling. You might get a result, but it is likely to have no value at all. Please, don't fool yourself and think that after reading this guide you are already capable of performing spatial analysis and get sound results. You need to study spatial analysis as well.

Here is a good reference that you can read to learn more about spatial data analysis.

Geospatial Analysis (3rd Edition): A Comprehensive Guide to Principles, Techniques and Software Tools Michael John De Smith, Michael F. Goodchild, Paul A. Longley


It is available online here

17.3 Setting-up the processing framework


The first thing to do before using the processing framework is to configure it. There is not much to set-up, so this is an easy task.

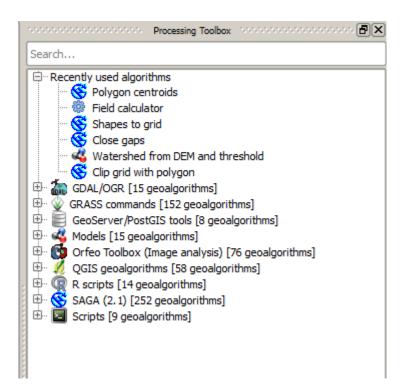
Later on we will show how to configure the external applications that are used for extending the list of available algorithms, but for now we are just going to work with the framework itself.

The processing framework is a core QGIS plugin, which means that, if you are running QGIS 2.0 or later, it should already be installed in your system, since it is included with QGIS. In case it is active, you should see a menu called *Processing* in your menu bar. There you will find an access to all the framework components.

If you cannot find that menu, you have to enable the plugin by going to the plugin manager and activating it.

The main element that we are going to work with is the toolbox. Click on the corresponding menu entry and you will see the toolbox docked at the right side of the QGIS window.

	$\mathbb{P}(\mathbf{X})$
Search.	
	 cently used algorithms Polygon centroids Field calculator Rasterize vector layer Close gaps Watershed from DEM and threshold Clip grid with polygon Geoalgorithms Domain specific Images Raster Raster - vector Vector Models Scripts

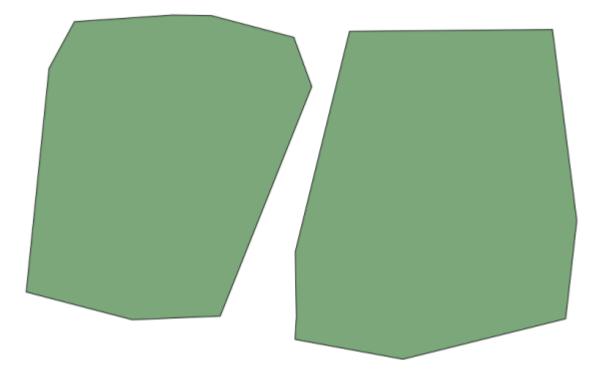

The toolbox contains a list of all the available algorithms, divided in groups. There are two ways of displaying and organizing those algorithms: the *Advanced interface* and the *Simplified interface*.

By default, you will see the simplified mode, which groups algorithms according to the kind of operation they perform. Although some of the algorithms that you will see in the toolbox depend on other external applications (most of them do, in fact), you will not see any mention to those applications. The origin of algorithms is hidden in this mode, which is a facade that simplifies using algorithms through the processing framework.

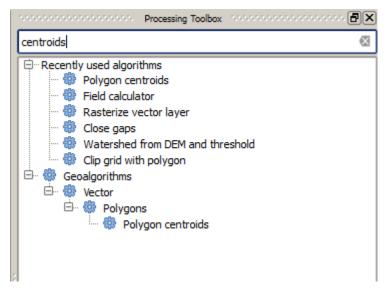
First examples in this guide only use the simplified mode. The advanced mode has some additional features and algorithms, but it requires understanding the applications that are called, so they are a more advanced topic, and will be explained later on.

You can change between the simplified and the advanced interface by using the selector on the bottom part of the toolbox.

The toolbox box, when using the advanced mode, looks like this.


If you have reached this point, now you are ready to use geoalgorithms. There is no need to configure anything else by now. We can already run our first algorithm, which we will do in the next lesson.

17.4 Running our first algorithm. The toolbox


Nota: In this lesson we will run our first algorithm, and get our first result from it.

As we have already mentioned, the processing framework can run algorithms from other applications, but it also contains native algorithms that need no external software to be run. To start exploring the processing framework, we are going to run one of those native algorithms. In particular, we are going to calculate the centroids of set of polygons.

First, open the QGIS project corresponding to this lesson. It contains just a single layer with two polygons

Now go to the text box at the top of the toolbox. That is the search box, and if you type text in it, it will filter the list of algorithms so just those ones contaning the entered text are shown. Type centroids and you should see something like this.

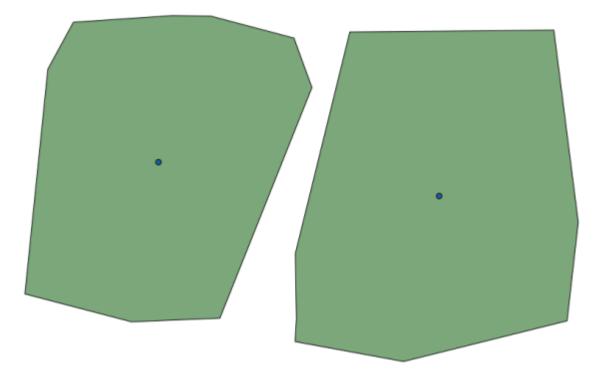
The search box is a very practical way of finding the algorithm you are looking for.

To execute an algorithm, you just have to double-click on its name in the toolbox. When you double-click on the *Centroids* algorithm, you will see the following dialog.

👰 Polygon centroids			×
Parameters Log Help			
Input layer			
polygons [EPSG:23030]			
Output layer			
[Save to temporary file]			
Open output file after running algorithm			
0%			
	Run	Close	Cancel

All algorithms have a similar interface, which basically contains input parameters that you have to fill, and outputs that you have to select where to store. In this case, the only input we have is a vector layer with polygons.

Select the *Polygons* layer as input. The algorithm has a single output, which is the centroids layer. There are two options to define where a data output is saved: enter a filepath or save it to a temporary filename


In case you want to set a destination and not save the result in a temporary file, the format of the output is defined by the filename extension. To select a format, just select the corresponding file extension (or add it if you are directly typing the filepath instead). If the extension of the filepath you entered does not match any of the supported ones, a default extension (usually .dbf for tables, .tif for raster layers and .shp for vector ones) will be appended to the filepath and the file format corresponding to that extension will be used to save the layer or table.

In all the exercises in this guide, we will be saving results to a temporary file, since there is no need to save them for a later use. Feel free to save them to a permament location if you want to.

Avvertimento: Temporary files are deleted once you close QGIS. If you create a project with an output that was saved as a temporary output, QGIS will complain when you try to open back the project later, since that output file will not exist.

Once you have configured the algorithm dialog, press Run to run the algorithm.

You will get the following output.

The output has the same CRS as the input. Geoalgorithms assumes all input layers share the same CRS and do not perform any reprojection. Except in the case of some special algorithms (for instance, reprojection ones), the outputs will also have that same CRS. We will see more about this soon.

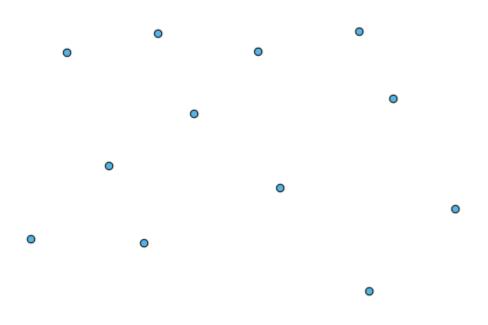
Try yourself saving it using different file formats (use, for instance, shp and geojson as extensions). Also, if you do not want the layer to be loaded in QGIS after it is generated, you can check off the check box that is found below the output path box.

17.5 More algorithms and data types

Nota: In this lesson we will run three more algorithms, learn how to use other input types, and configure outputs to be saved to a given folder automatically.

For this lessons we will need a table and a polygons layer. We are going to create a points layer based on coordinates in the table, and then count the number of points in each polygon. If you open the QGIS project corresponding to this lesson, you will find a table with X and Y coordinates, but you will find no polygons layer. Don't worry, we will create it using a processing geoalgorithm.

The first thing we are going to do is to create a points layer from the coordinates in the table, using the *Points layer from table* algorithm. You now know how to use the search box, so it should not be hard for you to find it. Double–click on it to run it and get to its following dialog.


This algorithm, like the one from the previous lesson, just generates a single output, and it has three inputs:

- Table: the table with the coordinates. You should select here the table from the lesson data.
- *X and Y fields*: these two parameters are linked to the first one. The corresponding selector will show the name of those fields that are available in the selected table. Select the *XCOORD* field for the *X* parameter, and the *YYCOORD* field for the *Y* parameter.
- *CRS*: Since this algorithm takes no input layers, it cannot assign a CRS to the output layer based on them. Instead, it asks you to manually select the CRS that the coordinates in the table use. Click on the button on the left–hand side to open the QGIS CRS selector, and select EPSG:4326 as the output CRS. We are using this CRS because the coordinates in the table are in that CRS.

Your dialog should look like this.

😲 Points layer from table	×
Parameters Log Help	
Input layer table X field XCOORD Y field YCOORD Target CRS	 ▼ ▼ ▼
EPSG:4326 Output layer	
[Save to temporary file]	
Open output file after running algorithm	
0%	
	Run Close Cancel

Now press the *Run* button to get the following layer (you may need to zoom full to reenter the map around the newly created points):

The next thing we need is the polygon layer. We are going to create a regular grid of polygons using the *Create grid* algorithm, which has the following parameters dialog.

🦸 Create grid					×
Parameters Log Help					
Horizontal spacing					
10.0					
Vertical spacing					
10.0					
Width					
360.0					
Height					
180.0					
Center X					
0.0					
Center Y					
0.0					
Grid type					
Rectangle (line)				•	
CRS					
EPSG:4326					
Output					
[Save to temporary file]					
Open output file after running algorithm					
	0%				
		Run	Close	e Car	icel

Avvertimento: The options are simpler in recent versions of QGIS; you just need to enter min and max for X and Y (suggested values: -5.696226, -5.695122, 40.24742, 40.248171)

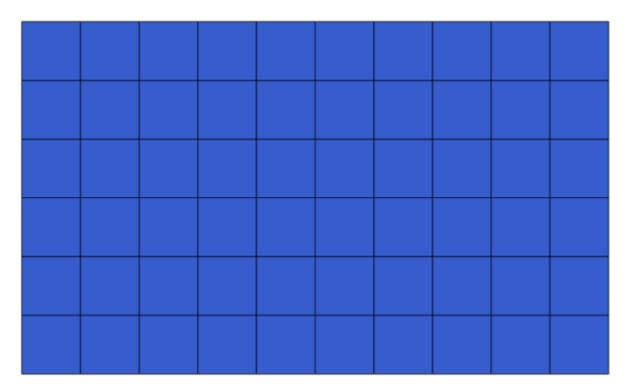
The inputs required to create the grid are all numbers. When you have to enter a numerical value, you have two options: typing it directly on the corresponding box or clicking the button on the right-hand side to get to a dialog like the one shown next.

😧 Enter number or expression	? ×
Enter expression in the text field. Double click on elements in the tree to add their values to the expression.	
 Image: Walues from data layers extents Image: Walues from QGIS map canvas 	
[Enter your formula here]	
ОК	Cancel

The dialog contains a simple calculator, so you can type expressions such as $11 \times 34.7 + 4.6$, and the result will be computed and put in the corresponding text box in the parameters dialog. Also, it contains constants that you can use, and values from other layers available.

In this case, we want to create a grid that covers the extent of the input points layer, so we should use its coordinates to calculate the center coordinate of the grid and its width and height, since those are the parameters that the algorithm takes to create the grid. With a little bit of math, try to do that yourself using the calculator dialog and the constants from the input points layer.

Select Rectangles (polygons) in the Type field.


As in the case of the last algorithm, we have to enter the CRS here as well. Select EPSG:4326 as the target CRS, as we did before.

In the end, you should have a parameters dialog like this:

😲 Create grid		×
Parameters Log Help		
Horizontal spacing		
0.0001		
Vertical spacing		
0.0001		
Width		
0.000904]	
Height		
0.000551		
Center X		
-5.695674		
Center Y		
40.2477955]	
Grid type		
Rectangle (polygon)	•	
CRS		
EPSG:4326		
Output		
[Save to temporary file]		
Copen output file after running algorithm		
0%		
Run Close	Cancel	

(Better add one spacing on the width and height: Horizontal spacing: 0.0001, Vertical spacing: 0.0001, Width: 0.001004, Height: 0.000651, Center X: -5.695674, Center Y: 40.2477955) The case of X center is a bit tricky, see: -5.696126+((-5.695222+ 5.696126)/2)

Press Run and you will get the graticule layer.

The last step is to count the points in each one of the rectangles of that graticule. We will use the *Count points in polygons* algorithm.

🦞 Count points in polygon			×
Parameters Log Help			
Polygons			
polygons [EPSG:4326]		▼	
Points			
points [EPSG:4326]		· · · · · · · · · · · · · · · · · · ·	
Count field name			
NUMPOINTS			
Result			
[Save to temporary file]			
Copen output file after running algorithm			
0%			
	Run	Close	Cancel

Now we have the result we were looking for.

Before finishing this lesson, here is a quick tip to make your life easier in case you want to persistently save your data. If you want all your output files to be saved in a given folder, you do not have to type the folder name each time. Instead, go to the processing menu and select the *Options and configuration* item. It will open the

configuration dialog.

🦞 SEXTANTE options		? ×
l		
Setting	Value	
terrent de la contral de la contra de la co		
🗄 🕰 Models		
Providers Scripts		
🗄 ·· 🔽 Scripts		
	ОК	Cancel

In the Output folder entry that you will find in the General group, type the path to your destination folder.

Q Processing options		?×
Setting	alue	
🛱 🏶 General		
🛛 🏶 Keep dialog open after running an algorithm 🛛 🗶	8	
	:\processing_output	
Post-execution script		
Pre-execution script		
🗝 🏶 Run algorithms in a new thread 🛛 🗶		
👾 🏶 Show extra info in Log panel (threaded execution only) 🛛 🗶		
🐨 🏶 Show layer CRS definition in selection boxes 🛛 🕱		
Show recently executed algorithms		
🐨 🏶 Show table-like parameter panels		
🐨 🏶 Style for line layers		
🖤 🏶 Style for point layers		
🐨 🏶 Style for polygon layers		
🐨 🏶 Style for raster layers		
🐨 🏶 Use filename as layer name		
🐨 🏶 Use only selected features 🛛 🗶	8	
👾 🏶 Warn before executing if layer CRS's do not match 🛛 🗶	6	
🗄 🗄 🥰 Models		
🗄 🖷 👾 Providers		
🗄 🗠 🔽 Scripts		
	ОК	Cancel

Now when you run an algorithm, just use the filename instead of the full path. For instance, with the configuration shown above, if you enter graticule.shp as the output path for the algorithm that we have just used, the result will be saved in D:\processing_output\graticule.shp. You can still enter a full path in case you want a result to be saved in a different folder.

Try yourself the Create grid algorithm with different grid sizes, and also with different types of grids.

17.6 CRS. Riproiezione

Nota: In questa lezione parleremo di come Processing tratta i CRS. Vedremo anche algoritmo molto utile: riproiezione.

I CRS sono una grande fonte di confusione per gli utenti di QGIS Processing, per cui ecco alcune regole generali su come sono maneggiati dai geoalgoritmi quando si crea un nuovo vettore.

• Se ci sono vettori in ingresso, sarà utilizzato il CRS del primo vettore. Si presuppone che tale CRS sia quello di tutti i vettori in ingresso, siccome dovrebbe essere lo stesso per tutti. Se utilizzi vettori con CRS che non corrispondono, QGIS te lo notificherà. Nota che il CRS dei vettori in ingresso è mostrato insieme al suo nome nella finestra di dialogo dei parametri.

Elevation
raster [EPSG:23030]

• Se non ci sono vettori in ingresso, sarà utilizzato il CRS del progetto, a meno che l'algoritmo contenga uno specifico campo per il CRS (come è successo nell'ultima lezione con l'algoritmo del reticolo)

Apri il progetto corrispondente a questa lezione: noterai due vettori denominati 23030 e 4326. Entrambi contengono gli stessi punti, ma in CRS differenti (EPSG:23030 e EPSG:4326). Essi appaiono nella stessa posizione perché QGIS sta riproiettando al volo nel CRS del progetto (EPSG:4326), ma in realtà non rappresentano lo stesso vettore.

Apri l'algoritmo Esporta/Aggiungi colonne geometriche.

Export/Add geometry columns			×
Parameters Log Help			
Input layer			
4326 [EPSG:4326]		· 🤉	ן
Calculate using			
Layer CRS		-	-
Output layer			
[Save to temporary file]			1
0%			
	Run	Close Cano	el

Questo algoritmo aggiunge nuove colonne alla tabella degli attributi di un vettore. Il contenuto delle colonne dipende dal tipo di geometria del vettore. Nel caso di punti, aggiunge nuove colonne con le coordinate X e Y di ogni punto.

Nella lista dei vettori disponibili che troverai nel campo del vettore in ingresso, vedrai ognuno di essi con il CRS corrispondente. Ciò significa che, sebbene appaiano nella stessa posizione sulla mappa, saranno trattati diversamente. Selezione il vettore 4326.

L'altro parametro dell'algoritmo permette di definire come l'algoritmo utilizza le coordinate per calcolare il nuovo valore che sarà aggiunto al vettore risultante. La maggior parte degli algoritmi non ha un'opzione simile, e usa direttamente le coordinate. Seleziona l'opzione *CRS del vettore* per usare le coordinate così come sono. Questo è il modo con cui funzionano quasi tutti gli algoritmi.

Dovresti ottenere un nuovo vettore con gli stessi identici punti degli altri due vettori. Se fai click con il tasto destro sul nome del vettore e apri le sue proprietà, vedrai che ha lo stesso CRS del vettore in ingresso, che è EPSG:4326. Quando il vettore è caricato all'interno di QGIS, non ti sarà chiesto di inserire il CRS del vettore poiché QGIS già lo conosce.

Se apri la tabella degli attributi del nuovo vettore, vedrai che conterrà due nuovi campi con le coordinate X e Y di ogni punto.

	D 🗸	PT_NUM_A	PT_ST_A	xcoord	ycoord
0	1	1.100000	a	-5.695426	40.248071
1	2	2.200000	b	-5.695885	40.247622
2	3	3.300000	c	-5.695406	40.247520
3	4	4.400000	a	-5.695222	40.247694
4	5	5.500000	b	-5.695642	40.248030
5	6	6.600000	a	-5.695855	40.248067
6	7	7.700000	b	-5.696049	40.248028
7	8	8.800000	c	-5.696126	40.247629
8	9	9.900000	a	-5.695961	40.247786
9	10	11.000000	b	-5.695353	40.247929
10	11	12.100000	a	-5.695595	40.247739
11	12	13.200000	b	-5.695779	40.247896

Questi valori di coordinata sono fornite nel CRS del vettore, poiché è quello che abbiamo scelto. Comunque, anche se avessi scelto un'altra opzione, il CRS in uscita sarebbe stato lo stesso poiché il CRS in ingresso è utilizzato per stabilire quello del vettore in uscita. La scelta di un altra opzione avrebbe generato valori diversi, ma non la modifica del punto risultato o un diverso CRS del vettore in uscita rispetto a quello in ingresso.

Ora esegui la stessa operazione utilizzando l'altro vettore. Dovresti trovare il vettore risultante rappresentato esattamente nella stessa posizione degli altri, e avrà l'EPSG:23030 come CRS, poiché era questo quello del vettore in ingresso.

	D 🗸	PT_NUM_A	PT_ST_A	xcoord	ycoord
0	1	1.100000	a	270839.655869	4458983.162670
1	2	2.200000	b	270799.116425	4458934.552874
2	3	3.300000	c	270839.468187	4458921.978139
3	4	4.400000	a	270855.745301	4458940.799487
4	5	5.500000	b	270821.164389	4458979.173980
5	6	6.600000	a	270803.157564	4458983.848803
6	7	7.700000	b	270786.542791	4458980.047841
7	8	8.800000	c	270778.601980	4458935.968837
8	9	9.900000	a	270793.142411	4458952.931700
9	10	11.000000	b	270845.414756	4458967.311298
10	11	12.100000	a	270824.166376	4458946.784250
11	12	13.200000	b	270809.035643	4458964.649799

Se vai alla sua tabella degli attributi, vedrai valori diversi rispetto a quelli nel primo vettore che abbiamo creato.

Ciò perché i dati originali sono diversi (usano un CRS diverso), e le coordinate sono ricavate da essi.

Cosa dovresti imparare da questo? L'idea principale dietro questi esempi è che i geoalgoritmi usano il vettore così come si trova nella sua fonte originale dei dati, e ignorano completamente le riproiezioni che QGIS potrebbe fare prima di rappresentarli. In altre parole, non fidarti di quello che vedi nella mappa, ma tieni sempre in mente che saranno utilizzati i dati originali. Ciò non è così importante in questo caso poiché stiamo utilizzando un solo vettore per volta, ma in un algoritmo che ne utilizza di diversi (come un algoritmo di ritaglio), i vettori che sembrano combaciare o sovrapporsi possono essere molto lontani tra loro poiché possono avere CRS differenti.

Gli algoritmi non eseguono la riproiezione (tranne l'algoritmo di riproiezione che vedremo dopo), per cui devi essere tu ad assicurarti che i vettori abbiano lo stesso CRS.

Un modulo interessante che ha a che fare con i CRS è quello di riproiezione. Esso rappresenta un caso particolare poiché ha un vettore in ingresso (quello da riproiettare), ma non utilizza il suo CRS per quello in uscita.

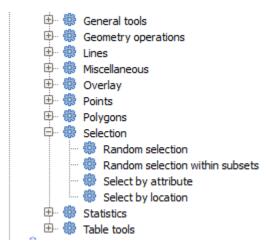
Apri l'algoritmo Riproietta vettore.

Reproject layer					
Parameters Log Help					
Input layer					
23030 [EPSG:23030]					
Target CRS					
EPSG:4326					
Reprojected layer					
[Save to temporary file]					
0%					
	Run	Close	Cancel		

Seleziona in ingresso un qualunque vettore, e seleziona EPSG:23029 come CRS di destinazione. Eseguendo l'algoritmo otterrai un nuovo vettore, identico a quello in ingresso, ma con un CRS diverso. Apparirà nella stessa regione della mappa, come gli altri, poiché QGIS lo riproietterà al volo, ma le sue coordinate di partenza sono diverse. Puoi notare ciò eseguendo l'algoritmo *Esporta/Aggiungi colonne geometriche* usando questo nuovo vettore in ingresso, e verificando che le coordinate aggiunte siano diverse rispetto a quelle nella tabella degli attributi di entrambi i vettori che abbiamo elaborato prima.

17.7 Selection

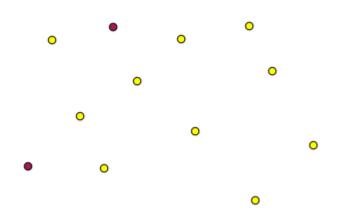
Nota: In this lesson we will see how processing algorithms handle selections in vector layers that are used as inputs, and how to create a selection using a particular type of algorithm.


Unlike other analysis plugins in QGIS, you will not find in processing geoalgorithms any "Use only selected features" checkbox or similar. The behaviour regarding selection is set for the whole plugin and all its algorithms, and not for each algorithm execution. Algorithms follow the following simple rules when using a vector layer.

- If the layer has a selection, only selected features are used.
- If there is no selection, all features are used.

Please note that you can change this behaviour by unselecting the relevant option in the *Processing* \rightarrow *Options* \rightarrow *General* menu.

You can test that yourself by selecting a few points in any of the layers that we used in the last chapter, and running the reprojection algorithm on them. The reprojected layer that you will obtain will contain only those points that were selected, unless there was no selection, which will cause the resulting layer to contain all points from the original layer.


To make a selection, you can use any of the available methods and tools in QGIS. However, you can also use a geoalgorithm to do so. Algorithms for creating a selection are found in the toolbox under *Vector/Selection*

Open the Random selection algorithm.

🦸 Random selection	×
Parameters Log Help	
Input layer	
23030 [EPSG:23030] 🔊	
Method	
Number of selected features	
Number/percentage of selected features	
10	
0%	
Run Close Cancel	

Leaving the default values, it will select 10 points from the current layer.

You will notice that this algorithm does not produce any output, but modifies the input layer (not the layer itself, but its selection). This is an uncommon behaviour, since all the other algorithms will produce new layers and not alter the input layers.

Since the selection is not part of the data itself, but something that only exist within QGIS, these selection algorithms only must be used selecting a layer that is open in QGIS, and not with the file selection option that you can find in the corresponding parameter value box.

The selection we have just made, like most of the ones created by the rest of the selection algorithms, can also be done manually from QGIS, so you might be wondering what is the point on using an algorithm for that. Although now this might not make much sense to you, we will later see how to create models and scripts. If you want to make a selection in the middle of a model (which defines a processing workflow), only a geoalgorithm can be added to a model, and other QGIS elements and operations cannot be added. That is the reason why some processing algorithms duplicate functionality that is also available in other QGIS elements.

By now, just remember that selections can be made using processing geoalgorithms, and that algorithms will only use the selected features if a selection exists, or all features otherwise.

17.8 Running an external algorithm

Nota: In this lesson we will see how to use algorithms that depend on a third-party application, particularly SAGA, which is one of the main algorithm providers.

All the algorithms that we have run so far are part of processing framework. That is, they are *native* algorithms implemented in the plugin and run by QGIS just like the plugin itself is run. However, one of the greatest features of the processing framework is that it can use algorithms from external applications and extend the possibilites of those applications. Such algorithms are wrapped and included in the toolbox, so you can easily use them from QGIS, and use QGIS data to run them.

Some of the algorithms that you see in the simplified view require third party applications to be installed in your system. One algorithm provider of special interest is SAGA (System for Automated Geospatial Analysis). First, we need to configure everything so QGIS can correctly call SAGA. This is not difficult, but it's important to understand how it works. Each external application has its own configuration, and later in this same manual we will talk about some of the other ones, but SAGA is going to be our main backend, so we will discuss it here.

If you are on Windows, the best way to work with external algorithms is to install QGIS using the standalone installer. It will take care of installing all the needed dependencies, including SAGA, so if you have used it, there is nothing else to do. You can open the settings dialog and go to the *Providers/SAGA* group.

Processing options		?
earch		
etting	Value	
🕮 🦞 Providers		
🗄 🖞 👸 GDAL/OGR		
🖽 🖤 🖉 GRASS commands		
🗄 🖷 🧮 GeoServer/PostGIS tools		
🗄 🖷 🗳 Modeler-only tools		
🗄 🗑 Orfeo Toolbox (Image analysis)		
🗄 🛛 🕺 QGIS geoalgorithms		
🗄 🖳 🔞 R scripts		
🖻 🔆 SAGA (2.1)		
🛛 🚫 Activate	×	
🔆 Enable SAGA 2.0.8 compatibility		
🗝 🌀 Log console output	×	
🚫 Log execution commands	×	
🔤 😴 Resampling region cellsize	1.0	
🚫 Resampling region max x	1000.0	
🚫 Resampling region max y	1000.0	
🔆 Resampling region min x	0.0	
🚫 Resampling region min y	0.0	
- SAGA folder	C:\saga21	
🔄 🔆 Use min covering grid system for resampling	×	
🗄 🖓 TauDEM (hydrologic analysis)		
🗄 💥 Tools for LiDAR data		
🔁 Scripts		
		OK Cancel

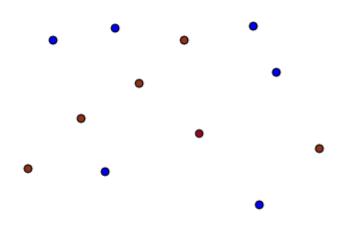
The SAGA path should already be configured and pointing to the folder where SAGA is installed.

If you have installed QGIS not using the standalone installer, then you must enter the path to your SAGA installation (which you must have installed separately) there. The required version is SAGA 2.1 [this is changing according to the releases of SAGA].

In case you are using Linux, you do not have to set the path to your SAGA installation in the processing configuration. Instead, you must install SAGA and make sure that the SAGA folder is in PATH, so it can be called from the console (just open a console and type saga_cmd to check it). Under Linux, the target version for SAGA is also 2.1, but in some installations (such as the OSGeo Live DVD) you might have just 2.0.8 available. There are some 2.1 packages available, but they are not commonly installed and might have some issues, so if you prefer to use the more common and stable 2.0.8, you can do it by enabling 2.0.8 compatibility in the configuration dialog, under the *SAGA* group.

Processing options			?)
Setting	Value		4
🖹 🖷 🏶 Providers			
🗄 🖓 GDAL/OGR			
🗄 🐨 👻 GRASS commands			
🗄 📰 📰 GeoServer/PostGIS tools			
🗄 🥰 Modeler-only tools			
🗄 🔯 Orfeo Toolbox (Image analysis)			
🗄 🧏 QGIS geoalgorithms			
🗄 🖳 🧖 R scripts			
🗆 🚫 SAGA (2.1)			
- 🚫 Activate	×		
Enable SAGA 2.0.8 compatibility			
😳 🌀 Log console output			
🚫 Log execution commands	×		
😳 🚫 Resampling region cellsize	1.0		
🔤 🚫 Resampling region max x	1000.0		
😳 🚫 Resampling region max y	1000.0		
🚫 Resampling region min x	0.0		
🔤 🚫 Resampling region min y	0.0		
🚫 SAGA folder	C:\saga21		
🔄 🌀 Use min covering grid system for resampling	×		
🗄 🛛 🔽 TauDEM (hydrologic analysis)			
🗄 🔀 Tools for LiDAR data			
🕮 Scripts			l l
		ОК	Cancel

Once SAGA is installed, you can launch a SAGA algorithm double clicking on its name, as with any other algorithm. Since we are using the simplified interface, you do not know which algorithms are based on SAGA or in another external application, but if you happen to double–click on one of them and the corresponding application is not installed, you will see something like this.


C	Missing dependency	×
	Missing dependency.This algorithm cannot be run :-(]
	This algorithm requires SAGA to be run.Unfortunately, it seems that SAGA is not installed in your system, or it is not correctly configured to be used from QGIS	
	Click here to know more about how to install and configure SAGA to be used with QGIS	
		J
	Close	J

In our case, and assuming that SAGA is correctly installed and configured, you should not see this window, and you will get to the parameters dialog instead.

Let's try with a SAGA-based algorithm, the one called *Split shapes layer randomly*.

🦞 Split shapes layer randomly			×
Parameters Log Help			
Shapes			
points [EPSG:4326]			
Relation B / A			
50			
Group A			
[Save to temporary file]			
X Open output file after running algorithm			
Group B			
[Save to temporary file]			
X Open output file after running algorithm			
0%			
	Run	Close	Cancel

Use the points layer in the project corresponding to this lesson as input, and the default parameter values, and you will get something like this (the split is random, so your result might be different).

The input layer has been split in two layers, each one with the same number of points. This result has been computed by SAGA, and later taken by QGIS and added to the QGIS project.

If all goes fine, you will not notice any difference between this SAGA–based algorithm and one of the others that we have previously run. However, SAGA might, for some reason, not be able to produce a result and not generate the file that QGIS is expecting. In that case, there will be problems adding the result to the QGIS project, and an error message like this will be shown.

£	Problem loading output layers	×
	Oooops! The following output layers could not be open	٦
	•Graticule: C: \Users\Volaya\AppData\Local\Temp\processing\0e1f1f410f894225bf59bdf72d187c4 2\GRATICULE.shp	:
	The above files could not be opened, which probably indicates that they were not correctly produced by the executed algorithm	
	Checking the log information might help you see why those layers were not created as expected	
	This algorithm requires SAGA to be run. A test to check if SAGA is correctly installed and configured in your system has been performed, with the following result:	
	SAGA seems to be correctly installed and configured	
	Close	

This kind of problems might happen, even if SAGA (or any other application that we are calling from the processing framework) is correctly installed, and it is important to know how to deal with them. Let's produce one of those error messages.

Open the Create graticule algorithm and use the following values.

Extent [Not selected]	 	 🦻
Output extent(xmin, xmax, ymin, ymax)		
0,1,0,1		
Division Width		
2		
Division Height		
2		
Туре		
[0] Lines	 	 -
Graticule		
[Save to temporary file]		
Open output file after running algorithm		

We are using width and height values that is larger than the specified extent, so SAGA cannot produce any output.

In other words, the parameter values are wrong, but they are not checked until SAGA gets them and tries to create the graticule. Since it cannot create it, it will not produce the expected layer, and you will see the error message shown above.

Nota: In SAGA >= 2.2.3, the command will adjust automatically wrong input data, so you'll not get an error. To provoke an error, use negative values for division.

Understanding this kind of problems will help you solve them and find an explanation to what is happening. As you can see in the error message, a test is performed to check that the connection with SAGA is working correctly, indicating you that there might be a problem in how the algorithm was executed. This applies not only to SAGA, but also to other external applications as well.

In the next lesson we will introduce the processing log, where information about commands run by geoalgorithms is kept, and you will see how to get more detail when issues like this appear.

17.9 Il log di processing

Nota: Questa lezione descrive il log di processing.

All the analysis performed with the processing framework is logged in QGIS logging system. This allows you to know more about what has been done with the processing tools, to solve problems when they happen, and also to re–run previous operations, since the logging system also implements some interactivity.

To open the log, click on the balloon at the bottom right, on the QGIS status bar. Some algorithms might leave here information about their execution. For instance, those algorithms that call an external application usually log the console output of that application to this entry. If you have a look at it, you will see that the output of the SAGA algorithm that we just run (and that fail to execute because input data was not correct) is stored here.

This is helpful to understand what is going on. Advanced users will be able to analyze that output to find out why the algorithm failed. If you are not an advanced user, this will be useful for others to help you diagnose the problem you are having, which might be a problem in the installation of the external software or an issue with the data you provided.

Even if the algorithm could be executed, some algorithms might leave warnings in case the result might not be right. For instance, when executing an interpolation algorithm with a very small amount of points, the algorithm can run and will produce a result, but it is likely that it will not be correct, since more points should be used. It's a good idea to regularly check for this type of warnings if you are not sure about some aspect of a given algorithm.

From the *Processing* menu, under the *History* section, you'll find *Algorithms*. All algorithms that are executed, even if they are executed from the GUI and not from the console (which will be explained later in this manual) are stored in this section as a console call. That means that everytime you run an algorithm, a console command is added to the log, and you have the full history of your working session. Here is how that history looks like:

🦞 History and log
 INFO WARNING ALGORITHM Sun Aug 25 2013 13:22:20] processing.runalg("saga:splitshapeslayerrandomly", "C:\\User Sun Aug 25 2013 13:22:11] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:21:41] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:16:36] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:16:20] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:16:20] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:16:20] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:16:10] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:13:16] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:13:16] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 13:12:48] processing.runalg("saga:splitshapeslayerrandomly", "D:\\gith Sun Aug 25 2013 11:46:19] processing.runalg("saga:clipgridwithpolygon", "C:\\Users\\Volay Sun Aug 25 2013 11:46:19] processing.runalg("saga:clipgridwithpolygon", "C:\\Users\\Volay Sun Aug 25 2013 11:43:51] processing.runalg("saga:clipgridwithpolygon", "C:\Users\\Volaya\\App Sun Aug 25 2013 11:43:51] processing.runalg("saga:clipgridwithpolygon", "C:\Users\\Volaya\\App Sun Aug 25 2013 11:43:51] processing.runalg("saga:clipgridwithpolygon", "C:\Users\\Volaya\\App
processing.runalg("saga:splitshapeslayerrandomly","D:\\github\\sextante- manual\\data\\first_saga_alg\\points.shp",50,None,None)
Clear Close

This can be very useful when starting working with the console, to learn about the syntax of algorithms. We will use it when we discuss how to run analysis commands from the console.

The history is also interactive, and you can re–run any previous algorithm just by double–clicking on its entry. This is an easy way of replicating the work we already did before.

For instance, try the following. Open the data corresponding to the first chapter of this manual and run the algorithm explained there. Now go to the log dialog and locate the last algorithm in the list, which corresponds to the algorithm you have just run. Double–click on it an a new result should be produced, just like when you run it using the normal dialog and calling it from the toolbox.

You can also modify the algorithm. Just copy it, open the *Plugins* \rightarrow *Python console*, click on *Import class* \rightarrow *Import Processing class*, then paste it to re-run the analysis; change the text at will. To display the resulting file, type iface.addVectorLayer('/path/filename.shp', 'Layer name in legend', 'ogr'). Otherwise, you can use processing.runandload.

17.10 The raster calculator. No-data values

Nota: In this lesson we will see how to use the raster calculator to perform some operations on raster layers. We will also explain what are no-data values and how the calculator and other algorithms deal with them

The raster calculator is one of the most powerful algorithms that you will find. It's a very flexible and versatile algorithm that can be used for many different calculations, and one that will soon become an important part of your toolbox.

In this lesson we will be performing some calculation with the raster calculator, most of them rather simple. This will let us see how it is used and how it deals with some particular situations that it might find. Understanding that is important to later get the expected results when using the calculator, and also to understand certain techniques that are commonly applied with it.

Open the QGIS project corresponding to this lesson and you will see that it contains several raster layers.

Now open the toolbox and open the dialog corresponding to the raster calculator.

Raster calculator			×				
Parameters Log Help							
Raster layers							
	0 elements selected						
Formula							
Result							
[Save to temporary file]							
0%	Pup	Close	Cancel				
	Run	Close	Cancel				

Nota: The interface is different in recent versions.

The dialog contains 2 parameters.

- The layers to use for the analysis. This is a multiple input, that meaning that you can select as many layers as you want. Click on the button on the right-hand side and then select the layers that you want to use in the dialog that will appear.
- The formula to apply. The formula uses the layers selected in the above parameter, which are named using alphabet letters (a, b, c...) or g1, g2, g3... as variable names. That is, the formula a + 2 * b is the same as g1 + 2 * g2 and will compute the sum of the value in the first layer plus two times the value in the second layer. The ordering of the layers is the same ordering that you see in the selection dialog.

Avvertimento: The calculator is case sensitive.

To start with, we will change the units of the DEM from meters to feet. The formula we need is the following one:

h' = h * 3.28084

Select the DEM in the layers field and type a * 3.28084 in the formula field.

Avvertimento: For non English users: use always ".", not ",".

Click *Run* to run the algorithm. You will get a layer that has the same appearance of the input layer, but with different values. The input layer that we used has valid values in all its cells, so the last parameter has no effect at all.

Let's now perform another calculation, this time on the *accflow* layer. This layer contains values of accumulated flow, a hydrological parameter. It contains those values only within the area of a given watershed, with no–data values outside of it. As you can see, the rendering is not very informative, due to the way values are distributed. Using the logarithm of that flow accumulation will yield a much more informative representation. We can calculate that using the raster calculator.

Open the algorithm dialog again, select the *accflow* layer as the only input layer, and enter the following formula: log(a).

Here is the layer that you will get.

If you select the *Identify* tool to know the value of a layer at a given point, select the layer that we have just created, and click on a point outside of the basin, you will see that it contains a no-data value.

🧕 Identify Results			<u>? ×</u>
Feature	\triangle	Value	
⊡[0 ⊡ log_layer		log_layer	
⊡ (Derived)			
Band 1		no data	
		Close	Help

For the next exercise we are going to use two layers instead of one, and we are going to get a DEM with valid elevation values only within the basin defined in the second layer. Open the calculator dialog and select both layers of the project in the input layers field. Enter the following formula in the corresponding field:

a/a * b

a refers to the accumulated flow layer (since it is the first one to appear in the list) and b refers to the DEM. What we are doing in the first part of the formula here is to divide the accumulated flow layer by itself, which will result in a value of 1 inside the basin, and a no-data value outside. Then we multiply by the DEM, to get the elevation value in those cells inside the basin (DEM * 1 = DEM) and the no-data value outside (DEM $* no_{data} = no_{data}$)

Here is the resulting layer.

This technique is used frequently to *mask* values in a raster layer, and is useful whenever you want to perform calculations for a region other that the arbitrary rectangular region that is used by raster layer. For instance, an elevation histogram of a raster layer doesn't have much meaning. If it is instead computed using only values corresponding to a basin (as in he case above), the result that we obtain is a meaningful one that actually gives

information about the configuration of the basin.

There are other interesting things about this algorithm that we have just run, apart from the no-data values and how they are handled. If you have a look at the extents of the layers that we have multiplied (you can do it double-clicking on their names of the layer in the table of contents and looking at their properties), you will see that they are not the same, since the extent covered by the flow accumulation layer is smaller that the extent of the full DEM.

That means that those layers do not match, and that they cannot be multiplied directly without homogenizing those sizes and extents by resampling one or both layers. However, we did not do anything. QGIS takes care of this situation and automatically resamples input layers when needed. The output extent is the minimum covering extent calculated from the input layers, and the minimum cell size of their cellsizes.

In this case (and in most cases), this produces the desired results, but you should always be aware of the additional operations that are taking place, since they might affect the result. In cases when this behaviour might not be the desired, manual resampling should be applied in advance. In later chapters, we will see more about the behaviour of algorithms when using multiple raster layers.

Let's finish this lesson with another masking exercise. We are going to calculate the slope in all areas with an elevation between 1000 and 1500 meters.

In this case, we do not have a layer to use as a mask, but we can create it using the calculator.

Run the calculator using the DEM as only input layer and the following formula

ifelse(abs(a-1250) < 250, 1, 0/0)

As you can see, we can use the calculator not only to do simple algebraic operations, but also to run more complex calculation involving conditional sentences, like the one above.

The result has a value of 1 inside the range we want to work with, and no-data in cells outside of it.

The no-data value comes from the 0/0 expression. Since that is an undetermined value, SAGA will add a NaN (Not a Number) value, which is actually handled as a no-data value. With this little trick you can set a no-data value without needing to know what the no-data value of the cell is.

Now you just have to multiply it by the slope layer included in the project, and you will get the desired result.

All that can be done in a single operation with the calculator. We leave that as an exercise for the reader.

17.11 Vector calculator

Nota: In this lesson we will see how to add new attributes to a vector layer based on a mathematical expression, using the vector calculator.

We already know how to use the raster calculator to create new raster layers using mathematical expressions. A similar algorithm is available for vector layers, and generates a new layer with the same attributes of the input layer, plus an additional one with the result of the expression entered. The algorithm is called *Field calculator* and has the following parameters dialog.

Field calculato	r							2
Parameters Lo	g Help]	 					
Territoria								ľ
Input layer				 				
census_bounda		100001]	 	 	_			
Result field nam	2							
Field type			 	 				
Float			 	 			-	
Field length								
10			 					
Field precision								
5			 					
Formula								
Output layer								
[Save to tempo	rary file]							
X Open output	file after ru	inning algorithm						ļ
			0%					_
				Run		ose	Can	cel i
				Kun		USE	Can	

Nota: In newer versions of Processing the interface has changed considerably, it's more powerful and easier to use.

Here are a few examples of using that algorithm.

First, let's calculate the population density of white people in each polygon, which represents a census. We have two fields in the attributes table that we can use for that, namely WHITE and SHAPE_AREA. We just have to divide them and multiply by one million (to have density per square km), so we can use the following formula in the corresponding field

("WHITE" / "SHAPE_AREA") * 1000000

The parameters dialog should be filled as shown below.

This will generate a new field named WHITE_DENS

Now let's calculate the ratio between the MALES and FEMALES fields to create a new one that indicates if male population is numerically predominant over female population.

Enter the following formula

🦸 Field calculator	×
Parameters Log Help	
Input layer	
census_boundaries [USER:100001]	▼ …
Result field name	
WHITE_DENS	
Field type	
Float	~
Field length	
10	
Field precision	
5	•
Formula	
WHITE / SHAPE_AREA	
Output layer	
[Save to temporary file]	
X Open output file after running algorithm	
	-
0%	
	Run Close Cancel

"MALES" / "FEMALES"

This time the parameters window should look like this before pressing the OK button.

🦞 Field calculator		×
Parameters Log Help		
Input layer		
	▼ ⊘	
census_boundaries [USER: 100001]	₹	
Result field name		
RATIO		
Field type		
Float	•	
Field length		
10	-	
Field precision		
5	-	
Formula		
float(MALES) / FEMALES		
Output layer		
[Save to temporary file]		
X Open output file after running algorithm		
100%		
	Run Close Cancel	

In earlier version, since both fields are of type integer, the result would be truncated to an integer. In this case the formula should be: 1.0 * "MALES" / "FEMALES", to indicate that we want floating point number a result.

We can use conditional functions to have a new field with male or female text strings instead of those ratio value, using the following formula:

CASE WHEN "MALES" > "FEMALES" THEN 'male' ELSE 'female' END

The parameters window should look like this.

Field calculator		×
Parameters Log Help		
Input layer		
census_boundaries [USER: 100001]	▼ … ②	
Result field name		
PREDOMIN		
Field type		
String	▼	
Field length		
10	▲	
Field precision		
5	×	
Formula		
'male' if MALES > FEMALES else 'female'		
Output layer		
[Save to temporary file]		
Open output file after running algorithm		
		_
100	0%	
	Run Close Cancel	

A python field calculator is available in the Advanced Python field calculator, which will not be detailed here

Advanced Python field calculator					x
Parameters Log Help					
Input layer					
census_boundaries [USER:100001]		-		2	
Result field name					
NewField					
Field type					
Integer				-	
Field length					
10				-	
Field precision					
0				-	
Global expression					
Formula					
value =					
Output layer					
[Save to temporary file]					
X Open output file after running algorithm					
0%	 				_
	Run	Clo	se	Cancel	

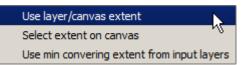
17.12 Defining extents

Nota: In this lesson we will see how to define extents, which are needed by some algorithms, especially raster ones.

Some algorithms require an extent to define the area to be covered by the analysis they perform, and usually to define the extent of the resulting layer.

When an extent is required, it can be defined manually by entering the four values that define it (min X, min Y, max X, max Y), but there are other more practical and more interesting ways of doing it as well. We will see all of them in this lesson.

First, let's open an algorithm that requires an extent to be defined. Open the *Rasterize* algorithm, which creates a raster layer from a vector layer.

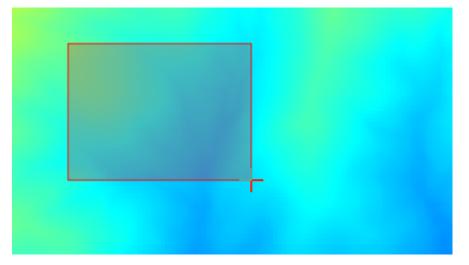

Shapes to grid			×
Parameters Log Help			
Shapes			
union [EPSG:23030]		🧶	
Attribute			
ID			
Method for Multiple Values			
[0] first			
Method for Lines			
[0] thin			
Preferred Target Grid Type			
[0] Integer (1 byte)			
Output extent(xmin, xmax, ymin, ymax)			
[Leave blank to use min covering extent]			
Cellsize			
100.0			
Grid			
[Save to temporary file]			
Open output file after running algorithm			
0%			
Ru	in Close	Cance	1

All the parameters, except for the last two ones, are used to define which layer is to be rasterized, and configure how the rasterization process should work. The two last parameters, on the other hand, define the characteristics of the output layer. That means that they define the area that is covered (which is not necessarily the same area covered by the input vector layer), and the resolution/cellsize (which cannot be infered from the vector layer, since vector layers do not have a cellsize).

The first thing you can do is to type the 4 defining values explained before, separated by commas.

1	Output extent(xmin, xmax, ymin, ymax)	
	0,90,0,90	

That doesn't need any extra explanation. While this is the most flexible option, it is also the less practical in some cases, and that's why other options are implemented. To access them, you have to click on the button on the right-hand side of the extent text box.


Let's see what each one of them does.

The first option is Use layer/canvas extent, which will show the selection dialog shown below.

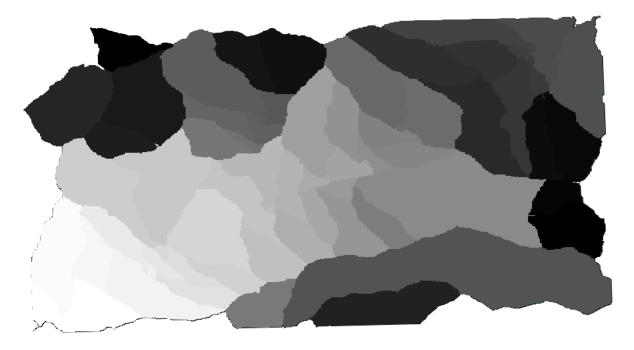
<u>?</u> ×
-

Here you can select the extent of the canvas (the extent covered by the current zoom), or the extension any of the available layers. Select it and click on OK, and the text box will be automatically filled with the corresponding values.

The second option is *Select extent on canvas*. In this case, the algorithm dialog disappears and you can click and drag on the QGIS canvas to define the desired extent.

Once you release the mouse button, the dialog will reappear and the text box will already have the values corresponding to the defined extent.

The last option is *Use min covering extent from input layers*, which is the default option. This will compute the min covering extent of all layers used to run the algorithm, and there is no need to enter any value in the text box. In the case of a single input layer, as in the algorithm we are running, the same extent can be obtained by selecting that same input layer in the *Use layer/canvas extent* that we already saw. However, when there are several input layers, the min covering extent does not correspond to any of the input layer extent, since it is computed from all of them together.


We will use this last method to execute our rasterization algorithm.

Fill the parameters dialog as shown next, and press OK.

Shapes to grid					2
arameters Log Help					
d					
Shapes					
watersheds [EPSG:23030]					
Attribute					
ID				-	
Method for Multiple Values					
[0] first				-	
Method for Lines					
[0] thin				-	
Preferred Target Grid Type					
[3] Floating Point (4 byte)				-	
Output extent(xmin, xmax, ymin, ymax)					
[Leave blank to use min covering extent]					
Cellsize					
2					
Grid					
[Save to temporary file]					
Open output file after running algorithm					
					-
	100%				Ī
		Run	Close	Cancel	
		Kun	Close	Cancel	

Nota: In this case, better use an *Integer (1 byte)* instead of a *Floating point (4 byte)*, since the *NAME* is an integer with maximum value=64. This will result in a smaller file size and faster computations.

You will get a rasterized layer that covers exactly the area covered by the original vector layer.

In some cases, the last option, *Use min covering extent from input layers*, might not be available. This will happen in those algorithm that do not have input layers, but just parameters of other types. In that case, you will have to enter the value manually or use any of the other options.

Notice that, when a selection exist, the extent of the layer is that of the whole set of features, and the selection is not used to compute the extent, even though the rasterization is executed on the selected items only. In that case, you might want to actually create a new layer from the selection, and then use it as input.

17.13 Risultati HTML

Nota: In questa lezione impareremo come QGIS maneggia i risultati nel formato HTML, i quali sono utilizzati per produrre risultati di testo e grafici.

Tutti i risultati che abbiamo prodotto finora erano layer (raster o vettori). Ad ogni modo, alcuni algoritmi generano risultati sotto forma di testo e di grafici. Tutti questi risultati sono contenuti in file HTML e mostrati nel cosiddetto *Visualizzatore risultati*, che è un altro elemento dell'ambiente Processing.

Vediamo uno di questi algoritmi per capire come funzionano.

Apri il progetto con il dati da utilizzare in questa lezione e poi avvia l'algoritmo Statistiche di base per campi numerici.

🖗 Basic statistics for numeric fields			×
Parameters Log Help			
Input vector layer			
census_boundaries [USER: 10000 1]			- 2
Field to calculate statistics on			
POP2000			-
Statistics for numeric field			
[Save to temporary file]			
0.8%			
0%			
	Run	Close	Cancel

L'algoritmo è piuttosto semplice e tu devi solo selezionare il vettore da utilizzare e uno dei suoi campi (un campo numerico). Il risultato è del tipo HTML, ma il riquadro corrispondente funziona esattamente come quello che puoi trovare nel caso di un risultato del tipo raster o vettore. Puoi inserire un percorso file o lasciarlo in bianco per salvare un file temporaneo. In questo caso, comunque, solo le estensioni html e htm sono permesse, per cui non è possibile alterare il formato del risultato usandone un'altra.

Esegui l'algoritmo selezionando in ingresso l'unico vettore nel progetto e il campo *POP2000*, e apparirà una nuova finestra di dialogo come quella mostrata di seguito una volta che l'algoritmo è stato eseguito e la finestra di dialogo dei parametri è stata chiusa.

🧕 Results		? ×
Statistics for numeric field	Count: 485	
	Unique values: 403	
	Minimum value: 0.0	
	Maximum value: 3198.0	
	Range: 3198.0	
	Sum: 554636.0	
	Mean value: 1143.57938144	
	Median value: 1074.0	
	Standard deviation: 527.408287222	
	Coefficient of Variation: 0.461190797753	
		Close

Questo è il *Visualizzatore risultati*. Esso contiene tutti i risultati HTML generati durante la sessione corrente, facilmente accessibili, per cui puoi controllarli rapidamente qualora ne avessi bisogno. Così come succede per i vettori, se hai salvato il risultato in un file temporaneo, esso sarà cancellato una volta chiuso QGIS. Se lo hai salvato in un percorso non temporaneo, il file continuerà ad esistere, ma non apparirà più nel *Visualizzatore risultati* la prossima volta che aprirai QGIS.

Alcuni algoritmi generano testo che non può essere suddiviso in altri risultati più dettagliati. È questo il caso, per esempio, di algoritmi acquisiscono il risultato di testo da un processo esterno. In altri casi, il risultato è mostrato come testo, ma è diviso internamente in diversi risultati più piccoli, di solito nella forma di valori numerici. L'algoritmo che abbiamo appena eseguito è uno di questi. Ognuno di questi valori è maneggiato come un singolo risultato, e memorizzato in una variabile. Ciò non è importante per ora ma, quando passeremo al modellatore grafico, vedrai che ci permetterà di usare tali valori come parametri numerici in ingresso per altri algoritmi.

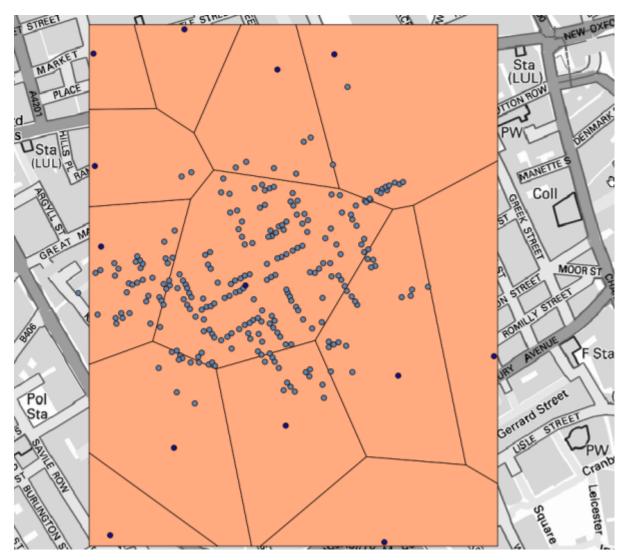
17.14 First analysis example

Nota: In this lesson we will perform some real analysis using just the toolbox, so you can get more familiar with the processing framework elements.

Now that everything is configured and we can use external algorithms, we have a very powerful tool to perform spatial analysis. It is time to work out a larger exercise with some real–world data.

We will be using the well-known dataset that John Snow used in 1854, in his groundbreaking work (http://en.wikipedia.org/wiki/John_Snow_%28physician%29), and we will get some interesting results. The analysis of this dataset is pretty obvious and there is no need for sofisticated GIS techniques to end up with good

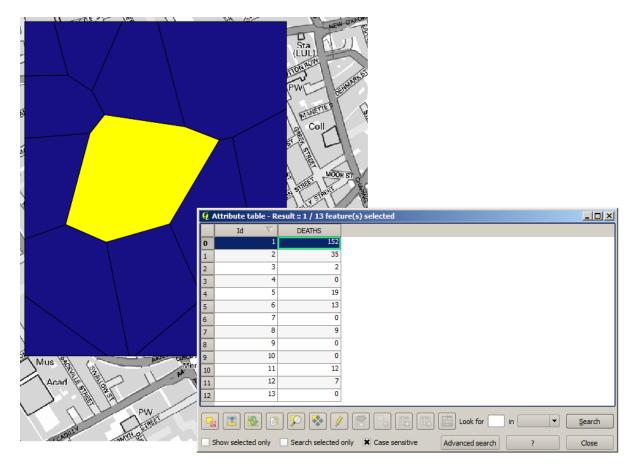
results and conclusions, but it is a good way of showing how these spatial problems can be analyzed and solved by using different processing tools.


The dataset contains shapefiles with cholera deaths and pump locations, and an OSM rendered map in TIFF format. Open the corresponding QGIS project for this lesson.

The first thing to do is to calculting the Voronoi diagram (a.k.a. Thyessen polygons) of the pumps layer, to get the influence zone of each pump. The *Voronoi Diagram* algorithm can be used for that.

👰 Voronoi Diagram			×
Parameters Help			
Points Layer			
Pumps		• …	
Output Shapefile			
[Save to temporary file]			
Copen output file after running algorithm			
0%			
	ОК	Close	Cancel

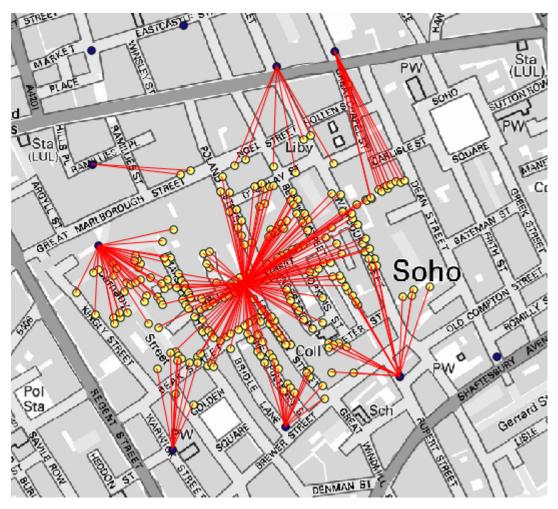
Pretty easy, but it will already give us interesting information.



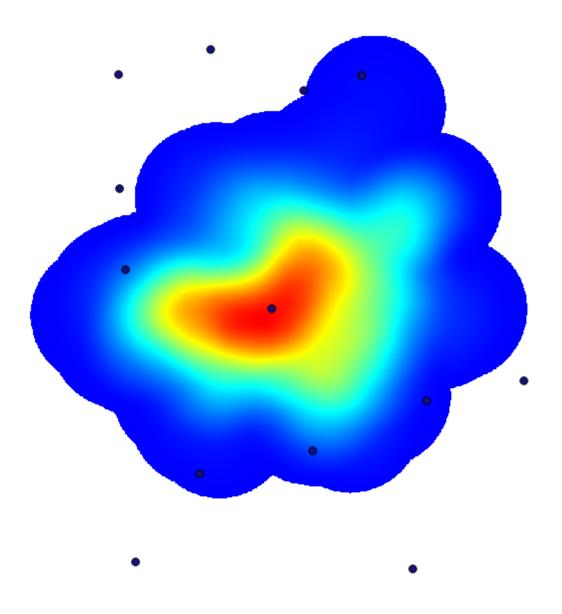
Clearly, most cases are within one of the polygons

To get a more quantitative result, we can count the number of deaths in each polygon. Since each point represents a building where deaths occured, and the number of deaths is stored in an attribute, we cannot just count the points. We need a weighted count, so we will use the *Count points in polygon (weighted)* tool.

🖸 Count points in polygon(weighted)	×
Parameters Help	
Polygons	
Output Shapefile	 → … (2)
Points	
Cholera_Deaths	•
Weight field	
COUNT	
Count field name	
DEATHS	
Result	
[Save to temporary file]	
Open output file after running algorithm	
0%	
	OK Close Cancel


The new field will be called *DEATHS*, and we use the *COUNT* field as weighting field. The resulting table clearly reflects that the number of deaths in the polygon corresponding to the first pump is much larger than the other ones.

Another good way of visualizing the dependence of each point in the Cholera_deaths layer with a point in the Pumps layer is to draw a line to the closest one. This can be done with the *Distance to nearest hub* tool, and using the configuration shown next.


🕽 Distance to nearest hub			×
Parameters Log Help			
Source Points Layer			
Cholera_Deaths [USER: 100000]			. 🥥
Destination Hubs Layer			
Pumps [USER: 100000]			- 2
Hub Layer Name Attribute			
Id			-
Output Shape Type			
Line to Hub			-
Measurement Unit			
Meters			-
Output			
[Save to temporary file]			
X Open output file after running algorithm			
0%			
	Run	Close	Cancel

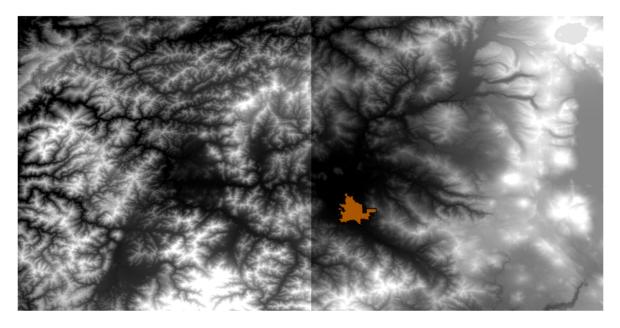
The result looks like this:

Although the number of lines is larger in the case of the central pump, do not forget that this does not represent the number of deaths, but the number of locations where cholera cases were found. It is a representative parameter, but it is not considering that some locations might have more cases than other.

A density layer will also give us a very clear view of what is happening. We can create it with the *Kernel density* algorithm. Using the *Cholera_deaths* layer, its *COUNT* field as weight field, with a radius of 100, the extent and cellsize of the streets raster layer, we get something like this.

Remember that, to get the output extent, you do not have to type it. Click on the button on the right-hand side and select *Use layer/canvas extent*.

🔃 Kernel density estimation	×
Parameters Log Help	
Points Cholera_Deaths [USER: 100000]	
Weight	
COUNT V Radius	
100	
Kernel	5 F F F
[0] quartic kernel	
Target Grid	
[0] user defined	
Output extent(xmin, xmax, ymin, ymax)	
[Leave blank to use min covering extent]	
Cellsize	e layer/canvas extent
	ect extent on canvas
Grid	e min convering extent from input layers
0%	
Run Close Can	cel


Select the streets raster layer and its extent will be automatically added to the text field. You must do the same with the cellsize, selecting the cellsize of that layer as well.

Combining with the pumps layer, we see that there is one pump clearly in the hotspot where the maximum density of death cases is found.

17.15 Tagliare e unire raster

Nota: In questa lezione vedremo un altro esempio di preparazione di dati spaziali, per continuare a utilizzare geoalgoritmi in scenari reali.

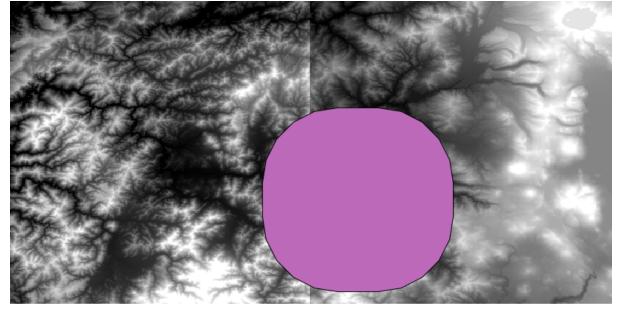
Per questa lezione, andremo a calcolare un raster delle pendenze per una zona intorno a un'area cittadina, che è fornita in un vettore costituito da un singolo poligono. Il DEM di base è diviso in due raster che, insieme, coprono un'area molto più estesa di quella attorno alla città con cui vogliamo lavorare. Se apri il progetto corrispondente a questa lezione, vedrai qualcosa del genere.

Questi raster hanno due problemi:

- Coprono un'area che troppo estesa per i nostri scopi (ci interessa solo una zona più piccola intorno al centro cittadino)
- Si trovano in due file diversi (i confini cittadini si trovano all'interno di un solo raster, ma, come si è già detto, vogliamo avere dello spazio aggiuntivo attorno ad esso).

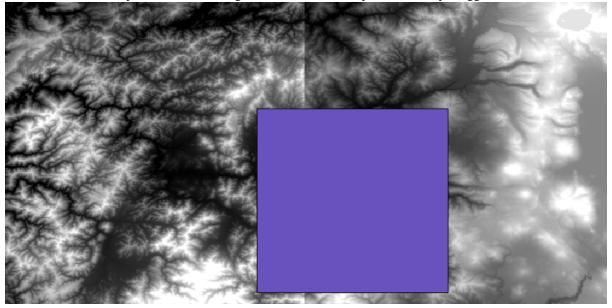
Entrambi i problemi sono facilmente risolvibili con i geoalgoritmi appropriati.

Innanzitutto, creiamo un rettangolo che definisca l'area di cui abbiamo bisogno. Per fare ciò, creiamo un vettore contenente il perimetro di delimitazione del vettore con i confini dell'area cittadina, e in seguito eseguiamo un buffer su di esso, in modo da avere un raster che si estenda un po' oltre lo spazio minimo necessario.


Per il calcolare il perimetro di delimitazione, possiamo usare l'algoritmo Poligono dall'estensione del layer

🦞 Polygon from layer extent
Parameters Log Help
Input layer
medford_citylimits
Calculate extent for each feature separately
No
Output layer
[Save to temporary file]
0%
OK Close Cancel

Per eseguire il buffer, usiamo l'algoritmo Buffer a distanza fissa, con i seguenti parametri.


🛿 Fixed distance buffer			x
Parameters Log Help			
Input layer			
medford_citylimits [EPSG:4326]		▼	
Distance			
.25			
Segments			
5			
Dissolve result			
No			-
Buffer			
[Save to temporary file]			
X Open output file after running algorithm			
0%			
	Run	Close	Cancel

Avvertimento: La sintassi è cambiata nelle ultime versioni; imposta .25 sia per Distanza che per Vertice dell'arco.

Ecco il perimetro di delimitazione risultante ottenuto utilizzando i parametri sopra mostrati.

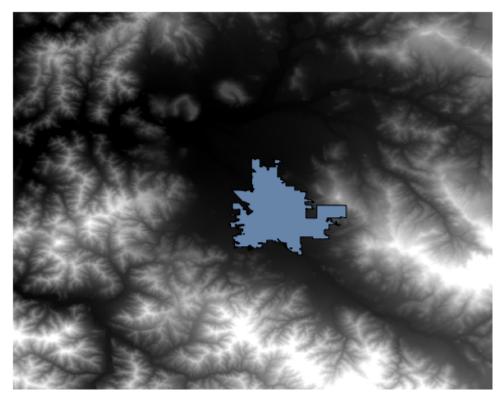
Si tratta di un riquadro arrotondato, ma possiamo ottenere facilmente il riquadro equivalente con angoli retti eseguendo l'algoritmo *Poligono dall'estensione del layer* su di esso. Avremmo potuto eseguire prima il buffer sui confini della città, e dopo calcolare il rettangolo dell'estensione, risparmiando un passaggio.

Noterai che i raster hanno una proiezione differente rispetto al vettore. Dovremmo pertanto riproiettarli prima di procedere oltre, utilizzando lo strumento *Riproiezione*.

Parameters Log Help	
Input layer	
dem2 [EPSG:4269]	×
Source SRS (EPSG Code)	
EPSG:4269	
Destination SRS (EPSG Code)	
EPSG:4326	
Output file resolution in target georeferenced units	(leave 0 for no change)
0,000000	×
Resampling method	
near	~
Additional creation parameters	
Output layer	
[Save to temporary file]	
🕜 Open output file after running algorithm	
0%	
070	Run Cancel Close
	Run <u>C</u> ancel <u>C</u> lose

Nota: Le ultime versioni hanno un'interfaccia più complessa. Assicurati che sia selezionato almeno un metodo di compressione.

Con questo vettore che contiene il perimetro di delimitazione del raster che vogliamo ottenere, possiamo tagliare entrambi i raster, utilizzando l'algoritmo *Taglia raster con poligono*.

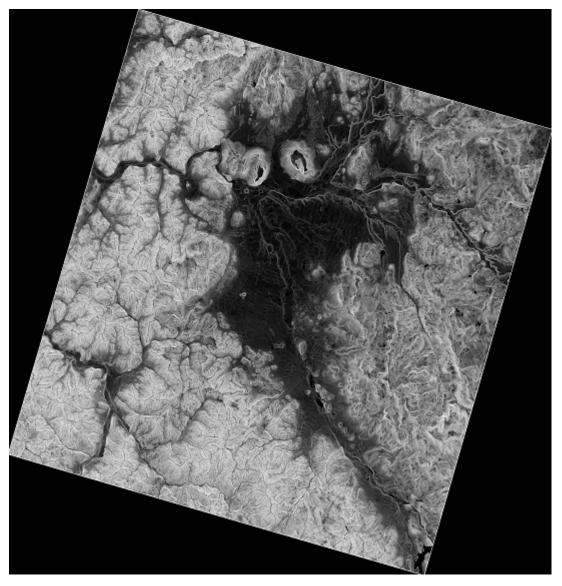

🙀 Clip Grid with Polygon			×
Parameters Log Help			
Input			
floatn43w124_1		•	
Polygons			
buffered		•	
Output			
[Save to temporary file]			
0%			
	ОК	Close	Cancel

Una che i raster sono stati tagliati, possono essere uniti utilizzando l'algoritmo GDAL Unione.

🧕 Merge raster layers	×
Parameters Log Help	d .
Grids to Merge	
2 elements selected	
Preferred data storage type	
[7] 4 byte floating point	▼
Interpolation	
[0] Nearest Neighbor	▼
Overlapping Cells	
[0] mean value	▼
Cell Size	
0.00027777777778	
Merged Grid	
[Save to temporary file]	
Open output file after running algorithm	
0%	,
	OK Close Cancel

Nota: Puoi risparmiare del tempo prima unendo e poi tagliando, evitando di richiamare due volte l'algoritmo di ritaglio. Comunque, se ci sono diversi raster da unire ed essi hanno una dimensione piuttosto elevata, otterrai un raster esteso che sarà successivamente difficile da procesare. In tal caso, potrebbe essere necessario lanciare l'algoritmo di ritaglio diverse volte, il che potrebbe essere dispendioso in termini di tempo, ma non preoccuparti, presto vedremo che esistono strumenti aggiuntivi per automatizzare tale operazione. In questo esempio abbiamo solo due raster, per cui al momento non dovresti preoccuparti di ciò.

Così facendo, otteniamo il DEM finale desiderato.


Adesso è il momento di creare il raster delle pendenze.

Un raster delle pendenze può essere calcolato con l'algoritmo ******Pendenza, Esposizione, Curvatura*, ma il DEM ottenuto nell'ultimo passaggio non è adatto come file di ingresso, dal momento che i valori di elevazione sono in metri ma la dimensione della cella non è espressa in metri (il raster utilizza un CRS con coordinate geografiche). È necessaria una riproiezione. Per riproiettare un raster, si può utilizzare nuovamente l'algoritmo *Riproiezione*. Eseguiamo la riproiezione in un CRS avente i metri come unità (ad es. 3857), in modo da poter calcolare correttamente la pendenza, con SAGA o GDAL.

Con il nuovo DEM, la pendenza può essere ora calcolata.

Slope, Aspect, Curvature				X
arameters Log Help				
elana kan				
Elevation				ſ
dem				
Method				
[5] Fit 2.Degree Polynom (Zevenbergen & Thorne 1987) Slope				
[Save to temporary file]				ר
				J
Open output file after running algorithm Aspect				
Aspect [Save to temporary file]				٦
]		J
Open output file after running algorithm Curvature				
				٦
[Save to temporary file]				
Open output file after running algorithm				
Plan Curvature				ſ
[Save to temporary file]				
Copen output file after running algorithm				
Profile Curvature				
[Save to temporary file]				J
Open output file after running algorithm				
0%	 			
	ОК	Close	Cano	el

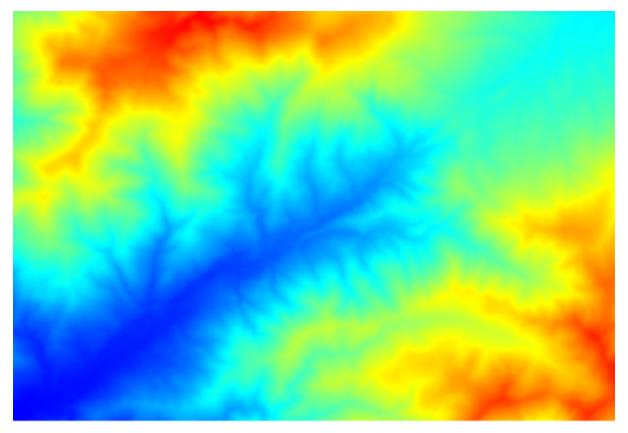
E questo è il raster delle pendenze risultante.

La pendenza generata dall'algoritmo *Pendenza, Esposizione, Curvatura* può essere espressa in gradi o radianti; i gradi sono più pratici ed unità di misura comuni. Nel caso in cui l'avessi calcolata in radianti, l'algoritmo *Conversioni metriche* ci verrà in aiuto per eseguire la conversione (ma qualora non avessi saputo dell'esistenza dell'algoritmo, avresti potuto usare il calcolatore raster che abbiamo già utilizzato).

🤨 Metric Conversions	×
Parameters Log Help	
Grid	
slope	
Conversion	
[0] radians to degree	-
Converted Grid	
[Save to temporary file]	
Copen output file after running algorithm	
0%	
OK Close	Cancel

Riproiettato il raster delle pendenze convertito con lo strumento Riproietta raster, otteniamo il raster finale desiderato.

Avvertimento: da fare: Aggiungi immagine


I processi di riproiezione potrebbero aver fatto in modo che il raster finale contenga alcuni dati al di fuori del perimetro di delimitazione che avevamo calcolato in uno dei passaggi iniziali. Questo può essere risolto tagliandolo di nuovo, così come abbiamo fatto per ottenere il DEM di base.

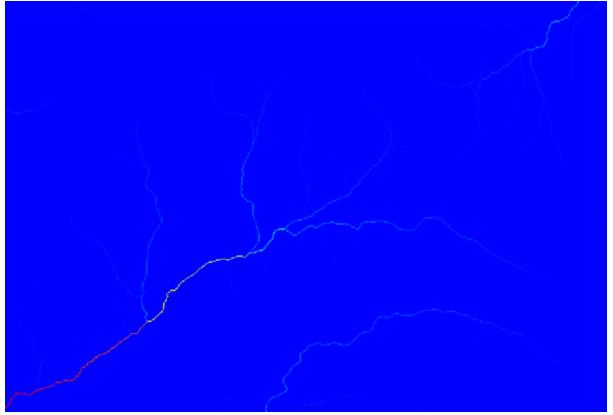
17.16 Analisi idrologica

Nota: In questa lezione eseguiremo alcune analisi idrologiche. Questa analisi verrá usata in alcune delle prossime lezioni, dato che costituisce un buon esempio di flusso di lavoro per l'analisi, e verrá utilizzato per dimostrare alcune funzionalitá avanzate.

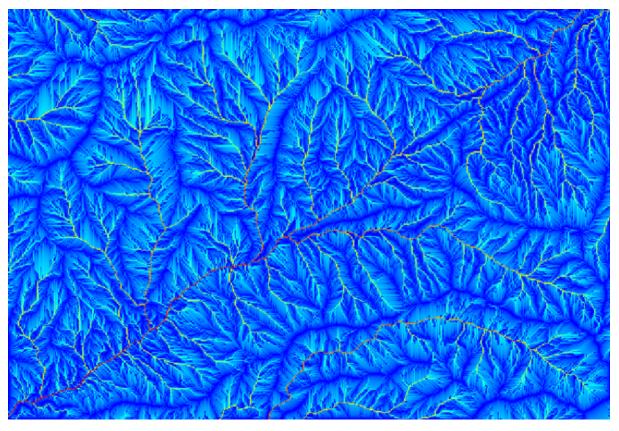
In questa lezione, eseguiremo alcune analisi idrologiche. Iniziando con un DEM, estrarremo una rete di canali, delineeremo gli spartiacque e calcoleremo alcune statistiche.

La prima cosa da fare é caricare il progetto con i dati della lezione, che contengono il DEM.

Il primo modulo da eseguire è *Bacino d'utenza* (in alcune versioni di SAGA è chiamato *Flow accumulation (Top Down)*). Tu puoi usare qualsiasi di quelli chiamati *Bacino d'utenza*. Ci sono dentro diversi algoritmi, ma i risultati sono di base gli stessi.


Selezionare il DEM nel campo *Elevazione*, e lasciare i valori di default per i restanti parametri.

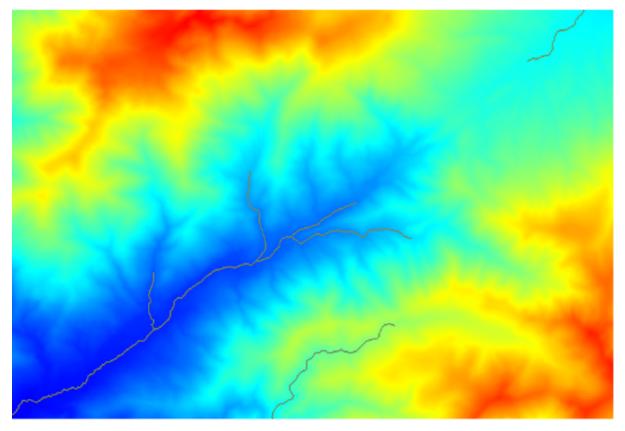
Catchmen		'arallel)							[
Parameters	Help		 		 	 			ſ
Elevation									ł
dem25						-			
Sink Routes	;		 						
[Not select	ted]					-			
Weight									
[Not select	ted]					•			
Material									
[Not select	ted]					-			
Target									
[Not select	ted]					-			
Step									
1								•	
Method									
[0] Determ	ninistic 8		 					-	
Linear Flow			 		 	 			
				0%					
					ОК	Close	e] [Cano	el


Alcuni algoritmi calcolano diversi layer, ma il Bacino di utenza é l'unico che utilizzeremo.

Potete eliminare gli altri se volete.

La visualizzazione del layer non é molto informativa.

Per sapere il perché, si puó controllare l'istogramma e notare che i valori non sono uniformemente distribuiti (alcune celle hanno dei valori molto alti, ovvero quelle che corrispondono alla rete di canali). Il calcolo del logaritmo del bacino di utenza porta ad un layer che contiene molta piú informazione (tale risultato si puó ottenere tramite il calcolatore raster).

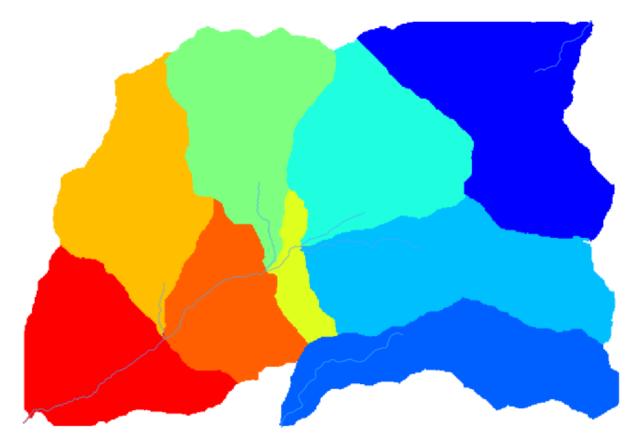


Il bacino di utenza (anche noto come accumulazione di flusso), puó essere utilizzato per impostare una soglia per l'inizializzazione dei canali. Ció si puó fare utilizzando l'algoritmo *Rete di canali*. Qui le istruzioni per la configurazione (si noti che *Soglia di inizializzazione Maggiore di* 10.000.000).

🦞 Channel Network	X
Parameters Help	
Elevation	
dem25	▼
Flow Direction	
[Not selected]	▼
Initiation Grid	
Catchment Area	▼
Initiation Type	
[2] Greater than	▼
Initiation Threshold	
10000000	
Divergence	
[Not selected]	▼
Tracing: Max. Divergence	
10	
Tracing: Weight	
[Not selected]	▼
Min. Segment Length	
10	
Channel Network	
[Save to temporary file]	
X Open output file after running algorithm	
Channel Direction	
[Save to temporary file]	
X Open output file after running algorithm	
Channel Network	
[Save to temporary file]	
Copen output file after running algorithm	
0%	
ОК	Close Cancel

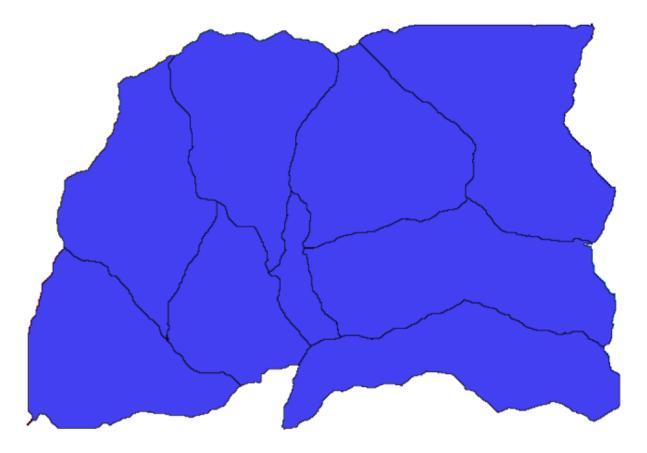
Utilizzare il layer di bacino di utenza originale, non quello logaritmico. Quest'ultimo serve solo per la visualizzazione.

Se si aumenta il valore della *Soglia di inizializzazione*, si ha una rete di canali piú sparsa. Se si diminuisce, si ha una rete piú densa. Con il valore proposto, questo é ció che si ottiene.



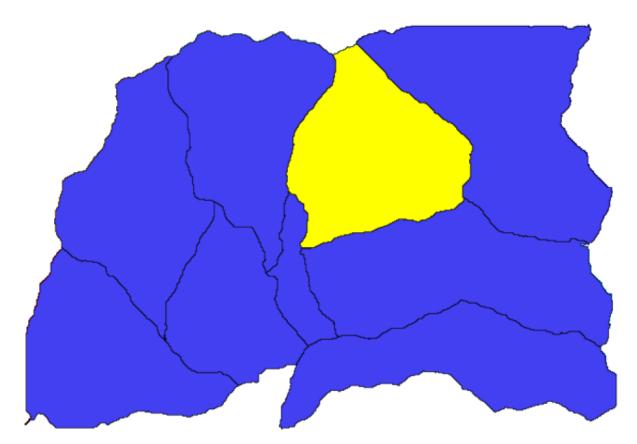
L'immagine precedente mostra il layer vettoriale risultante ed il DEM, ma ci dovrebbe anche essere un layer raster con la stessa rete di canali. Il raster layer sará effettivamente quello che verrá utilizzato.

Useremo ora l'algoritmo *Bacini spartiacque* per delineare i sottobacini corrispondenti alla rete di canali, utilizzando come punti di sbocco tutte le giunzioni. Ecco come impostare i parametri.


🛿 Watershed Basins	×
Parameters Help	
Elevation	
dem25	▼
Channel Network	
Channel Network	▼
Sink Route	
[Not selected]	▼
Min. Size	
0	-
Watershed Basins	
[Save to temporary file]	
🗶 Open output file after running algorithm	
0%	
OK Clo	Cancel

E questo é il risultato.

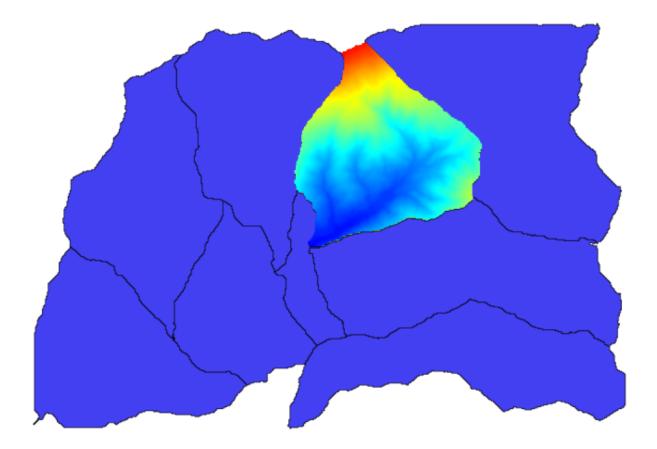
Questo é il risultato raster. Si puó vettorizzare utilizzando l'algoritmo Vectorising grid classes.


🧕 Vectorisin	g Grid C	asses							X
Parameters	Help								
Grid									
Watershee	d Basins						•	•	
Class Selec	tion								
[1] all class	ses								-
Class Ident	ifier								
0									
Vectorised (dass as								
[0] one sin	igle (mult	-)polygon	object						-
Polygons									
[Save to t	emporary	file]							
X Open o	utput file	after runr	ing algorithr	n					
					0.01				
					0%				
						ОК	Close	:	Cancel

Si calcolino adesso le statistiche dei valori di elevazione in uno dei sottobacini. L'idea é quella di avere un layer che rappresenti l'elevazione nei sottobacini e quindi passarlo al modulo che calcola tali statistiche.

Primo, ritagliamo il DEM originale con il poligono che rappresenta il sottobacino. Useremo l'algoritmo *Clip raster with polygon*. Se selezioniamo il poligono di un singolo sottobacino e quindi usiamo l'algoritmo per ritagliare, possiamo ritagliare il DEM sull'area coperta da quel poligono, dato che l'algoritmo comprende la selezione.

Selezionare un poligono,



ed invocare l'algoritmo con i seguenti parametri:

🧯 Clip grid with polygon	×
Parameters Log Help	
Input	
dem25 [EPSG:23030]	 ✓
Polygons	
Polygons [EPSG:23030]	 ✓ … Ø
Output	
[Save to temporary file]	
0%	
	Run Close Cancel

L'elemento selezionato nel campo di input é, ovviamente, il DEM che si vuole ritagliare.

Si otterrá qualcosa del genere.

Il layer é pronto per essere utilizzato nell'algoritmo Raster layer statistics.

🦞 Raster layer statistics			x
Parameters Log Help			
Input layer			
dipped [EPSG:23030]			
Statistics			
[Save to temporary file]			
0%			
	Run	Close	Cancel

Di seguito le statistiche risultanti.

🧕 Results		?×
E Statistics	Valid cells: 24155	
	No-data cells: 14573	
	Minimum value: 771.0	
	Maximum value: 2080.0	
	Sum: 29923203.3423	
	Mean value: 1238.79955878	
	Standard deviation: 271.406236765	
		Close

Utilizzeremo sia la procedura per il calcolo del bacino che il calcolo delle statistiche in altre lezioni, per trovare altri elementi che ci possano aiutare ad autmatizzarli e lavorare in modo piú efficiente.

17.17 Starting with the graphical modeler

Nota: In this lesson we will use the graphical modeler, a powerful component that we can use to define a workflow and run a chain of algorithms.

A normal session with the processing tools includes more than running a single algorithm. Usually several of them are run to obtain a result, and the outputs of some of those algorithms are used as input for some of the other ones.

Using the graphical modeler, that workflow can be put into a model, which will run all the necessary algorithms in a single run, thus simplifying the whole process and automating it.

To start this lesson, we are going to calculate a parameter named Topographic Wetness Index. The algorithm that computes it is called *Topographic wetness index (twi)*

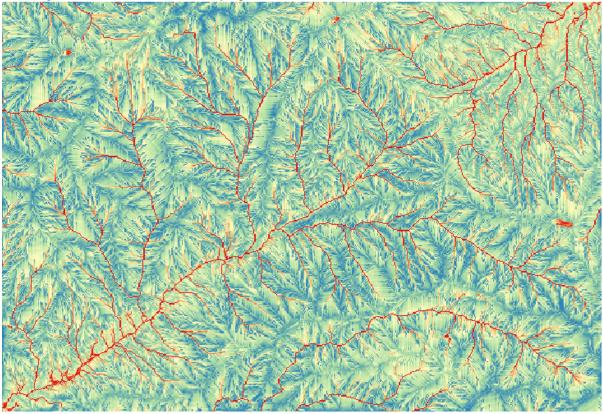
Topographic wetness index (twi)			
arameters Log Help			
Slope			
dem25 [EPSG:23030]		-	
Catchment Area			
dem25 [EPSG:23030]		-	
Transmissivity			
[Not selected]		-	
Area Conversion			
[0] no conversion (areas already given as specific catchment area)			•
Method (TWI)			
[0] Standard			
Topographic Wetness Index			
[Save to temporary file]			
X Open output file after running algorithm			
0%			
	Run	Close	Cancel

As you can see, there are two mandatory inputs: *Slope* and *Catchment area*. There is also an optional input, but we will not be using it, so we can ignore it.

The data for this lesson contains just a DEM, so we do not have any of the required inputs. However, we know how to calculate both of them from that DEM, since we have already seen the algorithms to compute slope and catchment area. So we can first compute those layers and then use them for the TWI algorithm.

Here are the parameter dialogs that you should use to calculate the 2 intermediate layers.

Nota: Slope must be calculated in radians, not in degrees.


🦞 Slope, aspect, curvature	×
Parameters Log Help	
Elevation	
dem25 [EPSG:23030]	
Method	
[5] Fit 2.Degree Polynom (Zevenbergen & Thorne 1987)	
Slope	
[Save to temporary file]	
X Open output file after running algorithm	
Aspect	
[Save to temporary file]	
X Open output file after running algorithm	
Curvature	
[Save to temporary file]	
X Open output file after running algorithm	
Plan Curvature	
[Save to temporary file]	÷
0%	
Run Close Cano	el

👰 Catchment area (recursive)			×
Parameters Log Help			
			–
Elevation			
dem25 [EPSG:23030]			··
Sink Routes			
[Not selected]			
Weight			
[Not selected]			
Material			
[Not selected]			
Target			
[Not selected]		▼ .	
Step			
1			-
Target Areas			
[Not selected]		. ▼	
Method			
[0] Deterministic 8			-
Convergence			
1.1			
0%			
	Run	Close	Cancel

And this is how you have to set the parameters dialog of the TWI algorithm.

Topographic wetness index (twi)	
arameters Log Help	
Slope	
Topographic Wetness Index [EPSG:23030]	· · · · · · · · · · · · · · · · · · ·
Catchment Area	
Catchment Area [EPSG:23030]	▼
Transmissivity	
[Not selected]	▼ …
Area Conversion	
[1] 1 / cell size (pseudo specific catchment area)	▼
Method (TWI)	
[0] Standard	▼
Topographic Wetness Index	
[Save to temporary file]	
X Open output file after running algorithm	
0%	
	Run Close Cancel

This is the result that you will obtain (the default singleband pseudocolor inverted palette has been used for rendering). You can use the twi.qml style provided.

What we will try to do now is to create an algorithm that calculates the TWI from a DEM in just one single step. That will save us work in case we later have to compute a TWI layer from another DEM, since we will need just

one single step to do it instead of the 3 ones above. All the processes that we need are found in the toolbox, so what we have to do is to define the workflow to wrap them. This is where the graphical modeler comes in.

0 1 11 1	1 .*	•.	• .1	•
Open the modeler b	v selecting	its menu entr	v in the	nrocessing menu
open die modeler b	y sciecting	no monu enu	y m uic	processing menu.

Input Algorithms [Enter model name here] [Enter group name here]	Processing modeler		_ _ _ _ _ _
Extent File Number Raster Layer String Table Table field Vector layer	Inputs Algorithms	[Enter model name here]	[Enter group name here]
	Parameters Boolean Extent File Number Raster Layer String Table field		
Edit model help Run Open Save Save as Close			

Two things are needed to create a model: setting the inputs that it will need, and defining the algorithm that it contains. Both of them are done by adding elements from the two tabs in the left–hand side of the modeler window: *Inputs* and *Algorithms*

Let's start with the inputs. In this case we do not have much to add. We just need a raster layer with the DEM, and that will be our only input data.

Double click on the Raster layer input and you will see the following dialog.

🧕 Parameter def	inition	? ×
Parameter name		
Required	Yes	•
[ОК	Cancel

Here we will have to define the input we want. Since we expect this raster layer to be a DEM, we will call it *DEM*. That's the name that the user of the model will see when running it. Since we need that layer to work, we will define it as a mandatory layer.

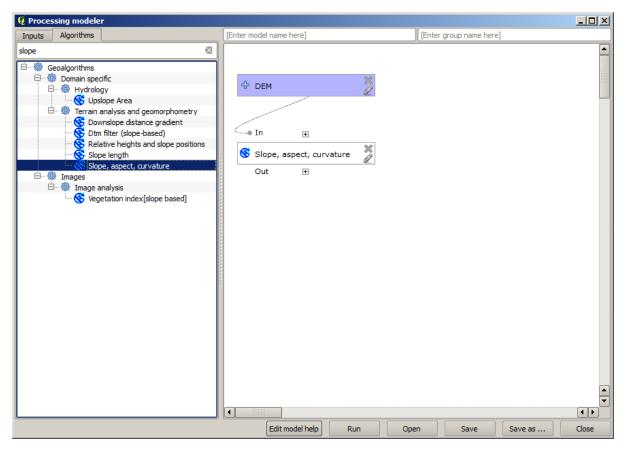
Here is how the dialog should be configured.

🧕 Parameter definitio	on 🔤	2 ×
Parameter name DEM		כ
Required	Yes	•
	DK Cancel	

Click on *OK* and the input will appear in the modeler canvas.

🧕 Processing modeler						<u> </u>
Inputs Algorithms	[Enter model name here]		[Enter	group name here	2]	
Parameters Boolean Extent File Number Raster Layer	슈 DEM	* 2				
String Table Table field Vector layer						
	Image: A state of the state					• •
	Edit model help	Run Op	ben	Save	Save as	Close

Now let's move to the *Algorithms* tab. The first algorithm we have to run is the *Slope, aspect, curvature* algorithm. Locate it in the algorithm list, double–click on it and you will see the dialog shown below.


Slope, aspect, curvature	?
arameters Help	
	(
Elevation	
DEM	▼
Method	
[0] Maximum Slope (Travis et al. 1975)	▼
Slope < OutputRaster >	
[Enter name if this is a final result]	
Aspect <outputraster></outputraster>	
[Enter name if this is a final result]	
Curvature <outputraster></outputraster>	
[Enter name if this is a final result]	
Plan Curvature < OutputRaster >	
[Enter name if this is a final result]	
Profile Curvature <outputraster></outputraster>	
[Enter name if this is a final result]	
Parent algorithms	
0 elements selected	
	OK Cancel

This dialog is very similar to the one that you can find when running the algorithm from the toolbox, but the element that you can use as parameter values are not taken from the current QGIS project, but from the model itself. That means that, in this case, we will not have all the raster layers of our project available for the *Elevation* field, but just the ones defined in our model. Since we have added just one single raster input named *DEM*, that will be the only raster layer that we will see in the list corresponding to the *Elevation* parameter.

Output generated by an algorithm are handled a bit differently when the algorithm is used as a part of a model. Instead of selecting the filepath where you want to save each output, you just have to specify if that ouput is an intermediate layer (and you do not want it to be preserved after the model has been executed), or it is a final one. In this case, all layers produced by this algorithm are intermediate. We will only use one of them (the slope layer), but we do not want to keep it, since we just need it to calculate the TWI layer, which is the final result that we want to obtain.

When layers are not a final result, you should just leave the corresponding field. Otherwise, you have to enter a name that will be used to identify the layer in the parameters dialog that will be shown when you run the model later.

There is not much to select in this first dialog, since we do not have but just one layer in or model (The DEM input that we created). Actually, the default configuration of the dialog is the correct one in this case, so you just have to press *OK*. This is what you will now have in the modeler canvas.

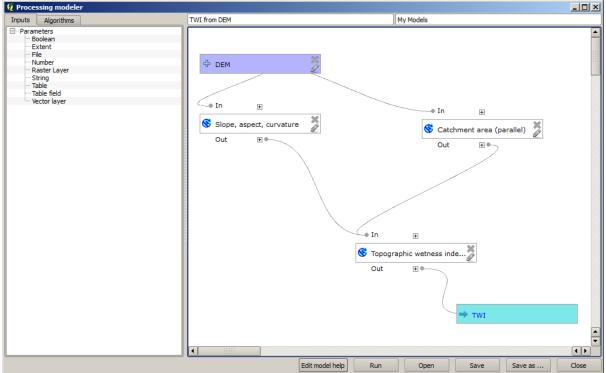
The second algorithm we have to add to our model is the catchment area algorithm. We will use the algorithm named *Catchment area (Paralell)*. We will use the DEM layer again as input, and none of the ouputs it produces are final, so here is how you have to fill the corresponding dialog.

	area (parallel)			?
rameters	Help			
Elevation				
DEM				-
Sink Routes		 		
[Not selecte	41	 		-
Weight	-1	 		
[Not selecte	41			-
Material	-1	 		
[Not selecte	d]			-
- Target				
[Not selecte	d]			-
Step		 		
1				-
Method				
[0] Determin	istic 8			-
Linear Flow				
Yes				-
Linear Flow T	hreshold			
500.0				-
Linear Flow T	hreshold Grid			
[Not selecte	d]			-
Channel Dire				
[Not selecte	d]			-
Convergence				
1.0				-
		ſ	ОК	Cancel

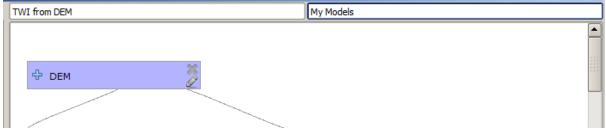
Now your model should look like this.

🦸 Processing modeler			
Inputs Algorithms	[Enter model name here]	[Enter gro	oup name here]
catch 🖾			
Geoalgorithms Geoalgo	Contractions of the second sec	● In Catchment area (paralla Out ①	
	Edit m	del help Run Op	pen Save Save as Close

The last step is to add the *Topographic wetness index* algorithm, with the following configuration.

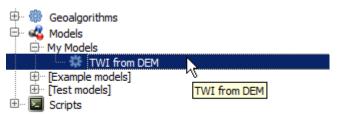

Parameters Help Slope Slope from algorithm 0(Slope, aspect, curvature) Catchment Area Catchment Area from algorithm 1(Catchment area (parallel)) Transmissivity [Not selected] Area Conversion
Slope from algorithm 0(Slope, aspect, curvature) Catchment Area Catchment Area from algorithm 1(Catchment area (parallel)) Transmissivity [Not selected] Image: State Stat
Slope from algorithm 0(Slope, aspect, curvature) Catchment Area Catchment Area from algorithm 1(Catchment area (parallel)) Transmissivity [Not selected] Image: State Stat
Catchment Area Catchment Area from algorithm 1(Catchment area (parallel)) Transmissivity [Not selected]
Catchment Area from algorithm 1(Catchment area (parallel)) Transmissivity [Not selected] Image: Selected in the select
Transmissivity [Not selected]
[Not selected]
Area Conversion
[1] 1 / cell size (pseudo specific catchment area)
Method (TWI)
[0] Standard
Topographic Wetness Index <outputraster></outputraster>
TWI
Parent algorithms
0 elements selected
OK Cancel

In this case, we will not be using the DEM as input, but instead, we will use the slope and catchment area layers that are calculated by the algorithms that we previously added. As you add new algorithms, the outputs they produce become available for other algorithms, and using them you link the algorithms, creating the workflow.


In this case, the output TWI layer is a final layer, so we have to indicate so. In the corresponding textbox, enter

the name that you want to be shown for this output.

|--|



Enter a name and a group name in the upper part of the model window, and then save it clicking on the *Save* button.

You can save it anywhere you want and open it later, but if you save it in the models folder (which is the folder that you will see when the save file dialog appears), you model will also be available in the toolbox as well. So stay on that folder and save the model with the filename that you prefer.

Now close the modeler dialog and go to the toolbox. In the Models entry you will find you model.

You can run it just like any normal algorithm, double-clicking on it.

🦞 TWI from DEM		×	:
Parameters Log Help			
DEM			
raster [EPSG:23030]			
TWI			
[Save to temporary file]			
Copen output file after running algorithm			I
			l
			l
			J
			5
0%	,		4
Run	Close	Cancel	

As you can see, the parameters dialog, contain the input that you added to the model, along with the outputs that you set as final when adding the corresponding algorithms.

Run it using the DEM as input and you will get the TWI layer in just one single step.

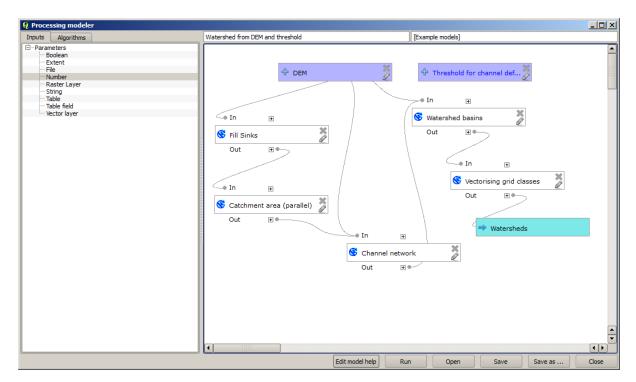

17.18 More complex models

Nota: In this lesson we will work with a more complex model in the graphical modeler.

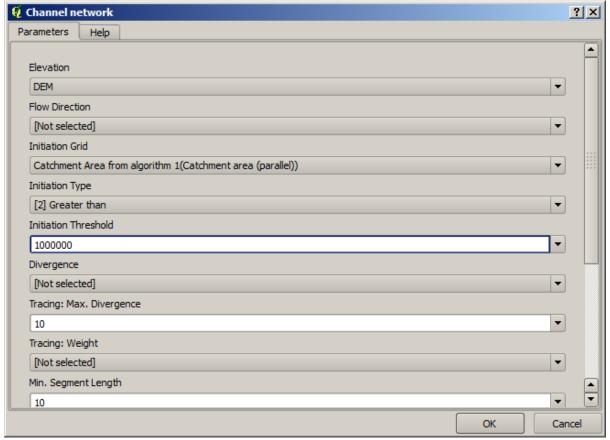
The first model that we created in the previous chapter was a very simple one, with just one input and 3 algorithms. More complex models can be created, with different types of inputs and containing more step. For this chapter we will work with a model that creates a vector layer with watersheds, based on a DEM and a threshold value. That will be very useful for calculating several vector layers corresponding to different thresholds, without having to repeat each single step each time.

This lesson does not contain instructions about how to create you model. You already know the necessary steps (we saw them in a previous lesson) and you have already seen the basic ideas about the modeler, so you should try it yourself. Spend a few minutes trying to create your model, and don't worry about making mistakes. Remember: first add the inputs and then add the algorithms that use them to create the workflow.

In case you could not create the full model yourself and you need some extra help, the data folder corresponding to this lesson contains an 'almost' finished version of it. Open the modeler and then open the model file that you will find in the data folder. You should see something like this.



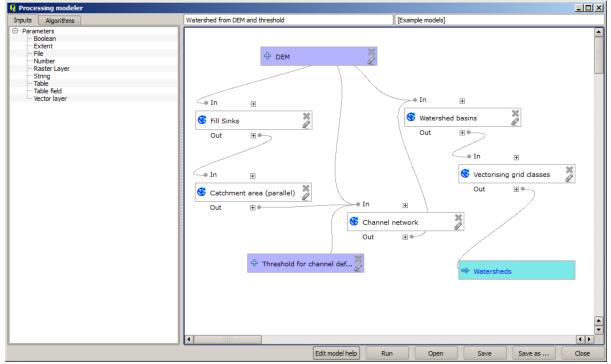
This model contains all the steps needed to complete the calculation, but it just has one input: the DEM. That means that the threshold for channel definition use a fixed value, which makes the model not as useful as it could be. That is not a problem, since we can edit the model, and that is exactly what we will do.


First, let's add a numerical input. That will ask the user for a numerical input that we can use when such a value is needed in any of the algorithms included in our model. Click on the *Number* entry in the inputs tree, and you will see the corresponding dialog. Fill it with the values shown next.

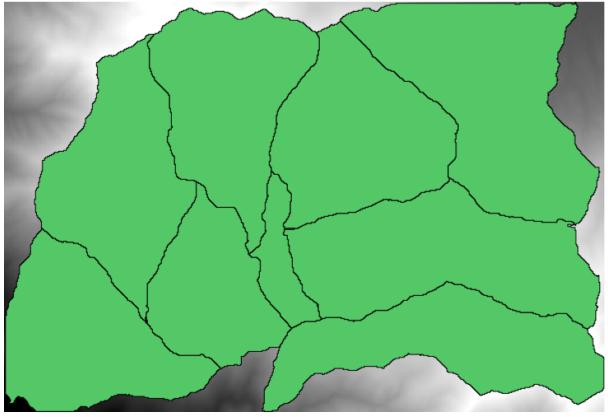
🧕 Parameter definition	? X
Parameter name Threshold for channel definition	
Min/Max values 0	
Default value 1000000	
OK Cance	I

Now your model should look like this.

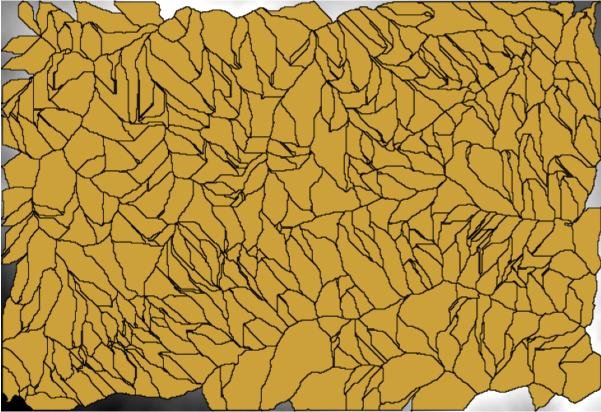
The input that we have just added is not used, so the model hasn't actually changed. We have to link that input to the algorithm that uses it, in this case the *Channel network* one. To edit an algorithm that already exists in the modeler, just click on the pen icon on the corresponding box in the canvas. If you click on the *Channel network* algorithm, you will see something like this.


The dialog is filled with the current values used by the algorithm. You can see that the threshold parameter has a fixed value of 1,000,000 (this is also the default value of the algorithm, but any other value could be put in there). However, you might notice that the parameter is not entered in a common text box, but in an option menu. If you

unfold it, you will see something like this.


Channel network			?
arameters Help			
			[
Elevation			
DEM			-
Flow Direction			
[Not selected]			-
Initiation Grid			
Catchment Area from algorithm 1(Catchmen	it area (parallel))		-
Initiation Type			
[2] Greater than			-
Initiation Threshold			
1000000			T
Threshold for channel definition			l S
[Not selected]			-
Tracing: Max. Divergence			
10			-
Tracing: Weight			
[Not selected]			-
Min. Segment Length			
10			- (
		ОК	Cancel

The input that we added is there and we can select it. Whenever an algorithm in a model requires a numerical value, you can hardcode it and directly type it, or you can use any of the available inputs and values (remember that some algorithms generate single numerical values. We will see more about this soon). In the case of a string parameter, you will also see string inputs and you will be able to select one of them or type the desired fixed value.


Select the *Threshold* input in the *Threshold* parameter and click on *OK* to apply the changes to your model. Now the design of the model should look like this.

The model is now complete. Try to run it using the DEM that we have used in previous lessons, and with different threshold values. Here you have a sample of the result obtained for different values. You can compare with the result for the default value, which is the one we obtained in the hydrological analysis lesson.

Threshold = 100,000

Threshold = 1,0000,000

17.19 Numeric calculations in the modeler

Avvertimento: Beware, this chapter is not well tested, please report any issue; images are missing

Nota: In this lesson we will see how to use numeric outputs in the modeler

For this lesson, we are going to modify the hydrological model that we created in the last chapter (open it in the modeler before starting), so we can automate the calculation of a valid threshold value and we do not have to ask the user to enter it. Since that value refers to the variable in the threshold raster layer, we will extract it from that layer, based on some simple statistical analysis.

Starting with the aforementioned model, let's do the following modifications:

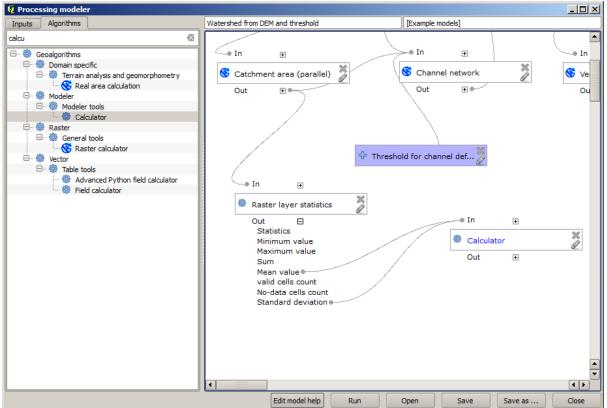
First, calculate statistics of the flow accumulation layer using the Raster layer statistics algorithm.

🦞 Raster layer statistics	<u>? ×</u>
Parameters Help	
Input layer	
Catchment Area from algorithm 1(Catchment area (parallel))	•
Statistics <outputhtml></outputhtml>	
[Enter name if this is a final result]	
Parent algorithms	
0 elements selected	
	OK Cancel

This will generate a set of statistical values that will now be available for all numeric fields in other algorithms.

If you edit the *Channel network* algorithm, as we did in the last lesson, you will see now that you have other options apart from the numeric input that you added.

😧 Channel network	?	×
Parameters Help		
Elevation		H
DEM	-	
Flow Direction		
[Not selected]	-	
Initiation Grid		
Catchment Area from algorithm 1(Catchment area (parallel))	-	
Initiation Type		
[2] Greater than	-	
Initiation Threshold		
Threshold for channel definition		
Threshold for channel definition Minimum value from algorithm 5(Raster layer statistics) Maximum value from algorithm 5(Raster layer statistics) Sum from algorithm 5(Raster layer statistics) Mean value from algorithm 5(Raster layer statistics) valid cells count from algorithm 5(Raster layer statistics) No-data cells count from algorithm 5(Raster layer statistics) Standard deviation from algorithm 5(Raster layer statistics)		
[Not selected]	-	
Min. Segment Length		
10	•	•
ОК	Cancel	


However, none of this values is suitable for being used as a valid threshold, since they will result in channel networks that will not be very realistic. We can, instead, derive some new parameter based on them, to get a better result. For instance, we can use the mean plus 2 times the standard deviation.

To add that arithmetical operation, we can use the calculator that you will find in the *Geoalgorithms/modeler/modeler-tools* group. This group contains algorithms that are not very useful outside of the modeler, but that provide some useful functionality when creating a model.

The parameters dialog of the calculator algorithm looks like this:

🦞 Calculator		<u>? ×</u>
You can refer to model values in you formula, using single-letter variables, as follows: a->Threshold for channel definition b->Minimum value from algorithm 5(Raster layer statistics) c->Maximum value from algorithm 5(Raster layer statistics) d->Sum from algorithm 5(Raster layer statistics) e->Mean value from algorithm 5(Raster layer statistics) f->valid cells count from algorithm 5(Raster layer statistics) g->No-data cells count from algorithm 5(Raster layer statistics) h->Standard deviation from algorithm 5(Raster layer statistics)		
e+2*h	ОК	Cancel

As you can see, the dialog is different to the other ones we have seen, but you have in there the same variables that were available in the *Threshold* field in the *Channel network* algorithm. Enter the above formula and click on *OK* to add the algorithm.

If you expand the outputs entry, as shown above, you will see that the model is connected to two of the values, namely the mean and the standard deviation, which are the ones that we have used in the formula.

Adding this new algorithm will add a new numeric value. If you go again to the *Channel network* algorithm, you can now select that value in the *Threshold* parameter.

Channel network			? ×
Parameters Help			
Elevation			
DEM		•	
Flow Direction			
[Not selected]		-	
Initiation Grid			
Catchment Area from algorithm 1(Catchment area (parallel))		-	
Initiation Type			
[2] Greater than		•	
Initiation Threshold			
Threshold for channel definition		-	
Divergence			
[Not selected]		-	
Tracing: Max. Divergence			
10		-	
Tracing: Weight			
[Not selected]		-	
Min. Segment Length			
10		-	▼
	ок	Can	cel

🦞 Channel network		? ×
Parameters Help		
Elevation DEM	▼]	
Flow Direction		
[Not selected]	•	
Initiation Grid		
Catchment Area from algorithm 1(Catchment area (parallel))	▼	
Initiation Type		
[2] Greater than	~	
Initiation Threshold		
Threshold for channel definition	-	
Threshold for channel definition Minimum value from algorithm 5(Raster layer statistics) Maximum value from algorithm 5(Raster layer statistics) Sum from algorithm 5(Raster layer statistics) Mean value from algorithm 5(Raster layer statistics) valid cells count from algorithm 5(Raster layer statistics) No-data cells count from algorithm 5(Raster layer statistics) Standard deviation from algorithm 5(Raster layer statistics) Result from algorithm 6(Calculator)		
Min. Segment Length		
10		U
	OK Cano	el

We are not using the numeric input that we added to the model, so it can be removed. Right-click on it and select

Remove

Avvertimento: todo: Add image

Our new model is now finished.

17.20 A model within a model

Avvertimento: Beware, this chapter is not well tested, please report any issue; images are missing

Nota: In this lesson we will see how to use a model within a bigger model.

We have already created a few models, and in this lesson we are going to see how we can combine them on a single bigger one. A model behaves like any other algorithm, which means that you can add a model that you have already created as part of another one that you create after that.

In this case, we are going to expand our hydrological model, by adding the mean TWI value in each of the basins that it generates as result. To do that, we need to calculate the TWI, and to compute the statistics. Since we have already created a model to calculate TWI from a DEM, it is a good idea to reuse that model instead of adding the algorithms it contains individually.

Let's start with the model we used as starting point for the last lesson.

Avvertimento: todo: Add image

First, we will add the TWI model. For it to be available, it should have been saved on the models folder, since otherwise it will not be shown in the toolbox or the algorithms list in the modeler. Make sure you have it available.

Add it to the current model and use the input DEM as its input. The output is a temporary one, since we just want the TWI layer to compute the statistics. The only output of this model we are creating will still be the vector layer with the watersheds.

Here is the corresponding parameters dialog:

Avvertimento: todo: Add image

Now we have a TWI layer that we can use along with the watersheds vector layer, to generate a new one which contains the values of the TWI corresponding to each watershed.

This calculation is done using the *Grid statistics in polygons* algorithm. Use the layers mentioned above as input, to create the final result.

Avvertimento: todo: Add image

The output of the *Vectorize grid classes* algorithm was originally our final output, but now we just want it as an intermediate result. To change that, we have to edit the algorithm. Just double–click on it to see its parameters dialog, and delete the name of the output. That will make it a temporary output, as it is by default.

Avvertimento: todo: Add image

This is how the final model should look like:

Avvertimento: todo: Add image

As you see, using a model in another model is nothing special, and you can add it just like you add another algorithm, as long as the model is saved in the models folder and is available in the toolbox.

17.21 Interpolazione

Nota: Questo capitolo mostra come interpolare dati di punti, e ti mostrerà un altro esempio per effettuare analisi spaziali

In questa lezione ti accingi a interpolare i dati di punti per ottenere un raster. Prima di farlo, dovrai preparare i dati, e dopo l'interpolazione farai ulteriori elaborazioni di aggiustamento dei risultati, così da avere un'analisi completa.

Apri i dati di esempio per questa lezione che dovrebbero apparire come di seguito

I dati corrispondono alla resa di una coltivazione, come rilevati da una mietitrice moderna e li userai per avere un raster delle rese produttive del campo. Non farai ulteriori analisi ma lo userai come livello di base per identificare le zone più produttive e quelle dove la produttività può essere migliorata.

La prima cosa che devi fare è pulire il livello dai punti ridondanti. Questi sono causati dal movimento della mietitrebbia, dove deve curvare o dove cambia la velocità. L'algoritmo *Points filter* ti è utile per questo. Lo usi due volte, per rimuovere i punti che possono essere considerati valori anomali sia nella parte alta che in quella bassa della distribuzione.

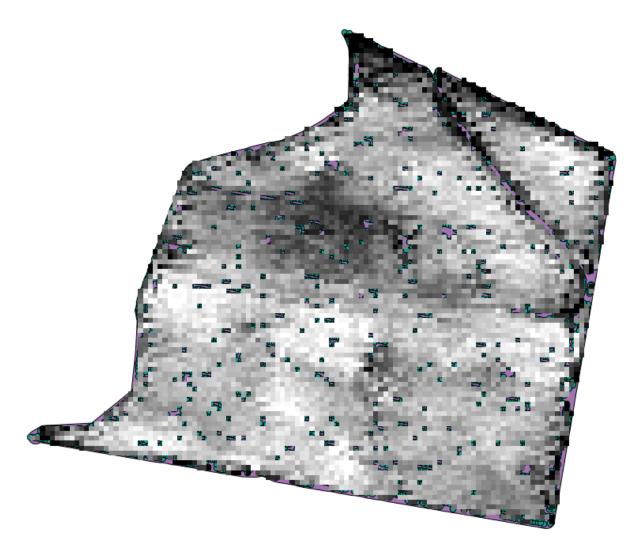
Per i valori anomali superiormente, usa i seguenti parametri.

oints filter arameters Log Help	
Points	
sorghum [EPSG:32755]	▼ 🦻
Attribute	
Yld Mass(D	▼
Radius	
100	⇒
Minimum Number of Points	
20	.
Maximum Number of Points	
250	÷
Quadrants	
No	•
Filter Criterion	
[4] remove below percentile	 ▼
Tolerance	
0,000000	• …
Percentile	
15	⇒
Filtered Points	
[Save to temporary file]	
Open output file after running algorithm	
0%	
	Run Close Cancel

Per continuare usa la configurazione mostrata sotto.

😧 Points filter	×
Parameters Log Help	
Points	
Filtered Points [EPSG:32755]	
Attribute	
Yld Mass(D ▼	
Radius	
100	
Minimum Number of Points	
20	
Maximum Number of Points	
250	***
Quadrants	
No	
Filter Criterion	
[5] remove above percentile	
Tolerance	
0.0	
Percentile	
90	
Filtered Points	
[Save to temporary file]	
Copen output file after running algorithm	•
0%	
Run Close Ca	ncel

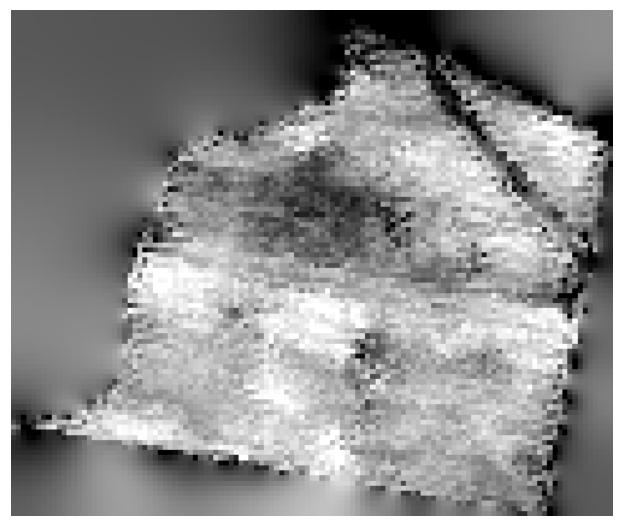
Nota che non stai usando il layer originale ma l'output ricavato dal passo precedente.


Il vettore finale dovrebbe essere simile a quello iniziale, ma contiene un numero minore di punti. Puoi verificare, confrontando le rispettive tabelle di attributi.

Ora rasterizziamo il layer usando l'algoritmo Rasterize.

🔾 Shapes to grid	x
Parameters Log Help	
Shapes	
Filtered Points [EPSG: 32755]	
Attribute YId Mass(D	
Method for Multiple Values	
[4] mean 🔻	
Method for Lines	
[0] thin	
Preferred Target Grid Type	
[3] Floating Point (4 byte)	
Output extent(xmin, xmax, ymin, ymax)	
[Leave blank to use min covering extent]	
Cellsize	
15	
Grid	
[Save to temporary file]	
X Open output file after running algorithm	
0%	
Run Close Cance	
Run Close Cana	a

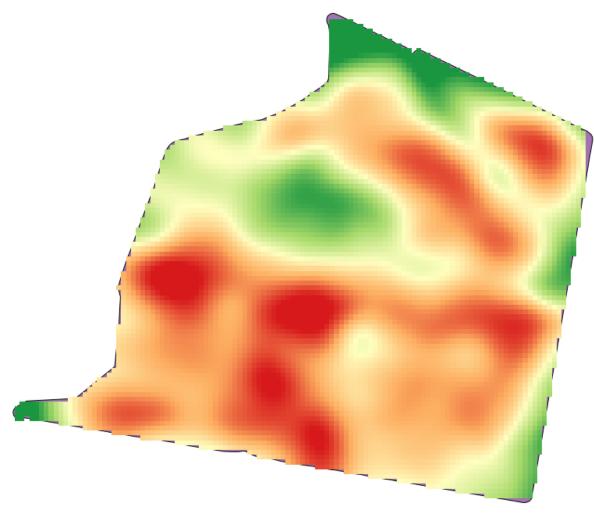
Il layer *Filtered points* si riferisce a quello risultante dal secondo filtro. Ha lo stesso nome di quello prodotto dal primo filtro, in quanto il nome viene assegnato dall'algoritmo, ma non devi utilizzare il primo. Quest'ultimo, dal momento che non verrà utilizzato per altro, lo puoi rimuovere dal progetto per evitare confusione, e puoi lasciare solo l'ultimo layer *Filtered points*.


Il raster risultante si presenta così

È un raster, ma manca del dato in alcune celle. Esso contiene solo i valori in quelle celle che contenevano un punto dal vettore che abbiamo appena rasterizzati. Per riempire i valori mancanti, puoi usare l'algoritmo *Close gaps*.

😧 Close gaps	X
Parameters Log Help	
Grid	
Grid [EPSG: 32755]	
Mask	
[Not selected]	
Tension Threshold	
0.1	
Changed Grid	
[Save to temporary file]	
Copen output file after running algorithm	
0%	
Run Close	Cancel

Il raster, tolte le celle senza dato appare simile a questo.



Per limitare l'area coperta dai dati alla regione in cui è stata misurata la resa delle colture, puoi ritagliare il raster con i limiti del vettore punti.

🤨 Clip grid with polygon			×
Parameters Log Help			
Input			
Changed Grid [EPSG:32755]			
Polygons			
limits [EPSG: 32755]		· · · · · · · · · · · · · · · · · · ·	
Output			
[Save to temporary file]			
0%			
	Run	Close	Cancel

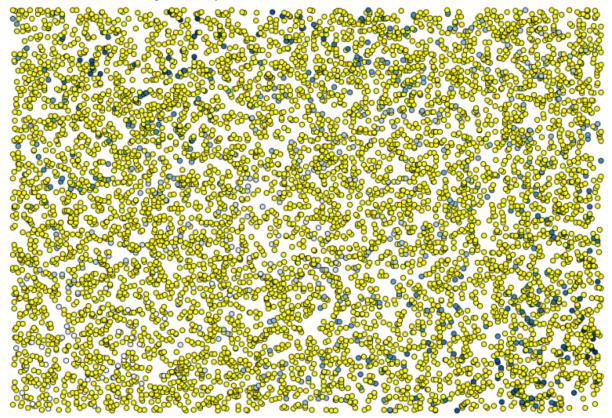
E per un risultato più uniforme (meno preciso ma migliore per la visualizzazione di fondo come layer di supporto), puoi applicare *Gaussian filter* al raster.

🧕 Gaussian filter	×
Parameters Log Help	
Grid	
Clipped [EPSG:32755]	 ✓
Standard Deviation	
3	×
Search Mode	
[1] Circle	▼
Search Radius	
250	▲ ▼
Filtered Grid	
[Save to temporary file]	
Open output file after running algorithm	
100%	
100%	
	Run Close Cancel

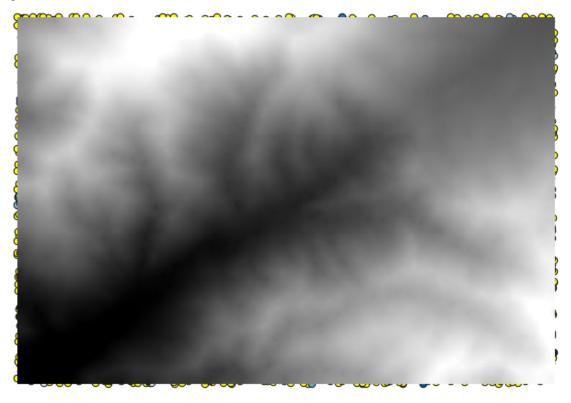
Con i parametri di cui sopra otterrai il seguente risultato

17.22 Ancora sull'interpolazione

Nota: Questo capitolo mostra un altro caso pratico sull'algoritmo dell'interpolazione.


L'interpolazione è una tecnica comune, e puoi usarla per mostrare diverse tecniche utili attraverso gli strumenti di processing QGIS. Questa lezione usa alcuni algoritmi di interpolazione che sono stati già introdotti, ma ha un approccio diverso.

I dati per questa lezione contengono anche uno layer di punti, in questo caso con dati di elevazione. Ti accingi a interpolare in modo assai simile a come hai fatto nella lezione precedente, ma stavolta salverai parte dei dati originali per valutare la qualità del processo di interpolazione.


In primo luogo, devi rasterizzare il layer di punti e riempire le celle vuote, ma utilizzando solo una frazione dei punti nel livello. Salva il 10% dei punti per un controllo posteriore, quindi hai bisogno di avere il 90% dei punti pronti per l'interpolazione. Per fare ciò, potrai usare l'algoritmo *Split shapes layer randomly*, che hai già utilizzato in una lezione precedente, ma c'è un modo migliore per farlo, senza dover creare ogni nuovo strato intermedio. Invece, puoi semplicemente selezionare i punti da usare per l'interpolazione (la frazione del 90%), e quindi eseguire l'algoritmo. Come hai già visto, l'algoritmo di rasterizzazione utilizzerà solo i punti selezionati e ignorare il resto. Puoi fare la selezione utilizzando l'algoritmo *Random selection*. Esegui con i seguenti parametri.

🤨 Random selection			×	
Parameters Log Help				
Input layer				
points [EPSG:23030]			-	
Method				
Percentage of selected features			-	
Number/percentage of selected features				
90			÷	
b				
0%				
	Run	Close	Cancel	

Sarà selezionato il 90% dei punti del layer da rasterizzare.


La selezione è casuale, così la tua selezione potrebbe differire dalla selezione mostrato nell'immagine qui sopra. Ora esegui l'algoritmo *Shapes to grid* per ottenere il primo raster, e quindi esegui l'algoritmo *Close gaps* per

riempire le celle vuote [risoluzione della cella: 100 m].

Per controllare la qualità dell'interpolazione, ora puoi utilizzare i punti che non sono stati selezionati. A questo punto, conosci l' elevazione reale (valore nello strato punti) e l'elevazione interpolato (il valore nello strato raster interpolati). Puoi confrontare le due calcolando le differenze tra questi valori.

Dal momento che utilizzarai i punti che non sono stati selezionati prima, inverti la selezione.

I punti contengono i valori originali, ma non quelli interpolati. Per aggiungerli in un nuovo campo, possiamo usare

l'algoritmo Add grid values to points.

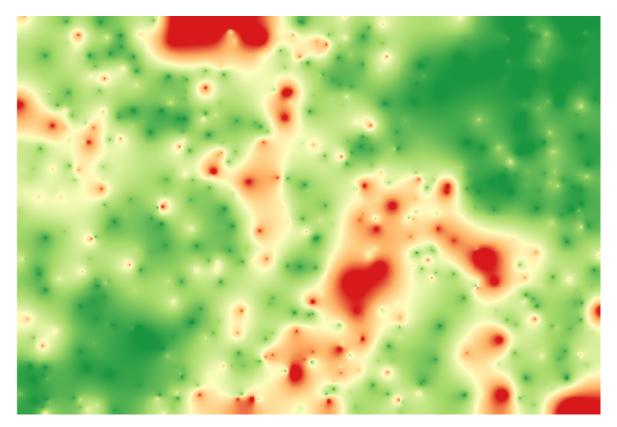
🔇 Add grid values to points			×	
Parameters Log Help				
Points				
points [EPSG:23030]				
Grids				
1 elements selected				
Interpolation				
[4] B-Spline Interpolation			-	
Result				
[Save to temporary file]				
Open output file after running algorithm				
0%				
0%				
	Run	Close	Cancel	

Il raster da selezionare (l'algoritmo supporta raster multipla, ma ne abbiamo bisogno di uno solo) è il risultato dell'interpolazione. Lo hai rinominato *interpolate* e quel nome di raster è quello che userai per il nome del campo da aggiungere.

Ora hai un vettore che contiene entrambi i valori, con punti non utilizzati per l'interpolazione

😲 Attribute table - Result :: Features total: 703, filtered: 703, selected: 0				- D ×	
		8 <mark>- 1</mark>	🚳 😵 😥		?
	ID 🛆	VALUE	interpolate		
1	6	1516.0000000000	1452.5041504000		
3	10	2096.0000000000	2073.7648926000		
4	12	582.000000000	555.3154296900		
8	20	843.0000000000	863.3750000000		
21	64	2224.0000000000	2136.8483887000		
24	66	749.0000000000	753.2822265600		
28	69	1635.0000000000	1644.0615234000		
31	75	726.000000000	704.6588134800		
36	96	927.0000000000	936.9505004900		
38	101	1320.0000000000	1305.3083496000		
39	102	2170.000000000	2155.5400391000		
40	106	549.0000000000	544.8676757800		
42	108	641.0000000000	648.3961181600		
47	113	1534.000000000	1525.2607422000		
54	141	775.000000000	757.4203491200		
62	158	1915.000000000	1924.1274414000		
	Show All Features				

Ora, userai il calcolatore di campi per questo compito. Apri l'algoritmo *Field calculator* ed eseguilo con i seguenti parametri.


Input layer	
Result [EPSG:23030]	▼ … Ø
Result field name	
error	
Field type	
Float	▼
Field length	
10	-
Field precision	
5	
Formula	
abs(VALUE - interpolat)	
Output layer	
[Save to temporary file]	
Open output file after running algorithm	
0%	
070	Run Close Cance

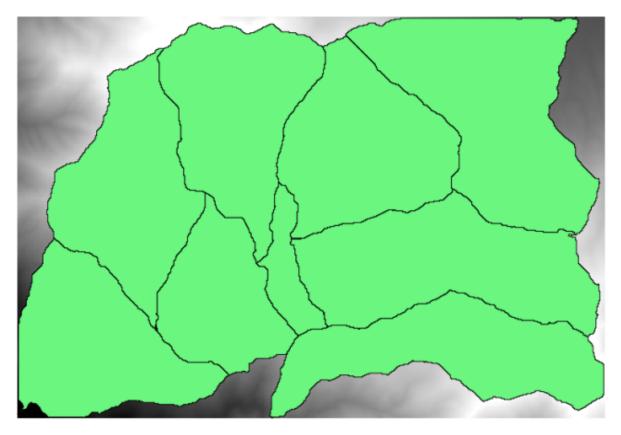
Se il tuo campo con i valori del raster ha un nome diverso, è necessario modificare la formula sopra di conseguenza. XCon l'esecuzione di questo algoritmo, otterrai un nuovo livello con solo i punti che non hai usato per l'interpolazione, ognuno dei quali contiene la differenza tra i due valori di elevazione.

Rappresentare quello strato in base al valore che ci darà una prima idea di dove si trovano le maggiori differenze.

🤨 Attribute table - Output layer :: Features total: 703, filtered: 703, selected: 0					
/ 🕞 💷 🗳 🛎 🖕 💷 🔛					?
	D 🗸	VALUE	interpolat	error	
0	4107	1243.0000000000	1199.6501465000	43.34985	
1	6	1516.000000000	1452.5041504000	63.49585	
2	4112	1594.0000000000	1590.4835205000	3.51648	
3	10	2096.0000000000	2073.7648926000	22.23511	
4	12	582.000000000	555.3154296900	26.68457	
5	4121	1101.000000000	1103.0323486000	2.03235	
6	6176	1258.000000000	1260.9846191000	2.98462	
7	4125	1241.0000000000	1225.0878906000	15.91211	
8	20	843.0000000000	863.3750000000	20.37500	
9	6179	1195.0000000000	1198.4991455000	3.49915	
10	2075	1786.0000000000	1799.5468750000	13.54688	
11	4133	1196.0000000000	1156.2314453000	39.76855	
12	6188	1720.0000000000	1724.4638672000	4.46387	
13	6189	1497.0000000000	1498.2706299000	1.27063	
14	6191	1349.0000000000	1347.5555420000	1.44446	
15	2086	1277.0000000000	1296.1885986000	19.18860	▲ ▼
Show All Features					

Interpolando quello strato otterrà un raster con l'errore stimato in tutti i punti dell'area interpolata.

Puoi inoltre ottenere le stesse informazioni (differenza tra i valori dei punti di origine e quelli interpolati) direttamente con $GRASS \rightarrow v. sample$.


I tuoio risultati potrebbero differire da questi, dato che c'è una componente casuale introdotta durante l'esecuzione all'inizio di questa lezione.

17.23 Iterative execution of algorithms

Nota: This lesson shows a different way of executing algorithms that use vector layers, by running them repeatedly, iterating over the features in an input vector layer

We already know the graphical modeler, which is one way of automating processing tasks. However, in some situations, the modeler might not be what we need to automate a given task. Let's see one of those situations and how to easily solve it using a different functionality: the iterative execution of algorithms.

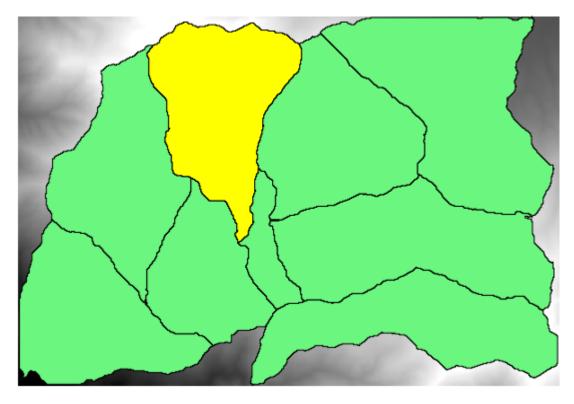
Open the data corresponding to this chapter. It should look like this.

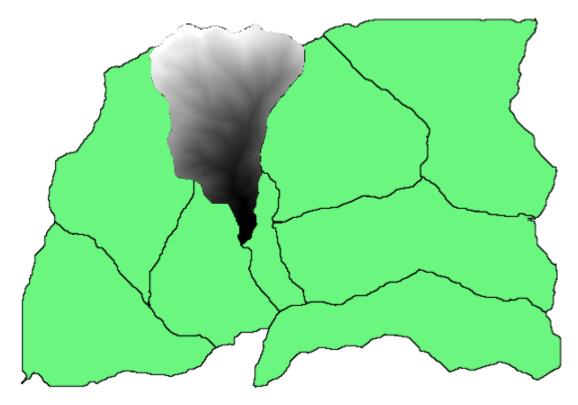
You will recognize our well-known DEM from previous chapters and a set of watersheds extracted from it. Imagine that you need to cut the DEM into several smaller layers, each of them containing just the elevation data corresponding to a single watershed. That will be useful if you later want to calculate some parameters related to each watershed, such as its mean elevation or it hypsographic curve.

This can be a lengthy and tedious task, especially if the number of watersheds is large. However, it is a task that can be easily automated, as we will see.

The algorithm to use for clipping a raster layer with a polygon layer is called *Clip raster with polygons*, and has the following parameters dialog.

😧 Clip grid with polygon			×
Parameters Log Help			
Input			
dem25 [EPSG:23030]		•	
Polygons			
watersheds [EPSG:23030]			
Output			
[Save to temporary file]			
0%			
,	Run	Close	Cancel


You can run it using the watersheds layer and the DEM as input, and you will get the following result.

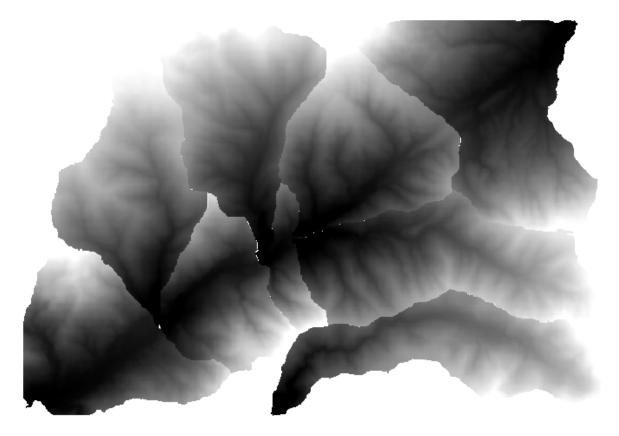

As you can see, the area covered by all the watershed polygons is used.

You can have the DEM clipped with just a single watershed by selecting the desired watershed and then running

the algorithm as we did before.

Since only selected features are used, only the selected polygon will be used to crop the raster layer.

Doing this for all the watersheds will produce the result we are looking for, but it doesn't look like a very practical way of doing it. Instead, let's see how to automate that *select and crop* routine.


First of all, remove the previous selection, so all polygons will be used again. Now open the *Clip raster with polygon* algorithm and select the same inputs as before, but this time click on the button that you will find in the

🦉 Clip grid with polygon	×
Parameters Log Help	
Input dem25 [EPSG:23030]	
Polygons	
watersheds [EPSG:23030]	
Output	terate over this layer
[Save to temporary file]	terate over ansityer
0%	
Run Close Cancel	

right-hand side of the vector layer input where you have selected the watersheds layer.

This button will cause the selected input layer to be split into as many layer as feature are found in it, each of them containing a single polygon. With that, the algorithm will be called repeatedly, one for each one of those single-polygon layers. The result, instead of just one raster layer in the case of this algorithm, will be a set of raster layers, each one of them corresponding to one of the executions of the algorithm.

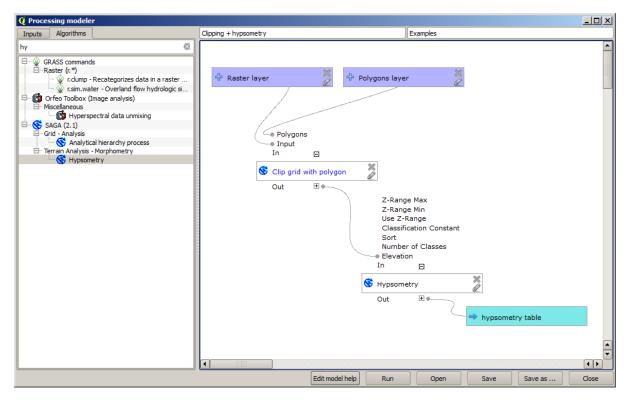
Here's the result that you will get if you run the clipping algorithm as explained.

For each layer, the black and white color palette, (or whatever palette you are using), is adjusted differently, from its minimum to its maximum values. That's the reason why you can see the different pieces and the colors do not seem to match in the border between layers. Values, however, do match.

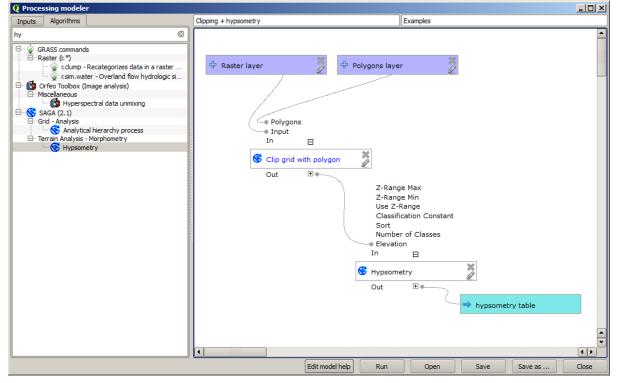
If you enter an output filename, resulting files will be named using that filename and a number corresponding to each iteration as suffix.

17.24 More iterative execution of algorithms

Nota: This lesson shows how to combine the iterative execution of algorithms with the modeler to get more automation.


The iterative execution of algorithms is available not just for built-in algorithms, but also for the algorithms that you can create yourself, such as models. We are going to see how to combine a model and the iterative execution of algorithms, so we can obtain more complex results with ease.

The data the we are going to use for this lesson is the same one that we already used for the last one. In this case, instead of just clipping the DEM with each watershed polygon, we will add some extra steps and calculate a hypsometric curve for each of them, to study how elevation is distributed within the watershed.


Since we have a workflow that involves several steps (clipping + computing the hypsometric curve), we should go to the modeler and create the corresponding model for that workflow.

You can find the model already created in the data folder for this lesson, but it would be good if you first try to create it yourself. The clipped layer is not a final result in this case, since we are just interested in the curves, so this model will not generated any layers, but just a table with the curve data.

The model should look like this:

Add the model to you models folder, so it is available in the toolbox, and now execute it.

Select the DEM and watersheds basins, and do not forget to toggle the button that indicates that the algorithm has to be run iteratively.

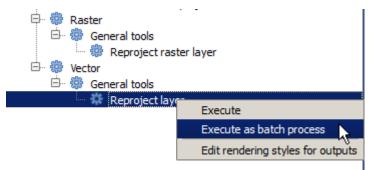
The algorithm will be run several times, and the corresponding tables will be created and open in your QGIS project.

÷ 🗙	🗭 <u>watersheds</u>
···· 🗄	hypsometry table
···· 🗄	hypsometry table
· 🗐	hypsometry table
···· 🛅	hypsometry table
···· 🗐	hypsometry table
	hypsometry table
fi	hypsometry table
E	hypsometry table
	hypsometry table
÷ 😑	dem25
-	ucinz5

We can make this example more complex by extending the model and computing some slope statistics. Add the *Slope, aspect, curvature* algorithm to the model, and then the *Raster statistics* algorithm, which should use the slope output as its only input.

	Esecuzione modelli	- 0	×
📂 🗟 🛃 🔛 🖾			
🖃 Parametri	hyp	ex	
🕆 Boolean			ń
🕂 Extent	🕆 rast 🎽	🕂 vect 🎽	- 11
🕂 File	2		
🕆 Number	-TIN E	• In 🛨	
🕂 Raster layer	S Clip grid with polygon	🔇 Slope, aspect, curvature 🎽	
🖶 String		Out 🛨 🛶	
🕂 Table	Out 🗄		
🖶 Table field	→ In ±	<i>✓ In</i>	
🕆 Vector layer	S Hypsometry	🕺 Raster layer statistics 🎽 🖉	
	Out 🖭 🖛	Out 🗉 🍉	
	→ tab	🏓 stat	
Input Algoritmi	<		ب ۲

If you now run the model, apart from the tables you will get a set of pages with statistics. These pages will be available in the results dialog.


17.25 L'interfaccia per i processi in serie

Nota: Questa lezione introduce l'interfaccia per i processi in serie, che permette di eseguire un singolo algoritmo con una serie di valori in ingresso differenti.

A volte è necessario eseguire un certo algoritmo ripetutamente con diversi file in ingresso. È questo il caso, per esempio, quando una serie di file in ingresso deve essere convertito da un formato a un altro, o quando diversi

vettori in una data proiezione devono essere convertiti in un'altra proiezione.

In questo caso, richiamare ripetutamente l'algoritmo negli strumenti non è la migliore opzione. Invece, dovrebbe essere utilizzata l'interfaccia per i processi in serie, che semplifica enormemente l'esecuzione multipla di un dato algoritmo. Per eseguire un algoritmo come un processo in serie, cercalo negli strumenti e, invece di fare doppioclick su di esso, fai click con il tasto destro e seleziona *Esegui come processo in serie*.

Per questo esempio, useremo l'algoritmo *Riproiezione*, per cui cercalo e applica quanto descritto sopra. Comparirà la seguente finestra di dialogo.

Batch Processing - Reprojec	t layer						>
Input layer		Target CRS		Reprojected la	ayer	Load in QGIS	
		EPSG:4326				Yes	-
		EPSG:4326]	Yes	-
		EPSG:4326				Yes	
			00/				
			0%	un Add row I	Delete row	Close Can	

Se dai un'occhiata ai dati per questa lezione, vedrai che contengono un insieme di tre shapefile, ma non il file di progetto QGIS. Questo perché, quando l'algoritmo è eseguito come un processo in serie, i vettori in ingresso possono essere selezionati o dal progetto QGIS corrente o dai file. Ciò rende più facile processare un grande quantitativo di vettori, come, per esempio, tutti i vettori in una data cartella.

Ogni riga nella tabella della finestra di dialogo per i processi in serie rappresenta una singola esecuzione dell'algoritmo. Le celle in ogni riga corrispondono ai parametri richiesti dall'algoritmo, i quali non sono disposti uno sopra l'altro, come nella tipica finestra di dialogo per una esecuzione singola, ma orizzontalmente lungo essa.

La definizione del processo in serie da eseguire è fatta riempiendo la tabella con i valori corrispondenti, e la finestra di dialogo stessa contiene diversi strumenti per rendere tale operazione più facile.

Iniziamo a riempire i campi uno per uno. La prima colonna da riempire è quella del *vettore in ingresso*. Invece di inserire i nomi di ogni vettore che vogliamo processare, puoi selezionarli tutti e lasciare che sia la finestra di dialogo a inserirli in ogni riga. Clicca sul pulsante nella cella in alto a sinistra e, nella finestra di dialogo di selezione file che apparirà, seleziona i tre file da riproiettare. Siccome soltanto uno di essi è necessario per ogni

Batch Processing - Reproject	layer							J
Parameters Log Help								
Input layer		Target	Target CRS		Reprojected layer		d in	10
):\batch_conversion\pt1.shp		EPSG:4326					Ye	•
:\batch_conversion\pt2.shp		EPSG:4326					Ye	
:\batch_conversion\pt3.shp		EPSG:4326					Ye	
			0%					
			0%	Add row	Delete row	Close	Cancel	

riga, quelli rimanenti saranno utilizzati per riempire le righe sottostanti.

Il numero predefinito di righe è pari a 3, che è esattamente il numero di vettori che dobbiamo convertire ma, se selezioni più vettori, saranno aggiunte nuove righe automaticamente. Se vuoi riempire i campi manualmente, puoi aggiungere più righe utilizzando il pulsante *Aggiungi riga*.

Dovremo convertire tutti questi layer nel CRS EPSG:23029, per cui dobbiamo selezionare tale CRS nel secondo campo. Volendo utilizzare lo stesso per tutte le righe, non dobbiamo ripetere la stessa procedura per ogni riga. Piuttosto, seleziona il CRS per la prima riga (la prima in alto) usando il pulsante nella cella corrispondente, e in seguito fai doppio click sull'intestazione della colonna. Ciò avrà come conseguenza il riempimento di tutte le celle nella colonna utilizzando il valore della colonna in cima.

🧕 Batch Processing - Reprojec	t layer						×
Parameters Log Help							
Input layer		Target CRS		Reprojected layer		Load in QGIS	
D:\batch_conversion\pt1.shp		EPSG:23029				Yes	-
D:\batch_conversion\pt2.shp		EPSG:23029				Yes	-
D:\batch_conversion\pt3.shp		EPSG:23029				Yes	-
]			0%				
			Run	Add row Delete ro	w Close	Cance	el

Infine, dobbiamo selezionare un file in uscita per ogni esecuzione, che conterrà il vettore riproiettato corrispondente. Di nuovo, eseguiamo l'operazione soltanto sulla prima riga. Clicca sul pulsante nella cella più in alto e, nella cartella in cui vorrai salvare i tuoi file in uscita, inserisci un nome file (per esempio, riproiettato.shp).

Adesso, quando clicchi *OK* nella finestra di dialogo di selezione file, il file non sarà automaticamente scritto nella cella, ma sarà mostrato un riquadro come quello mostrato di seguito.

🤨 qgis-dev-bin	<u>? ×</u>
Autofill mode	Do not autofill 🗨
Parameter to use	Input layer 💌
	OK Cancel

Se selezioni la prima opzione, sarà riempita soltanto la cella corrente. Se selezioni una qualunque delle altre opzioni, tutte le celle saranno riempite con un certo schema. In questo caso, selezioniamo l'opzione *Riempi con i valori del parametro*, e poi il valore *Vettore in Ingresso* nel menu a tendina sotto. Ciò farà sì che il valore in *Vettore in Ingresso* (che è il nome del vettore) venga aggiunto al nome file che abbiamo definito, rendendo ogni nome file in uscita diverso. La tabella per i processi in serie dovrebbe ora apparire in questo modo.

💈 Batch Processing - Reprojec	t layer					
Parameters Log Help						
Input layer		Target	CRS	Reprojected layer	Load in	QGIS
D:\batch_conversion\pt1.shp		EPSG:23029		D:/outputs/reprojectedpt1.shp	 Yes	•
D:\batch_conversion\pt2.shp		EPSG:23029		D:/outputs/reprojectedpt2.shp	 Yes	•
D:\batch_conversion\pt3.shp		EPSG:23029		D:/outputs/reprojectedpt3.shp	 Yes	•
			0%			

L'ultima colonna definisce se aggiungere o meno il vettore risultante al progetto QGIS corrente. Lascia l'opzione *Si* predefinita, in modo tale da vedere i tuoi risultati in questo caso.

Clicca su OK e il processo in serie sarà eseguito. Se tutto funziona bene, tutti i tuoi vettori saranno processati, e 3 nuovi vettori saranno creati.

17.26 I modelli nell'interfaccia per i processi in serie

Avvertimento: Attenzione, questo capitolo non è completamente testato, per cui segnala qualunque problema; le immagini sono mancanti

Nota: Questa lezione mostra un altro esempio dell'interfaccia per i processi in serie, ma questa volta utilizzando un modello invece di un algoritmo integrato

I modelli funzionano come un qualunque altro algoritmo, e possono essere utilizzati nell'interfaccia per i processi in serie. Per dimostrare ciò, ecco un breve esempio di quello che possiamo fare utilizzando il nostro ormai ben noto modello idrologico.

Assicurati di aver aggiunto il tuo modello negli strumenti, e poi eseguilo nella modalità in serie. Ecco come la finestra di dialogo per i processi in serie dovrebbe apparire.

Avvertimento: da fare: Aggiungi immagine

Aggiungi righe fino a un totale di 5. Seleziona il file DEM corrispondente a questa lezione come file in ingresso per ognuno di esse. In seguito, inserisci 5 diversi valori limite come mostrato di seguito.

Avvertimento: da fare: Aggiungi immagine

Come puoi notare, l'interfaccia per i processi in serie può essere eseguita non solo per lanciare lo stesso processo su set di dati differenti, ma anche sullo stesso set di dati con diversi parametri.

Click on OK and you should get 5 new layers with watersheds corresponding to the specified 5 threshold values.

17.27 Other programs

Module contributed by Paolo Cavallini - Faunalia

Nota: This chapter shows how to use additional programs from inside Processing. To complete it, you must have installed, with the tools of your operating system, the relevant packages.

17.27.1 GRASS

GRASS is a free and open source GIS software suite for geospatial data management and analysis, image processing, graphics and maps production, spatial modeling, and visualization.

It is installed by default on Windows through the OSGeo4W standalone installer (32 and 64 bit), and it is packaged for all major Linux distributions.

17.27.2 R

R is a free and open source software environment for statistical computing and graphics.

It has to be installed separately, together with a few necessary libraries (LIST).

The beauty of Processing implementation is that you can add your own scripts, simple or complex ones, and they may then be used as any other module, piped into more complex workflows, etc.

Test some of the preinstalled examples, if you have R already installed (remember to activate R modules from the General configuration of Processing).

17.27.3 OTB

OTB (also known as Orfeo ToolBox) is a free and open source library of image processing algorithms. It is installed by deafult on Windows through the OSGeo4W standalone installer (**NB: 32 bit only**). Paths should be configured in Processing.

In a standard OSgeo4W Windows installation, the paths will be:

OTB application folder C:\OSGeo4W\apps\orfeotoolbox\applications OTB command line tools folder C:\OSGeo4W\bin

On Debian and derivatives, it will be /usr/bin

17.27.4 Others

TauDEM is a suite of Digital Elevation Model (DEM) tools for the extraction and analysis of hydrologic information. Availability in various operating system varies.

LASTools is a set of mixed, free and proprietary commands to process and analyze LiDAR data. Availability in various operating system varies.

More tools are available through additional plugins, e.g.:

- LecoS: a suite for land cover statistics and landscape ecology
- lwgeom: formerly part of PostGIS, this library brings a few useful tools for geometry cleanup
- Animove: tools to analyse the home range of animals.

More will come.

17.27.5 Comparison among backends

Buffers and distances

Let's load points.shp and type buf in the filter of the Toolbox, then double click on:

- Fixed distance buffer: Distance 10000
- Variable distance buffer: Distance field SIZE
- v.buffer.distance: distance 10000
- v.buffer.column: bufcolumn SIZE
- Shapes Buffer: fixed value 10000 (dissolve and not), attribute field (with scaling)

See how speed is quite different, and different options are available.

Exercise for the reader: find the differences in geometry output between different methods.

Now, raster buffers and distances:

- first, load and rasterize the vector rivers.shp with *GRASS* → *v.to.rast.value*; **beware:** cell size must be set to 100 m, otherwise the computation time will be enormous; resulting map will have 1 and NULLs
- same, with $SAGA \rightarrow Shapes$ to $Grid \rightarrow COUNT$ (resulting map: 6 to 60)
- then, *proximity* (value= 1 for GRASS, a list of rivers ID for SAGA), *r.buffer* with parameters 1000,2000,3000, *r.grow.distance* (the first of the two maps; the second will show the areas pertaining to each river, if done on the SAGA raster).

Dissolve

Dissolve features based on a common attribute:

- *GRASS* → *v.dissolve* municipalities.shp on PROVINCIA
- $QGIS \rightarrow Dissolve$ municipalities.shp on PROVINCIA
- OGR → Dissolve municipalities.shp on PROVINCIA
- SAGA → Polygon Dissolve municipalities.shp on PROVINCIA (NB: Keep inner boundaries must be unselected)

Nota: The last one is broken in SAGA <=2.10

Exercise for the reader: find the differences (geometry and attributes) between different methods.

17.28 Interpolation and contouring

Module contributed by Paolo Cavallini - Faunalia

Nota: This chapter shows how to use different backends to calculate different interpolations.

17.28.1 Interpolazione

The project shows a gradient in rainfall, from south to north. Let's use different methods for interpolation, all based on vector points.shp, parameter RAIN:

Avvertimento: Set cell size to 500 for all analyses.

• $GRASS \rightarrow v.surf.rst$

- $SAGA \rightarrow Multilevel B$ -Spline Interpolation
- *SAGA* → *Inverse Distance Weighted* [Inverse distance to a power; Power: 4; Search radius: Global; Search range: all points]
- $GDAL \rightarrow Grid$ (Inverse Distance to a power) [Power:4]
- $GDAL \rightarrow Grid$ (Moving average) [Radius1&2: 50000]

Then measure variation among methods and correlate it with distance to points:

- *GRASS* → *r.series* [Unselect Propagate NULLs, Aggregate operation: stddev]
- *GRASS* → *v.to.rast.value* on points.shp
- $GDAL \rightarrow Proximity$
- *GRASS* → *r.covar* to show the correlation matrix; check the significance of the correlation e.g. with http://vassarstats.net/rsig.html.

Thus, areas far from points will have less accurate interpolation.

17.28.2 Contour

Various methods to draw contour lines [always step= 10] on the stddev raster:

- $GRASS \rightarrow r.contour.step$
- $GDAL \rightarrow Contour$
- *SAGA* → *Contour lines from grid* [**NB:** output shp is not valid, known bug]

17.29 Vector simplification and smoothing

Module contributed by Paolo Cavallini - Faunalia

Nota: This chapter shows how simplify vectors, and smooth out sharp corners.

Sometimes we need a simplified version of a vector, to have a smaller file size and get rid of unnecessary details. Many tools do this in a very rough way, and miss the adjacency and sometimes the topological correctness of polygons. GRASS is the ideal tool for this: being a topological GIS, adjacency and correctness are preserved even at very high simplification levels. In our case, we have a vector resulting from a raster, thus showing a "saw" pattern at borders. Applying a simplification results in straight lines:

• $GRASS \rightarrow v.generalize$ [Maximal tolerance value: 30 m]

We can also do the reverse, and make a layer more complex, smoothing out sharp corners:

• *GRASS* → *v.generalize* [method: chaiken]

Try to apply this second command both to original vector and to the one from the first analysis, and see the difference. Note that adjacency is not lost.

This second option can be applied e.g. to contour lines resulting from a coarse raster, to GPS tracks with sparse vertices, etc.

17.30 Planning a solar farm

Module contributed by Paolo Cavallini - Faunalia

Nota: This chapter shows how to use several criteria to locate the areas suitable for installing a photovoltaic power station

First of all, create an aspect map from DTM:

• $GRASS \rightarrow r.aspect$ [Data type: int; cell size:100]

In GRASS, aspect is calculated in degrees, counterclockwise starting from East. To extract only South facing slopes (270 degrees +- 45), we can reclassify it:

• $GRASS \rightarrow r.reclass$

with the following rules:

225 thru 315 = 1 south * = NULL

You can use the text file reclass_south.txt provided. Note that with these simple text files we can create also very complex reclassifications.

We want to build a large farm, so we select only large (> 100 ha) contiguous areas:

• $GRASS \rightarrow r.reclass.greater$

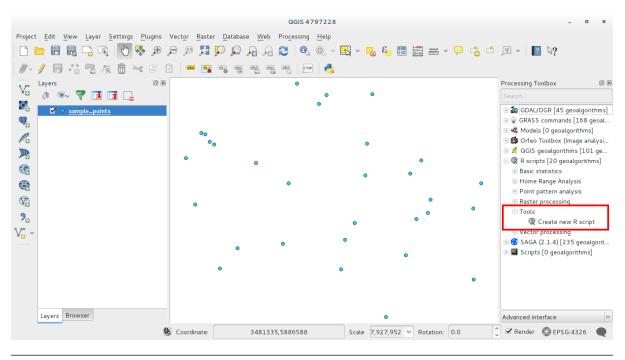
Finally, we convert to a vector:

• *GRASS* → *r.to.vect* [Feature type: area; Smooth corners: yes]

Exercise for the reader: repeat the analysis, replacing GRASS commands with analogous from other programs.

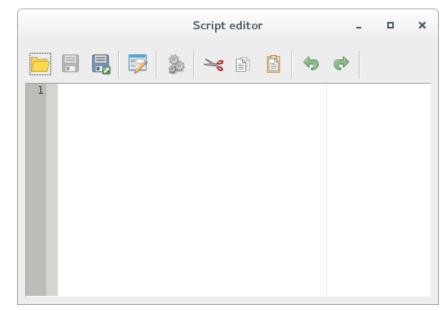
17.31 Use R scripts in Processing

Module contributed by Matteo Ghetta - funded by Scuola Superiore Sant'Anna


Processing allows to write and run R scripts inside QGIS.

Avvertimento: R has to be installed on your computer and the PATH has to correctly set up. Moreover Processing just calls the external R packages, it is not able to install them. So be sure to install external packages directly in R. See the related *chapter* in the user manual.

Nota: If you have some *packages* problem, maybe it is related to missing *mandatory* packages required by Processing, like sp, rgdal and raster.


17.31.1 Adding scripts

Adding a script is very simple. Open the Processing toolbox and just click on the $R \rightarrow Tools \rightarrow Create \ new \ R$ script.

Nota: If you cannot see R in Processing, you have to activate it in *Processing* \rightarrow *Options* \rightarrow *Providers*

It opens a script editor window in which you have to specify some parameters before you can add the script body.

17.31.2 Creating plots

In this tutorial we are going to create a **boxplot** of a vector layer field.

Open the r_intro.qgs QGIS project.

Script parameters

Open the editor and start writing at the beginning of it.

You **must** specify some parameters **before** the script body:

1. the name of the group in which you want to put your script:

##plots=group

so you will find your script in the **plots** group in the Processing toolbox.

2. you have to tell Processing that you want to display a plot (just in this example):

##showplots

this way in the Result Viewer of Processing you'll see the plot.

3. You need also to tell Processing with which kind of data you are working with. In this example we want to create a plot from a field of a vector layer:

##Layer=vector

Processing knows now that the input is a vector. The name *Layer* is not important, what matters is the **vector** parameter.

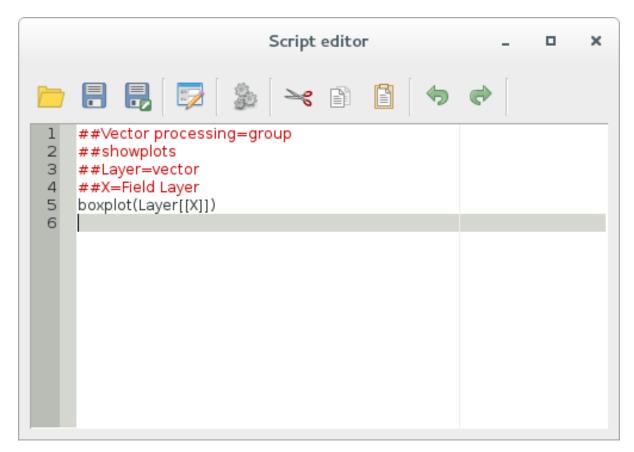
4. Finally, you have to specify the input field of the vector layer you want to plot:

##X=Field Layer

So Processing knows that you have called **X** the **Field Layer**.

Script body

Now that you have set up the *heading* of the script you can add the function:

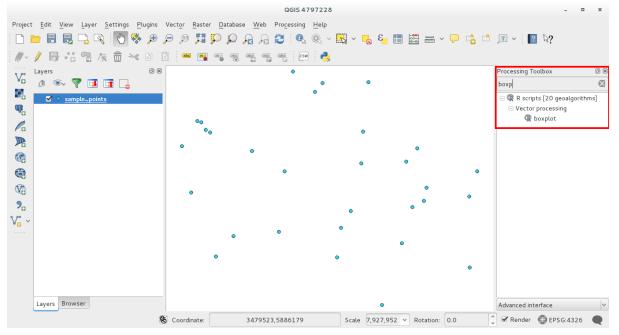

boxplot(Layer[[X]])

Notice that **boxplot** is the name of the R function itself that calls **Layer** as dataset and **X** as the field of the dataset.

Avvertimento: The parameter X is within a double square bracket [[]]

The final script looks like this:

##Vector processing=group
##showplots
##Layer=vector
##X=Field Layer
boxplot(Layer[[X]])

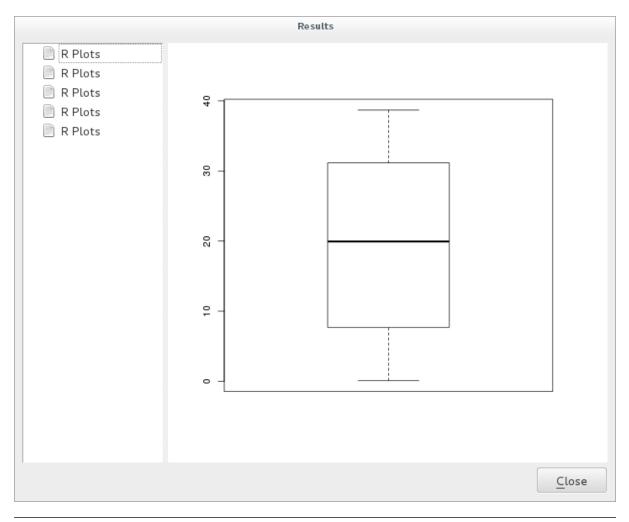

Save the script in the default path suggested by Processing. The name you choose will be the same as the name of the script you'll find in the Processing toolbox.

Nota: You can save the script in other paths, but Processing isn't able to upload them automatically and you have to upload all the scripts manually

Now just run it using the button on the top of the editor window:

	Script editor	-	۰	×
	8 8 😼 🛸 🖻 🌘			
1 2 3 4 5 6	##Vector processing=group ##showplots ##Layer=vector ##X=Field Layer boxplot(Layer[[X]])			
0				

Otherwise, once the editor window has been closed, use the text box of Processing to find your script:


You are now able to fill the parameters required in the Processing algorithm window:

- as Layer choose the *sample points* one
- fill the X field with the value parameter

Click on Run.

boxplot		
Parameters Log Help		
Layer		
sample_points [EPSG:4326]		~
х		
value		~
R Plots		
[Save to temporary file]		
0%		
	<u>C</u> lose	Run

The **Result window** should be automatically opened, if not, just click on *Processing* \rightarrow *Result Viewer*.... This is the final result you'll see:

Nota: You can open, copy and save the image by right clicking on the plot

17.31.3 Create a vector

With an R script you can also create a vector and automatically load it in QGIS.

The following example has been taken from the Random sampling grid script that you can download from the online collection $R \rightarrow Tools \rightarrow Download R$ scripts from the on-line collection.

The aim of this exercise is to create a random point vector in a layer extent using the spsample function of the sp package.

Script parameters

As before we have to set some parameters before the script body:

1. specify the name of the group in which you want to put your script, for example Point pattern analysis:

##Point pattern analysis=group

2. set the layer that will contain the random points:

```
##Layer=vector
```

3. set the number of points that are going to be created:

##Size=number 10

Nota: 10 is going to be the default value. You can change this number or you can leave the parameter without a default number

4. specify that the output is a vector layer:

##Output= output vector

Script body

Now you can add the body of the function:

1. run the spsample function:

pts=spsample(Layer,Size,type="random")

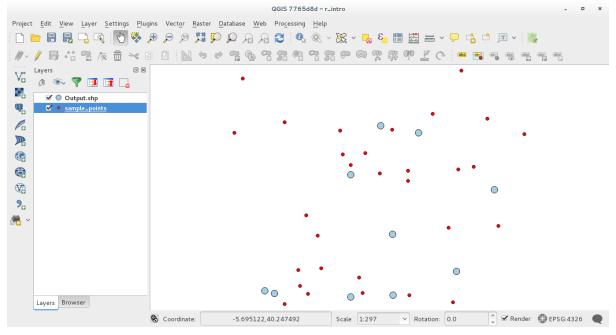
this way the function takes the extent of the *Layer*, the number of points is taken from the *Size* parameter and the point generation is *random*

2. Write the line that contains the parameters of the output:

Output=SpatialPointsDataFrame(pts, as.data.frame(pts))

The final script should look like:

Script editor	r _ • ×
Script editor	dom")


Save it and run it, clicking on the running button.

In the new window type in the right parameters:

Random sampling grid	
Parameters Log Help	
Layer	
sample_points [EPSG:4326]	× 🔊
Size	
10.000000	^
Output	
[Save to temporary file]	
✔ Open output file after running algorithm	
0%	
	<u>C</u> lose Run

and click on run.

Resulting points will be displayed in the map canvas

17.31.4 R - Processing syntax

Beware that Processing uses some special syntax to get the results out of R:

- > before your command, as in >lillie.test(Layer[[Field]]) means the result should be sent to R output (Result viewer)
- + after a plot to call overlay plots. For example plot(Layer[[X]], Layer[[Y]]) + abline(h=mean(Layer[[X]]))

17.32 Sintassi di R negli script di Processing

Modulo fornito da Matteo Ghetta - finanziato dalla Scuola Superiore Sant'Anna

Scrivere script di R in Processing potrebbe essere leggermente complicato a causa della sintassi che deve essere adottata.

Ogni script inizia con Input e Output preceduto da ##.

17.32.1 Input

Prima di specificare gli input puoi anche impostare il gruppo degli algoritmi nel quale il tuo script sarà inserito. Se il gruppo esiste già, l'algoritmo sarà aggiunto agli altri, altrimenti sarà automaticamente creato un nuovo gruppo:

1. creazione del gruppo, ##My Group=group

Then you have to specify all the input types and eventually the additional parameters. You can have different inputs:

- 1. vettore, ##Layer = vector
- 2. Campo del vettore, ##F = Field Layer (dove Layer è il nome del vettore in ingresso)
- 3. tabella, ##Layer = raster
- 4. numero, ##Num = number
- 5. stringa, ##Str = string
- 6. booleano, ##Bol = boolean

puoi anche avere un menu a tendina con tutti i parametri che vuoi; gli elementi devono essere separati con punto e virgola ; :

7. ##type=selection point; lines; point+lines

17.32.2 Output

Come per gli input, ogni output deve essere definito all'inizio dello script:

- 1. vettore, ##output= output vector
- 2. raster, ##output= output raster
- 3. table, ##output= output table
- 4. plots, ##showplots
- 5. Per l'output di R nel *Visualizzatore Risultati*, inserisci **all'interno** dello script > **prima** dell'output che vuoi visualizzare

17.32.3 Corpo dello script

Il corpo dello script segue la sintassi di R e il pannello di **Log** può aiutarti se qualcosa non funziona nel tuo script. **Ricorda** che nello script devi caricare tutte le librerie aggiuntive: library(sp)

Esempio con vettore in uscita

Let's take an algorithm from the online collection that creates random points from the extent of an input layer:

```
##Point pattern analysis=group
##Layer=vector
##Size=number 10
##Output= output vector
library(sp)
pts=spsample(Layer,Size,type="random")
Output=SpatialPointsDataFrame(pts, as.data.frame(pts))
```

e ottieni attraverso le linee:

- 1. Point pattern analysis è il gruppo dell'algoritmo
- 2. Layer is the vettore in ingresso
- 3. Size è il parametro numerico con un valore predefinito di 10
- 4. Output è il vettore che sarà creato dall'algoritmo
- 5. library (sp) carica la libreria **sp** (che dovrebbe essere già installata sul tuo computer e la cui installazione deve essere fatta **in R**)
- 6. call the spsample function of the sp library and pass it to all the input defined above
- 7. crea il vettore in uscita con la funzione SpatialPointsDataFrame

Fatto! Esegui semplicemente l'algoritmo con un vettore a disposizione nella Legenda di QGIS, scegli il numero di punti casuali e li visualizzerai nell'Area di Mappa di QGIS.

Esempio con raster in uscita

Lo script seguente eseguirà un kriging ordinario di base e creerà una mappa raster dei valori interpolati:

```
##Basic statistics=group
##Layer=vector
##Field=Field Layer
##Output=output raster
require("automap")
require("sp")
require("raster")
table=as.data.frame(Layer)
coordinates(table)= ~coords.x1+coords.x2
c = Layer[[Field]]
kriging_result = autoKrige(c~1, table)
prediction = raster(kriging_result$krige_output)
Output<-prediction</pre>
```

da un vettore e il suo campo in ingresso l'algoritmo userà la funzione autoKrige` del pacchetto di R ``automap e inizialmente calcolerà il modello di kriging e successivamente creerà un raster.

Il raster è creato con la funzione raster del pacchetto raster di R.

Esempio con tabella in uscita

Modifichiamo l'algoritmo Summary Statistics in modo che l'output sia un file tabella (csv).

Il corpo dello script è il seguente:

```
##Basic statistics=group
##Layer=vector
##Field=Field Layer
##Stat=Output table
Summary_statistics <- data.frame (rbind (
sum(Layer[[Field]]),
length(Layer[[Field]]),
length(unique(Layer[[Field]])),
min(Layer[[Field]]),
max(Layer[[Field]]),
max(Layer[[Field]])-min(Layer[[Field]]),
mean(Layer[[Field]]),
median(Layer[[Field]]),
sd(Layer[[Field]])),row.names=c("Sum:","Count:","Unique values:","Minimum value:","Maximum value:
colnames(Summary_statistics)<-c(Field)</pre>
Stat <- Summary_statistics
```

La terza linea specifica il Vector Field in ingresso e la quarta linea dice all'algoritmo che l'output sarà una tabella.

L'ultima linea utilizzerà l'oggetto Stat creato nello script e lo convertirà in una tabella csv.

Example with console output

We can take the previous example and instead of creating a table, print the result in the Result Viewer:

```
##Basic statistics=group
##Layer=vector
##Field=Field Layer
Summary_statistics<-data.frame(rbind(
sum(Layer[[Field]]),
length(Layer[[Field]]),
length(unique(Layer[[Field]])),
min(Layer[[Field]]),
max(Layer[[Field]]),
max(Layer[[Field]]),
mean(Layer[[Field]]),
median(Layer[[Field]]),
sd(Layer[[Field]]),row.names=c("Sum:","Count:","Unique values:","Minimum value:","Maximum value:
colnames(Summary_statistics)<-c(Field)</pre>
```

The script is exactly the same of above with just 2 edits:

- 1. no more output specified (the fourth line has been removed)
- 2. the last line begins with > that tells Processing to print the object in the result viewer

Example with plot

Creating plots is very simple. You have to use the ##showplots parameter as the following script shows:

```
##Basic statistics=group
##Layer=vector
##Field=Field Layer
##showplots
qqnorm(Layer[[Field]])
qqline(Layer[[Field]])
```

the script takes a field of the vector layer in input and creates a QQ Plot to test the normality of the distribution.

The plot is automatically added to the Result Viewer of Processing.

17.33 R Syntax Summary table for Processing

Module contributed by Matteo Ghetta - funded by Scuola Superiore Sant'Anna

Processing allows a lot of different input and output parameter that can be used in the script body. Here a summary table:

17.33.1 Input parameters

Parameter	Syntax example	Returning objects
vector	Layer = vector	SpatialDataFrame object, default object of rgdal package
vector point	Layer = vector point	SpatialPointDataFrame object, default object of rgdal
		package
vector line	Layer = vector line	SpatialLineDataFrame object, default object of rgdal package
vector	Layer = vector polygon	SpatialPolygonsDataFrame object, default object of rgdal
polygon		package
multiple	Layer = multiple vector	SpatialDataFrame objects, default object of rgdal package
vector		
table	Layer = table	dataframe conversion from csv, default object of read.csv
		function
field	Field = Field Layer	name of the Field selected, e.g. "Area"
raster	Layer = raster	RasterBrick object, default object of raster package
multiple	Layer = multiple raster	RasterBrick objects, default object of raster package
raster		
number	N = number	integer or floating number chosen
string	S = string	string added in the box
longstring	LS = longstring	string added in the box, could be longer then the normal string
selection	S = selection	string of the selected item chosen in the dropdown menu
	first;second;third	
crs	C = crs	string of the resulting CRS chosen, in the format:
		"EPGS:4326"
extent	E = extent	Extent object of the raster package, you can extract values as
		E@xmin
point	P = point	when clicked on the map, you have the coordinates of the point
file	F = file	path of the file chosen, e.g. "/home/matteo/file.txt"
folder	F = folder	path of the folder chosen, e.g. "/home/matteo/Downloads"

Any of the input could be also **OPTIONAL**, that means that you have a handy way to tell the script to ignore this parameter.

In order to set an input as optional, you just have to add the string optional before the input, e.g.

```
##Layer = vector
##Field1 = Field Layer
##Field2 = optional Field Layer
```

17.33.2 Output parameters

Output parameters take the Input names you gave at the beginning of the script and write the object you want.

Parameter	Syntax example
vector	Output = output vector
raster	Output = output raster
table	Output = output table
file	Output = output file

Nota: for the plot input type, you can save the plot as png directly from the *Processing Result Viewer* or you can choose to save the plot directly from the algorithm interface.

17.33.3 Examples

In order to better understand all the input and output parameters, please have a look at the R Syntax chapter.

17.34 Predicting landslides

Module contributed by Paolo Cavallini - Faunalia

Nota: This chapter shows how to create an oversimplified model to predict the probability of landslides.

First, we calculate slope (choose among various backends; the interested reader can calculate the difference between the outputs):

- $GRASS \rightarrow r.slope$
- $SAGA \rightarrow Slope$, Aspect, Curvature
- GDAL Slope

Then we create a model of predicted rainfall, based on the interpolation of rainfall values at meteo stations:

• $GRASS \rightarrow v.surf.rst$ (resolution: 500 m)

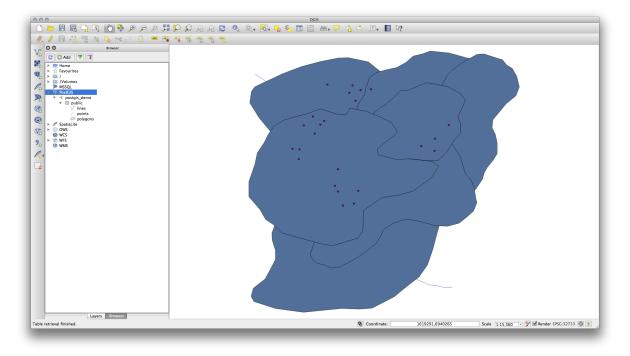
The probability of a landslide will be very roughly related to both rainfall and slope (of course a real model will use more layers, and appropriate parameters), let's say (rainfall * slope)/100:

- *SAGA* → *Raster calculator* rain, slope: (a*b) /100 (or: *GRASS* → *r.mapcalc*)
- then let's calculate what are the municipalities with the greates predicted risk of rainfall: $SAGA \rightarrow Raster$ statistics with polygons (the parameters of interest are *Maximum* and *Mean*)

Module: Usare i database spaziali in QGIS

In questo modulo imparerete ad usare i database spaziali con QGIS per gestire, visualizzare e manipolare dati in un database ma anche ad eseguire delle analisi per interrogazione. Useremo principalmente PostgreSQL e PostGIS (che sono stati descritti nella sezione precedente), ma gli stessi concetti si applicano ad altri database spaziali tra cui SpatiaLite.

18.1 Lesson: Working with Databases in the QGIS Browser


In the previous 2 modules we looked at the basic concepts, features and functions of relational databases as well as extensions that let us store, manage, query and manipulate spatial data in a relational database. This section will dive deeper into how to effectively use spatial databases in QGIS.

The goal for this lesson: To learn how to interact with spatial databases using the QGIS Browser interface.

18.1.1 Follow Along: Adding Database Tables to QGIS using the Browser

We have already briefly looked at how to add tables from a database as QGIS layers, now lets look at this in a bit more detail and look at the different ways this can be done in QGIS. Lets start by looking at the new Browser interface.

- Start a new empty map in QGIS.
- Open the Browser by clicking the Browser tab at the bottom of the Layer Panel
- Open the PostGIS portion of the tree and you should find your previously configured connection available (you may need to click the Refresh button at the top of the browser window).

- Double clicking on any of the table/layers listed here will add it to the Map Canvas.
- Right Clicking on a table/layer in this view will give you a few options. Click on the *Properties* item to look at the properties of the layer.

Display Name	lines
Layer Source	pg:/postgis_demo/public/lines
Provider	postgres
Metadata	
General	
Storage type of	f this layer
PostgreSQL da	tabase with PostGIS extension
Description of t	his provider
PostgreSQL 9.	ostGIS provider 3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple
PostgreSQL 9. Inc. build 5658	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 U Source for this dbname='postg	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 U Source for this dbname='postg table="public".'	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1 layer ijs_demo' host=localhost port=5432 sslmode=disable key='id_0' srid=32733 type=MULTILINESTRING
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 U Source for this dbname='postg table="public".'	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple) (LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1 layer iis_demo' host=localhost port=5432 sslmode=disable key='id_0' srid=32733 type=MULTILINESTRING lines" (geom) sql=
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 U Source for this dbname='postg table="public".' Geometry type	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1 layer iis_demo' host=localhost port=5432 sslmode=disable key='id_0' srid=32733 type=MULTILINESTRING lines" (geom) sql= of the features in this layer
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 US Source for this dbname='postg table="public"." Geometry type Line	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1 layer iis_demo' host=localhost port=5432 sslmode=disable key='id_0' srid=32733 type=MULTILINESTRING lines" (geom) sql= of the features in this layer
PostgreSQL 9. Inc. build 5658 PostGIS 2.1 US Source for this dbname='postg table="public"." Geometry type Line Primary key att id_0	3.1 on x86_64-apple-darwin12.5.0, compiled by i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple ((LLVM build 2336.11.00), 64-bit SE_GEOS=1 USE_PROJ=1 USE_STATS=1 layer iis_demo' host=localhost port=5432 sslmode=disable key='id_0' srid=32733 type=MULTILINESTRING lines" (geom) sql= of the features in this layer

Nota: Of course you can also use this interface to connect to PostGIS databases hosted on a server external to your workstation. Right clicking on the PostGIS entry in the tree will allow you to specify connection paramaters for a new connection.

18.1.2 Follow Along: Adding a filtered set of records as a Layer

Now that we have seen how to add an entire table as a QGIS layer it might be nice to learn how to add a filtered set of records from a table as a layer by using queries that we learned about in previous sections.

- Start a new empty map with no layers
- Click the Add PostGIS Layers button or select Layer -> Add PostGIS Layers from the menu.
- In the Add PostGIS Table(s) dialog that comes up, connect to the postgis_demo connection.
- Expand the public schema and you should find the three tables we were working with previously.
- Click the lines layer to select it, but instead of adding it, click the *Set Filter* button to bring up the *Query Builder* dialog.
- Construct the following expression using the buttons or by entering it directly:

"roadtype" = 'major'

uery Builder
Values
major
minor
NULL
Sample All
Use unfiltered layer
OR NOT

• Click OK to complete editing the filter and click Add to add the filtered layer to your map.

• Rename the lines layer in the tree to roads_primary.

You will notice that only the Primary Roads have been added to your map rather than the entire layer.

18.1.3 In Conclusion

You have seen how to interact with spatial databases using the QGIS Browser and how to add layers to your map based on a query filter.

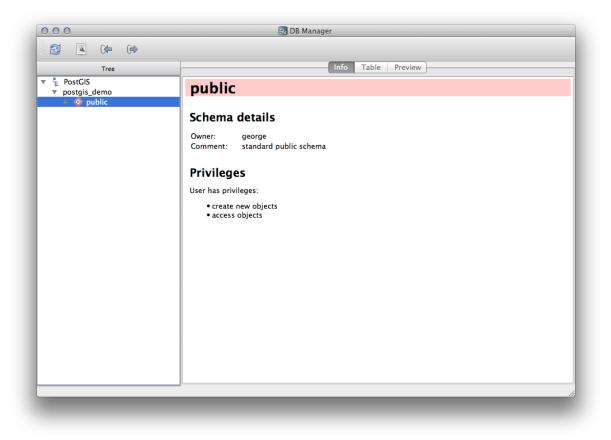
18.1.4 What's Next?

Next you'll see how to work with the DB Manager interface in QGIS for a more complete set of database management tasks.

18.2 Lesson: Using DB Manager to work with Spatial Databases in QGIS

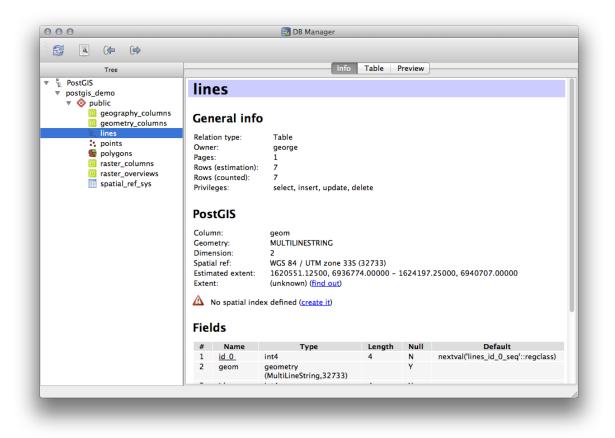
We have already seen how to perform many database operations with QGIS as well as with other tools, but now it's time to look at the DB Manager tool which provides much of this same functionality as well as more management oriented tools.

The goal for this lesson: To learn how to interact with spatial databases using the QGIS DB Manager.


18.2.1 Follow Along: Managing PostGIS Databases with DB Manager

You should first open the DB Manager interface by selecting *Database -> DB Manager -> DB Manager* on the menu or by selecting the DB Manager icon on the toolbar.

You should already see the previous connections we have configured and be able to expand the myPG section and its public schema to see the tables we have worked with in previous sections.


The first thing you may notice is that you can now see some metadata about the Schemas contained in your database.

Schemas are a way of grouping data tables and other objects in a PostgreSQL database and a container for permissions and other constraints. Managing PostgreSQL schemas is beyond the scope of this manual, but you can find more information about them in the PostgreSQL documentation on Schemas. You can use the DB Manager to create new Schemas, but will need to use a tool like pgAdmin III or the command line interface to manage them effectively.

DB Manager can also be used to manage the tables within your database. We have already looked at various ways to create and manage tables on the command line, but now lets look at how to do this in DB Manager.

First, its useful to just look at a table's metadata by clicking on its name in tree and looking in the Info tab.

In this panel you can see the *General Info* about the table as well the information that the PostGIS extension maintains about the geometry and spatial reference system.

If you scroll down in the *Info* tab, you can see more information about the *Fields*, *Constraints* and *Indexes* for the table you are viewing.

Tree			Info	Table F	review	
 PostGIS postgis_demo © public © geography_columns © geometry_columns W lines Context points © polygons © raster_columns © raster_coverviews 	Rows (cou Privileges: PostGl Column: Geometry: Dimension Spatial ref:	: IS ::	7 select, insert, update, do geom MULTILINESTRING 2 WGS 84 / UTM zone 33S	elete		
📰 spatial_ref_sys	Estimated Extent: Mosp Fields		1620551.12500, 693677 (unknown) (<u>find out</u>) x defined (<u>create it</u>)	74.00000 - 3	1624197	2.25000, 6940707.00000
spatial_ref_sys	Extent: Mosp Fields	patial inde	(unknown) (<u>find_out</u>) x defined (<u>create_it</u>)			
📰 spatial_ref_sys	Extent: Mosp Fields	patial inde Iame	(unknown) (<u>find out</u>)	74.00000 - 1 Length	Null N	Default
spatial_ref_sys	Extent: No sp Fields # No	patial inde Iame 0_ om	(unknown) (<u>find out</u>) x defined (<u>create it</u>) Type	Length	Null	
spatial_ref_sys	Extent: No sp Fields # Ni 1 id (patial inde Iame O om	(unknown) (<u>find_out</u>) ex defined (<u>create_it</u>) Type int4 geometry	Length	Null N	Default
፼ spatial_ref_sys	Extent: No sp Fields # No 1 id 2 gec 3 id	patial inde lame 0 om	(unknown) (<u>find_out</u>) ex defined (<u>create_it</u>) Type int4 geometry (MultiLineString,32733)	Length 4	Null N Y	Default

Its also very useful to use DB Manager to simply look at the records in the database in much the same way you might do this by viewing the attribute table of a layer in the Layer Tree. You can browse the data by selecting the *Table* tab.

Tree			Info	Table	Preview
PostGIS	id_0	geom	id	roadty	pe
 postgis_demo public 	1 1	MULTILINES	1	NULL	
 geography_columns geometry_columns 	2 2	MULTILINES	2	minor	
🔌 lines	3 3	MULTILINES	3	NULL	
🛟 points 📓 polygons	4 4	MULTILINES	4	major	
 raster_columns raster_overviews 	5 5	MULTILINES	5	minor	
spatial_ref_sys	6 6	MULTILINES	6	major	
	7 7	MULTILINES	8	minor	

There is also a *Preview* tab which will show you the layer data in a map preview.

Right-clicking on a layer in the tree and clicking Add to Canvas will add this layer to your map.

So far we have only been viewing the database its schemas and tables and their metadata, but what if we wanted to alter the table to add an additional column perhaps? DB Manager allows you to do this directly.

- Select the table you want to edit in the tree
- Select *Table -> Edit Table* from the menu to open the *Table Properties* dialog.

Name	imns: Type	Null Default
id_0 geom id	int4 geometry (MultiLineString,32733) int4 varchar (5)	False nextval('lines_id_0_seq'::regclass
Add co	Add geometry column	Edit column Delete column

You can use this dialog to Add Columns, Add geometry columns, edit existing columns or to remove a column completely.

Using the Constraints tab, you can manage which fields are used as the primary key or to drop existing constraints.

	foreign keys, ur		ck constraints	:	
Name	Type ey Primary key	Column(s)			
Add p	rimary key / ur	iique			Delete constraint

The Indexes tab can be used to add and delete both spatial and normal indexes.

Indexes defined	for this table:	
Add index	Add spatial index	Delete index

18.2.2 Follow Along: Creating a New Table

Now that we have gone through the process of working with existing tables in our database, let's use DB Manager to create a new table.

- If it is not already open, open the DB Manager window, and expand the tree until you see the list of tables already in your databse.
- From the menu select *Table -> Create Table* to bring up the Create Table dialog.
- Use the default Public schema and name the table places.
- Add the id, place_name, and elevation fields as shown below
- Make sure the id field is set as the primary key.
- Click the checkbox to *Create geometry column* and make sure it is set to a POINT type and leave it named geom and specify 4326 as the *SRID*.
- Click the checkbox to *Create spatial index* and click *Create* to create the table.

Name	places			
	Name	Туре	Null	Add field
1 id		serial		Delete field
2 place_	name	text		
3 elevat	ion	integer		
Primary k	ey id			Up Down
	geometry co	olumn POINT		
	geometry co	Name geom		
	geometry co	Name geom sions 2		
☑ Create	geometry co	Name geom sions 2 SRID 4326		

• Dismiss the dialog letting you know that the table was created and click *Close* to close the Create Table Dialog.

You can now inspect your table in the DB Manager and you will of course find that there is no data in it. From here you can *Toggle Editing* on the layer menu and begin to add places to your table.

18.2.3 Follow Along: Basic Database Administration

The DB Manager will also let you do some basic Database Administration tasks. It is certainly not a substitute for a more complete Database Administration tool, but it does provide some functionality that you can use to maintain your database.

Database tables can often become quite large and tables which are being modified frequently can end up leaving around remnants of records that are no longer needed by PostgreSQL. The *VACUUM* command takes care of doing a kind of garbage collection to compact and optional analyze your tables for better performance.

Lets take a look at how we can perform a VACUUM ANALYZE command from within DB Manager.

- Select one of your tables in the DB Manager Tree.
- Select *Table -> Run Vacuum Analyze* from the menu.

Thats it! PostgreSQL will perform the operation. Depending on how big your table is, this may take some time to complete.

You can find more information about the VACUUM ANALYZE process in the PostgreSQL Documentation on VACUUM ANALYZE

18.2.4 Follow Along: Executing SQL Queries with DB Manager

DB Manager also provides a way for you to write queries against your database tables and to view the results. We have already seen this type of functionality in the *Browser* panel, but lets look at it again here with DB Manager.

- Select the lines table in the tree.
- Select the SQL window button in the DB Manager toolbar.

- 1	а	Ŀ.
-	_	e,
-		-

• Compose the following *SQL query* in the space provided:

select * from lines where roadtype = 'major';

- Click the *Execute (F5)* button to run the query.
- You should now see the records that match in the *Result* panel.

	ct * from lin	es where roadtype = 'major';			
E	xecute (F5)	2 rows, 0.0 seconds			Clear
Resu	lt:		^		
	id_0	geom	id	roadtype	
1 4		0105000020DD7F00000	4	major	
26		0105000020DD7F00000	6	major	
		layer			
	Load as new				

- Click the checkbox for *Load as new layer* to add the results to your map.
- Select the id column as the *Column with unique integer values* and the geom column as the *Geometry column*.
- Enter roads_primary as the Layer name (prefix).
- Click *Load now!* to load the results as a new layer into your map.

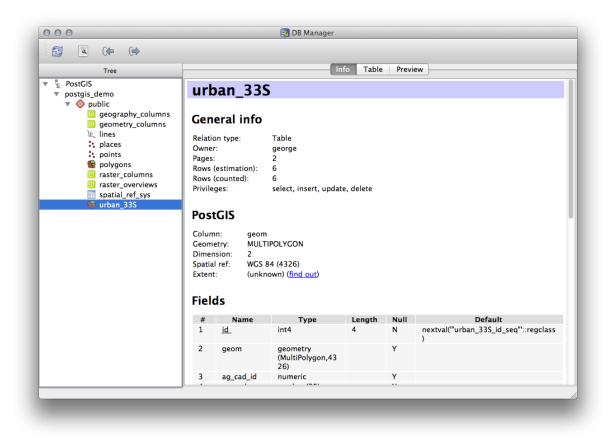
Execute Result:	(F5) 2 rows, 0.0 seconds	r			Clear
id_) geom	id	roadtype		
1 4	0105000020DD7F00000	4	major		
2 6	0105000020DD7F00000	6	major	-	
✓ Load as	new layer				
integer va	ith unique lues ne (prefix) roads_primary	Geometry	column geom	¢ col	trieve umns now!

The layers that matched your query are now displayed on your map. You can of course use this query tool to execute any arbitrary SQL command including many of the ones we looked at in previous modules and sections.

18.2.5 Importing Data into a Database with DB Manager

We have already looked at how to import data into a spatial database using command line tools and also looked at how to use the SPIT plugin, so now lets learn how to use DB Manager to do imports.

• Click the Import layer/file button on the toolbar in the DB Manager dialog.



- Select the urban_33S.shp file from exercise_data/projected_data as the input dataset.
- Click the Update Options button to pre-fill some of the form values.
- Make sure that the Create new table option is selected
- Specify the *Source SRID* as 32722 and the *Target SRID* as 4326.
- Enable the checkbox to Create Spatial Index
- Click *OK* to perform the import.

	Update options
_	
Output ta	ble
Schema	public +
Table	urban_33S 🔻
Action	
• Create	e new table
	Drop existing one
Apper	nd data to table
Options	
🗌 Prima	ry key
Geom	etry column
🗹 Sourc	e SRID 32722 Target SRID 4326
Encod	ing UTF-8 v
	e single-part geometries instead of multi-part
	e spatial index

- Dismiss the dialog letting you know that the import was successful
- Click the *Refresh* button on the DB Manager Toolbar.

You can now inspect the table in your database by clicking on it in the Tree. Verify that the data has been reprojected by checking that the *Spatial ref:* is listed as WGS 84 (4326)

Right clicking on the table in the Tree and a selecting Add to Canvas will add the table as a layer in your map.

18.2.6 Exporting Data from a Database with DB Manager

Of course DB Manager can also be used to export data from your spatial databases, so lets take a look at how that is done.

- Select the lines layer in the Tree and click the *Export to File* button on the toolbar to open the *Export to vector file* dialog.
- Click the ... button to select the *Output file* and save the data to your exercise_data directory as urban_4326.
- Set the *Target SRID* as 4326.
- Click *OK* to initialize the export.

🗌 Drop existir		
	y one	
O Append data to fil	1	
Options		
Source SRID 327	3	Target SRID 4326
Encoding System		Å

• Dismiss the dialog letting you know the export was successful and close the DB Manager. You can now inspect the shapefile you created with the Browser panel.

000000 90	80	Browser
Ve I	😂 日 Add 🖬	
	v 💼 source	2
R.	▼ 💼 do	cs documentation_guidelines
	► 🖿	gentle_gis_introduction pyggis_developer_cookbook
	v 🖿	training_manual
		💼 answers 💼 appendix
B		assessment basic map
	►	complete_analysis
Va Va		create_vector_data database_concepts
		📄 databases 📄 exercise data
?		epsg4326 forms
/		plugins
		▶ 🚞 postgis ▶ 🚞 projected_data
		 aster residential development
		school_property_photos
		 styles symbols
		world Iand use.db
		vrban_4326.shp
		grass
		i18n introduction
		linfiniti-sphinx-theme map_composer
	►	online_resources
		planning_docs
		agis_plugins asters
		resources
	►	spatial_databases vector_analysis
		<pre>vector_classification index.rst</pre>
	98 I	

	Layer Properties
Display Name	urban_4326.shp
ayer Source	is/QGIS-Documentation/source/docs/training_manual/exercise_data/urban_4326.shp
Provider	ogr
Metadata	
General	
Storage type of	f this layer
ESRI Shapefile	
Description of t	his provider
OGR data prov version 1.10.1)	ider (compiled against GDAL/OGR library version 1.10.1, running against GDAL/OGR library
Source for this	layer
	o/sites/qgis/QGIS- /source/docs/training_manual/exercise_data/urban_4326.shp
Documentation	
Documentation	/source/docs/training_manual/exercise_data/urban_4326.shp
Documentation Geometry type Line	/source/docs/training_manual/exercise_data/urban_4326.shp
Documentation Geometry type Line	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer ties of this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer ties of this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer ties of this layer
Documentation Geometry type Line The number of 7	/source/docs/training_manual/exercise_data/urban_4326.shp of the features in this layer features in this layer ties of this layer

18.2.7 In Conclusion

You have now seen how to use the DB Manager interface in QGIS to Manage your spatial databases, to execute sql queries against your data and how to import and export data.

18.2.8 What's Next?

Next, we will look at how to use many of these same techniques with spatialite databases.

18.3 Lesson: Lavorare con SpatiaLite in QGIS

Mentre PostGIS é generalmente usato su un server per fornire funzionalitá da database spaziale a piú utenti allo stesso tempo, QGIS supporta l'uso di un formato di file chiamato *spatialite* che é un modo leggero e portabile di memorizzare un intero database spaziale in un singolo file. Ovviamente, questi 2 tipi di database spaziali devono essere utilizzati per scopi diversi, anche se si applicano le stesse tecniche ed approcci per entrambi. Creiamo un nuovo database SpatiaLite ed esploriamo le funzionalitá disponibili per lavorare con questi database in QGIS.

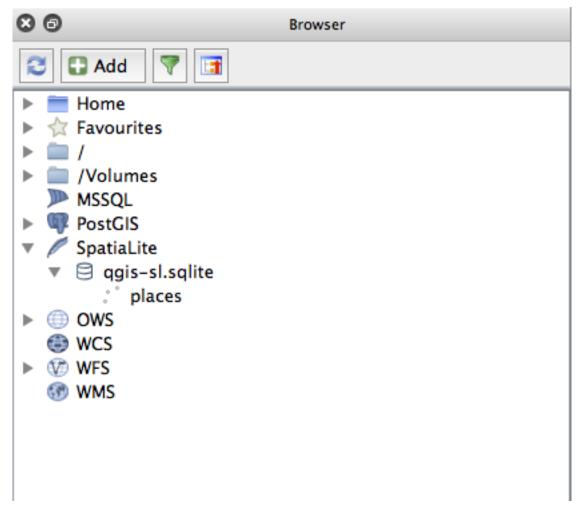
** Lo scopo di questa lezione:** imparare come interagire con i database SpatiaLite utilizzando l'interfaccia QGIS Browser.

18.3.1 Follow Along: Creare un database SpatiaLite con il Browser

Utilizzando il pannello Browser, possiamo creare un nuovo database SpatiaLite e configurarlo per essere utilizzato in QGIS.

- Tasto destro sulla voce Spatialite nell'albero del Browser e selezionare Create Database.
- Specificare in che punto del filesystem si vuole memorizzare il file ed assegnargli il nome qgis-sl.db.
- Nuovamente tasto destro sulla voce *Spatialite* nell'albero del Browser e selezionare *New Connection*. Trovare il file creato al passo precedente ed aprirlo.

Adesso che il database é configurato é possibile notare che la voce nell'albero del Browser non ha niente sotto di se e che l'unica cosa che si puó fare a questo punto é cancellare la connessione. Ovviamente questo é dovuto al fatto che nessuna tabella é stata aggiunta al database. Procediamo con questa operazione.


• Individuare il bottone per creare un nuovo layer ed utilizzare il menu a tendina per creare un nuovo layer SpatiaLite, oppure selezionare guilabel:*Layer -> New -> New Spatialite Layer*.

- Selezionare il database creato in precedenza dal menu a tendina.
- Assegnare il nome places al layer.
- Selezionare la casella di controllo vicino a Create an auto-incrementing primary key.
- Aggiungere 2 attributi come mostrato di seguito
- Click su OK per creare la tabella.

ayer name plac	es	
eometry columr Type	geometry	
 Point MultiPoint 	◯ Line ◯ Multiline	 Polygon Multipolygon
PSG:4326 - WG	5 84	Specify CRS
Create an auto New attribute	incrementing prin	nary key
Name		
Туре	Whole number	*
		To Add to attributes list
Attributes list		
Name	Туре	
place_name	real	
elevation	integer	
		Remove attribute
		Remove attribute

• Click sul bottone di aggiornamento in cima al Browser per visualizzare la tabella places nella lista.

É possibile fare click con il tasto destro sulla tabella e vedere le sue proprietá come giá fatto nell'esercizio precedente.

Da qui é possiile iniziare la sessione di modifica ed aggiungere direttamente dati al nuovo database.

Abbiamo anche imparato come importare i dati nel database utilizzando il DB Manager ed é possibile usare la stessa tecnica per importare i dati nel nuovo database SpatiaLite.

18.3.2 In Conclusion

Abbiamo mostrato come creare dei database SpatiaLite, come aggiungere tabelle a questi database e come utilizzarli come layer in QGIS.

Module: L'Interfaccia

19.1 Panoramica

Di seguito gli argomenti che copriremo in questo corso:

- Cos'é Python? Hello, World!
- Logica della programmazione * Spazi bianchi in Python * Dichiarare le variabili * Espressioni * Cicli * if..then..else * Dichiarare le funzioni * Documentare le funzioni
- Tipi di dato in Python (tipizzazione dinamica, tipizzazione forte) * String, int, float * Dizionari * Liste * Tuple * Formattazione di stringhe * Comprensione delle liste
- Introspezione * Argomenti opzionali e con nome * type, str, dir * getattr * Funzioni Lambda * __doc___
- Oggetti * Importazione di moduli * Importazione di percorsi di ricerca * Definizione di classi * Inizializzazione di un classe (costruttori) * self * Istanziazione di una classe * Garbage collection * Istanziazione di variabili (membri di una classe) * Overload dei metodi (non supportato) * Attributi di una classe (variabili statiche di una classe) * Funzioni private (all'interno del modulo) * Metodi privati (di una classe) * Attributi privati (di una classe)
- Eccezioni * try..except * try..except..else * try..except..finally
- File I/O * Lettura di file di testo * Scrittura di file di testo * Manipolazione dei percorsi file (Modulo os) * Suddivisione dei percorsi * Elencazione di una cartella e globbing

19.2 Lesson: Le basi di Python

In questa lezione vi introdurremo alle basi di Python. Se avete giá programmato in altri linguaggi (Java, C++, VB, etc.) troverete Python molto semplice e veloce da apprendere, anche se leggermente diverso rispetto ad altri linguaggi, specialmente per i requisiti di formattazione del codice.

19.2.1 |facile| Follow Along: Hello, World!

Installa Python da python.org quindi apri il terminale od una finestra comandi ed avvia il terminale Python:

timlinux@ultrabook:~/dev/cpp/QGIS-Training-Manual/python\$ python

Una volta aperto verrá visualizzato un messaggio simile a questo:

```
Python 2.7.3 (default, Aug 1 2012, 05:14:39)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
```

Adesso digita print 'Hello World' nel terminale come mostrato di seguito:

>>> print 'Hello World'

Python risponderá eseguendo il tuo comando:

Hello World

Congratulazioni, hai appena scritto la tua prima applicazione Python!

```
Nota: É possibile uscire dal terminale Python premendo ctrl-D oppure digitando quit () seguito da Enter.
```

19.2.2 |medio| Follow Along: Eseguire comandi da un file

Sarebbe ovviamente limitante poter digitare i comandi Python unicamente in maniera interattiva, é quindi pratica diffusa salvare i comandi Python in un file .py e quindi eseguire il file. Ad esempio, si provi a salvare questa linea di codice in un file di testo chiamato hello_world.py:

```
print 'Hello World'
```

Nota: Per convenzione, si evita di salvare codice Python con nomi di file che contengono spazi o trattini.

Adesso é possibile eseguire il programma digitando quanto segue nel terminale:

```
python hello_world.py
```

19.2.3 |difficile| Follow Along: Definire l'interprete nel file

Sarebbe piú conveniente se potessimo eseguire direttamente il file. Questo é possibile in Linux e Mac OSX aggiungendo una nota per l'interprete all'inizio del file:

#!/usr/bin/python

```
print 'Hello World'
```

Sará inoltre necessario rendere il file eseguibile come segue:

```
chmod +x hello_world.py
```

Adesso é possibile eseguire il file come nell'esempio:

./hello_world.py

Nota: Questa operazione potrebbe impedire la portabilitá tra sistemi operativi del vostro programma.

Appendix: Contributing To This Manual

To add materials to this course, you must follow the guidelines in this Appendix. You are not to alter the conditions in this Appendix except for clarification. This is to ensure that the quality and consistency of this manual can be maintained.

20.1 Downloading Resources

The source of this document is available at GitHub. Consult GitHub.com for instructions on how to use the git version control system.

20.2 Manual Format

This manual is written using Sphinx, a Python document generator using the reStructuredText markup language. Instructions on how to use these tools are available on their respective sites.

20.3 Adding a Module

- To add a new module, first create a new directory (directly under the top-level of the qgis-training-manual directory) with the name of the new module.
- Under this new directory, create a file called index.rst. Leave this file blank for now.
- Open the index.rst file under the top-level directory. Its first lines are:

```
.. toctree::
    :maxdepth: 2
    foreword/index
    introduction/index
```

You will note that this is a list of directory names, followed by the name index. This directs the top-level index file to the index files in each directory. The order in which they are listed determines the order they will have in the document.

- Add the name of your new module (i.e., the name you gave the new directory), followed by /index, to this list, wherever you want your module to appear.
- Remember to keep the order of the modules logical, such that later modules build on the knowledge presented in earlier modules.
- Open your new module's own index file ([module name]/index.rst).
- Along the top of the page, write a line of 80 asterisks (*). This represents a module heading.

- Follow this with a line containing the markup phrase |MOD| (which stands for "module"), followed by the name of your module.
- End this off with another line of 80 asterisks.
- Leave a line open beneath this.
- Write a short paragraph explaining the purpose and content of the module.
- Leave one line open, then add the following text:

```
.. toctree::
    :maxdepth: 2
```

```
lesson1
lesson2
```

... where lesson1, lesson2, etc., are the names of your planned lessons.

The module-level index file will look like this:

Short paragraph describing the module.

```
.. toctree::
    :maxdepth: 2
```

lesson1 lesson2

20.4 Adding a Lesson

To add a lesson to a new or existing module:

- Open the module directory.
- Open the index.rst file (created above in the case of new modules).
- Ensure that the name of the planned lesson is listed underneath the toctree directive, as shown above.
- Create a new file under the module directory.
- Name this file exactly the same as the name you provided in the module's index.rst file, and add the extension .rst.

Nota: For editing purposes, a .rst file works exactly like a normal text file (.txt).

- To begin writing the lesson, write the markup phrase |LS|, followed by the lesson name.
- In the next line, write a line of 80 equal signs (=).
- Leave a line open after this.
- Write a short description of the lesson's intended purpose.
- Include a general introduction to the subject matter. See the existing lessons in this manual for examples.
- Beneath this, start a new paragraph, beginning with this phrase:

The goal for this lesson:

• Briefly explain the intended outcome of completing this lesson.

• If you can't describe the goal of the lesson in one or two sentences, consider breaking the subject matter up into multiple lessons.

Each lesson will be subdivided into multiple sections, which will be addressed next.

20.5 Adding a Section

There are two types of sections: "follow along" and "try yourself".

- A "follow along" section is a detailed set of directions intended to teach the reader how to use a given aspect of QGIS. This is typically done by giving click-by-click directions as clearly as possible, interspersed with screenshots.
- A "try yourself" section gives the reader a short assignment to try by themselves. It is usually associated with an entry in the answer sheet at the end of the documentation, which will show or explain how to complete the assignment, and will show the expected outcome if possible.

Every section comes with a difficulty level. An easy section is denoted by |basic|, moderate by |moderate|, and advanced by |hard|.

20.5.1 Adding a "follow along" section

- To start this section, write the markup phrase of the intended difficulty level (as shown above).
- Leave a space and then write |FA| (for "follow along").
- Leave another space and write the name of the section (use only an initial capital letter, as well as capitals for proper nouns).
- In the next line, write a line of 80 minuses/dashes (-). Ensure that your text editor does not replace the default minus/dash character with a long dash or other character.
- Write a short introduction to the section, explaining its purpose. Then give detailed (click-by-click) instructions on the procedure to be demonstrated.
- In each section, include internal links, external links and screenshots as needed.
- Try to end each section with a short paragraph that concludes it and leads naturally to the next section, if possible.

20.5.2 Adding a "try yourself" section

- To start this section, write the markup phrase of the intended difficulty level (as shown above).
- Leave a space and then write | TY | (for "try yourself").
- In the next line, write a line of 80 minuses/dashes (-). Ensure that your text editor does not replace the default minus/dash character with a long dash or other character.
- Explain the exercise that you want the reader to complete. Refer to previous sections, lessons or modules if necessary.
- Include screenshots to clarify the requirements if a plain textual description is not clear.

In most cases, you will want to provide an answer regarding how to complete the assignment given in this section. To do so, you will need to add an entry in the answer sheet.

- First, decide on a unique name for the answer. Ideally, this name will include the name of the lesson and an incrementing number.
- Create a link for this answer:

:ref: 'Check your results <answer-name>'

- Open the answer sheet (answers/answers.rst).
- Create a link to the "try yourself" section by writing this line:

.. _answer-name:

- Write the instructions on how to complete the assignment, using links and images where needed.
- To end it off, include a link back to the "try yourself" section by writing this line:

```
:ref: 'Back to text <backlink-answer-name>'
```

• To make this link work, add the following line above the heading to the "try yourself" section:

```
.. _backlink-answer-name:
```

Remember that each of these lines shown above must have a blank line above and below it, otherwise it could cause errors while creating the document.

20.6 Add a Conclusion

• To end a lesson, write the phrase |IC| for "in conclusion", followed by a new line of 80 minuses/dashes (-). Write a conclusion for the lesson, explaining which concepts have been covered in the lesson.

20.7 Add a Further Reading Section

- This section is optional.
- Write the phrase FR for "further reading", followed by a new line of 80 minuses/dashes (-).
- Include links to appropriate external websites.

20.8 Add a What's Next Section

- Write the phrase | WN | for "what's next", followed by a new line of 80 minuses/dashes (-).
- Explain how this lesson has prepared students for the next lesson or module.
- Remember to change the "what's next" section of the previous lesson if necessary, so that it refers to your new lesson. This will be necessary if you have inserted a new lesson among existing lessons, or after an existing lesson.

20.9 Using Markup

To adhere to the standards of this document, you will need to add standard markup to your text.

20.9.1 New concepts

• If you are explaining a new concept, you will need to write the new concept's name in italics by enclosing it in asterisks (*).

```
This sample text shows how to introduce a *new concept*.
```

20.9.2 Emphasis

- To emphasize a crucial term which is not a new concept, write the term in bold by enclosing it in double asterisks (**).
- Use this sparingly! If used too much, it can seem to the reader that you are shouting or being condescending.

```
This sample text shows how to use **emphasis** in a sentence. Include the punctuation mark if it is followed by a **comma,** or at the **end of the sentence.**
```

20.9.3 Images

- When adding an image, save it to the folder _static/lesson_name/.
- Include it in the document like this:
- Remember to leave a line open above and below the image markup.

20.9.4 Internal links

- To create an anchor for a link, write the following line above the place where you want the link to point to:
 - .. _link-name:
- To create a link, add this line:

:ref: 'Descriptive link text <link-name>'

• Remember to leave a line open above and below this line.

20.9.5 External links

• To create an external link, write it out like this:

'Descriptive link text <link-url>'_

• Remember to leave a line open above and below this line.

20.9.6 Using monospaced text

• When you are writing text that the user needs to enter, a path name, or the name of a database element such as a table or column name, you must write it in monospaced text. For example:

Enter the following path in the text box: :kbd: 'path/to/file'.

20.9.7 Labeling GUI items

• If you are referring to a GUI item, such as a button, you must write its name in *the GUI label format*. For example:

To access this tool, click on the :guilabel: 'Tool Name' button.

• This also applies if you are mentioning the name of a tool without requiring the user to click a button.

20.9.8 Menu selections

• If you are guiding a user through menus, you must use the *menu* \rightarrow *selection* \rightarrow *format*. For example:

```
To use the :guilabel: 'Tool Name' tool, go to :menuselection: 'Plugins --> Tool Type --> Tool Name'.
```

20.9.9 Adding notes

• You might need to a note in the text, which explains extra details that can't easily be made part of the flow of the lesson. This is the markup:

[Normal paragraph.]

```
.. note:: Note text.
   New line within note.
   New paragraph within note.
[Unindented text resumes normal paragraph.]
```

20.9.10 Adding a sponsorship/authorship note

If you are writing a new module, lesson or section on behalf of a sponsor, you must include a short sponsor message of their choice. This must notify the reader of the name of the sponsor and must appear below the heading of the module, lesson or section that they sponsored. However, it may not be an advertisement for their company.

If you have volunteered to write a module, lesson or section in your own capacity, and not on behalf of a sponsor, you may include an authorship note below the heading of the module, lesson or section that you authored. This must take the form This [module/lesson/section] contributed by [author name]. Do not add further text, contact details, etc. Such details are to be added in the "Contributors" section of the Foreword, along with the name(s) of the part(s) you added. If you only made enhancements, corrections and/or additions, list yourself as an editor.

20.10 Thank You!

Thank you for contributing to this project! By so doing, you are making QGIS more accessible to users and adding value to the QGIS project as a whole.

Answer Sheet

21.1 Results For Adding Your First Layer

21.1.1 *Preparation*

You should see a lot of lines, symbolizing roads. All these lines are in the vector layer that you just loaded to create a basic map.

Back to text

21.2 Results For An Overview of the Interface

Refer back to the image showing the interface layout and check that you remember the names and functions of the screen elements.

Back to text

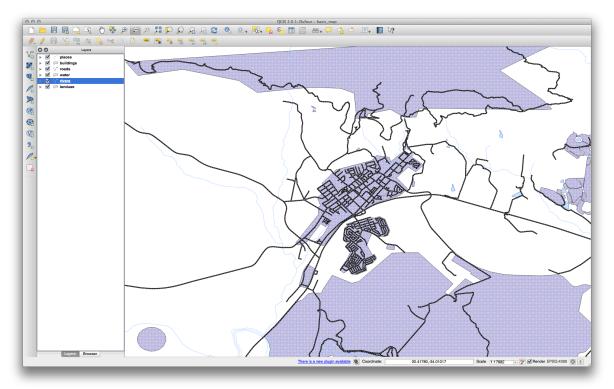
- 1. Save as
- 2. Zoom to layer
- 3. Help
- 4. Rendering on/off
- 5. Measure line

Back to text

21.3 Results For Working with Vector Data

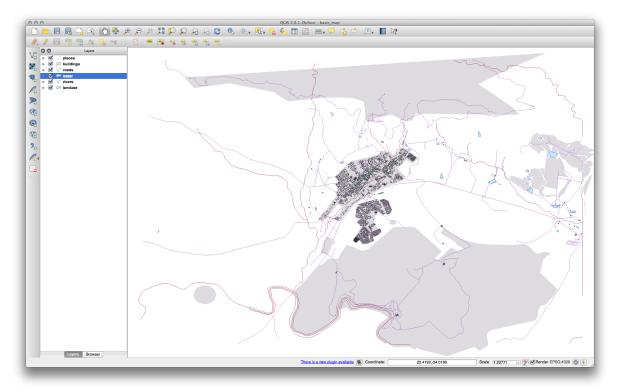
There should be five layers on your map:

- places
- water
- buildings
- rivers and
- roads.


All the vector layers should be loaded into the map. It probably won't look nice yet though (we'll fix the ugly colors later).

Back to text

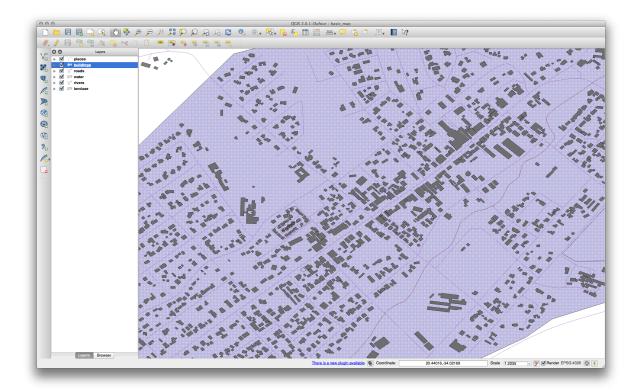
21.4 Results For Symbology


- Verify that the colors are changing as you expect them to change.
- It is enough to change only the *water* layer for now. An example is below, but may look different depending on the color you chose.

Nota: If you want to work on only one layer at a time and don't want the other layers to distract you, you can hide a layer by clicking in the check box next to its name in the Layers list. If the box is blank, then the layer is hidden.

Your map should now look like this:

If you are a Beginner-level user, you may stop here.


- Use the method above to change the colors and styles for all the remaining layers.
- Try using natural colors for the objects. For example, a road should not be red or blue, but can be gray or black.
- Also feel free to experiment with different Fill Style and Border Style settings for the polygons.

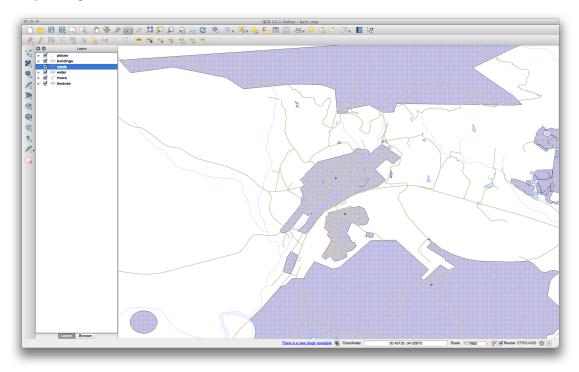
Back to text

21.4.3 Symbol Layers

• Customize your *buildings* layer as you like, but remember that it has to be easy to tell different layers apart on the map.

Here's an example:

To make the required symbol, you need two symbol layers:


000	Layer	Properties – roads Style
🔀 General	 Layer rendering 	
😻 Style	Layer transparency	
abe Labels	Layer blending mode Normal	Feature blending mode Normal +
Fields		
🎸 Rendering	E Single Symbol 😫	
🗭 Display		Unit Millimeter ‡
Actions		Transparency 0% Width 1.00000
┥ Joins		Color
🐖 Diagrams	Symbol layers	Saved styles
🧿 Metadata	▼ — Line	
	— Simple line	Bridleway Canal Canal rive Constructio Crossing Cycle patl Dam
	— Simple line	
	r	Ditch Drain Floodway Footpath Jetty Living stri LockedRoad
		Motorway Motorway li Pedestrian v Primary lin Primary ro. Residential Residential :
		River Riverbank Road Secondary r Steps Stream Tertiary ro.
		Trunk roa Turning cir Unclassified Waterfall Weir
		Symbol Advanced
	Load Style Sav	re As Default Restore Default Style Save Style
	Help Apply	Cancel

The lowest symbol layer is a broad, solid yellow line. On top of it there is a slightly thinner solid gray line.

• If your symbol layers resemble the above but you're not getting the result you want, check that your symbol levels look something like this:

Define th numbers will be d	ne order in wi s in the cells o rawn.	nich the symbol la define in which re	ayers are rendered. The endering pass the layer
	Layer 0	Layer 1	
	0	— 1	
Help		ſ	Cancel OK

• Now your map should look like this:

• Adjust your symbol levels to these values:

Define the order in numbers in the cel will be drawn.	which the syml Ils define in whic	ool layers are rend h rendering pass	lered. The the layer
	Layer 0	Layer 1	
trunk	1	3	
-tertiary	— 1	- 2	
unclassified	<u> </u>	1	
Help		Cancel	ОК

- Experiment with different values to get different results.
- Open your original map again before continuing with the next exercise.

Back to text

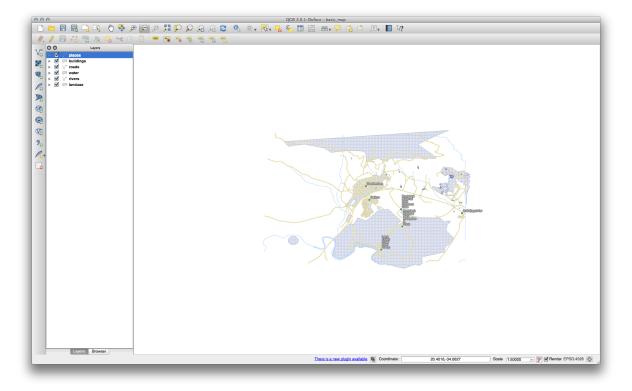
21.5 Results For Attribute Data



The *NAME* field is the most useful to show as labels. This is because all its values are unique for every object and are very unlikely to contain *NULL* values. If your data contains some *NULL* values, do not worry as long as most of your places have names.

21.6 Results For The Label Tool

21.6.1 *Customization* (Part 1)


Your map should now show the marker points and the labels should be offset by 2.0 mm: The style of the markers and labels should allow both to be clearly visible on the map:

Back to text

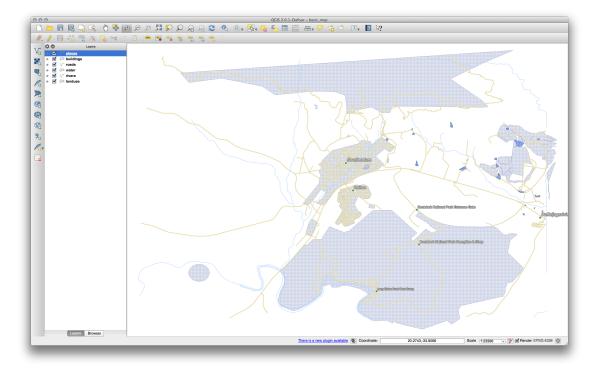
One possible solution has this final product:

To arrive at this result:

- Use a font size of 10, a Label distance of 1, 5 mm, Symbol width and Symbol size of 3.0 mm.
- In addition, this example uses the *Wrap label on character* option:

Ceneral Label this layer with name E Style Text/Buffer sample Coren (psum) Fields Display Coren (psum) Coren (psum) <th>000</th> <th></th> <th>🕺 Layer Properties -</th> <th>places Labels</th> <th></th> <th></th>	000		🕺 Layer Properties -	places Labels		
Image: Second State Sta	X General	☑ Label this layer wit	h name 🛟 E			
Fields Pisplay	😽 Style	▼ Text/Buffer sampl	e			
Display Image: Construction of the system	(abc Labels	Lorem Ipsum				•
Actions Joins Diagrams Image: D	Fields					
Joins Points Pointaring Multiple lines Wrap on character Background Shadow Placement Rendering Formatted numbers Decimal places 3 Show plus sign Load Style Save As Default Restore Default Style Save Style		Lorem Ipsum		()	-0	
Joins Formatting Multiple lines Wrap on character Background Shadow Placement Rendering Formatting Multiple lines Wrap on character Line height 1.00 line Alignment Left Commatting Placement Rendering Formatted numbers Decimal places Show plus sign Load Style Save As Default Restore Default Style Save Style	Actions			~		
Diagrams Image: Burdier Background Shadow Placement Rendering Formatted numbers Decimal places 3 Show plus sign Load Style Save As Default Restore Default Style Save Style	• Joins					
Metadata Background Line height 1.00 line Alignment Left Pormatted numbers Decimal places 3 Show plus sign Load Style Save As Default Restore Default Style Save Style	Diagrams	abc Buffer				e,
Alignment Alignment Pormatted numbers Decimal places Bernant places Show plus sign Load Style Save As Default Restore Default Style Save Style	G Metadata		Line height 1.00 line			
Formatted numbers Decimal places 3 Show plus sign Example and the state of the state		reaction of the second	Alignment			
Decimal places Show plus sign Load Style Save As Default Restore Default Style Save Style		A Rendering	Formatted numbers 🗲			
Show plus sign Load Style Save As Default Restore Default Style			•			۵ 🖶
			Show plus sign			
		r				
		^				
		Load Style	Save As Defau	t Restore Defa	ault Style	Save Style 🔻
Help Apply Cancel OK		Load Style	Save AS Delau	Kestore Dela		Jave Style 🔹
		Help Apply				Cancel OK

• Enter a space in this field and click *Apply* to achieve the same effect. In our case, some of the place names are very long, resulting in names with multiple lines which is not very user friendly. You might find this setting to be more appropriate for your map.

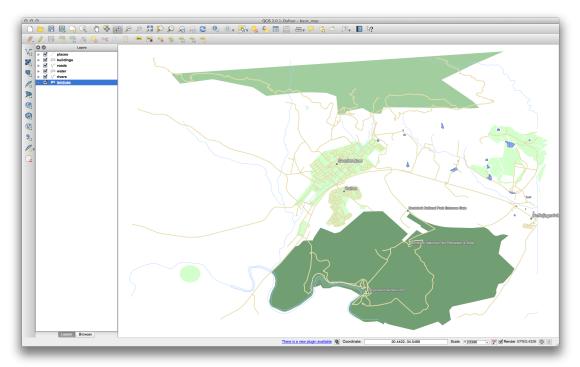

Back to text

21.6.3 *Vising Data Defined Settings*

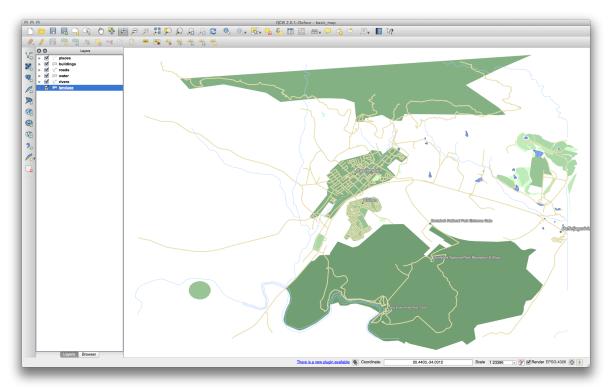
- Still in edit mode, set the FONT_SIZE values to whatever you prefer. The example uses 16 for towns, 14 for suburbs, 12 for localities and 10 for hamlets.
- Remember to save changes and exit edit mode.
- Return to the *Text* formatting options for the *places* layer and select FONT_SIZE in the *Attribute field* of the font size data override dropdown:

000		Ń	Layer Properties – places Labels			
🔀 General	🗹 Label this layer	with name	÷ E			~
😻 Style	▼ Text/Buffer sa	nple				$\overline{}$
(abc Labels	Lorem Ipsum				1	~~~~
Fields						\leq
🗭 Display	Lorem Ipsum		6			<u> </u>
Sctions						2
• ┥ Joins	*** Text	Text style				
Diagrams	abo Buffer	Font	Lucida Grande	\$		
 Metadata 	Background Shadow	Style				Stor A
	Placement	C 1	<u>U</u> E, 5 E,			
	🖌 Rendering	Size	13.0000 points	() €	Data defined override	\downarrow \backslash \backslash \langle \langle \langle \rangle
		Color		•	Description	X HALY
		Transparency			Attribute field Field type: string, int, double >	osm_id (string)
		Type case	No change	÷	Expression	name (string) barrier (string)
		Spacing	letter 0.0000	\$	Edit Paste	highway (string) ref (string)
			word 0.0000		3,	address (string) is_in (string)
		Blend mode	Normal	\$	⊒,	place (string)
						man_made (string) other_tags (string)
						FONT_SIZE (integer)
						/ '
						61
	Load Style		Save As Default Restore Default Style	Save Style	•	/
	Help Apply	·		Cancel		
		× 1				

Your results, if using the above values, should be this:

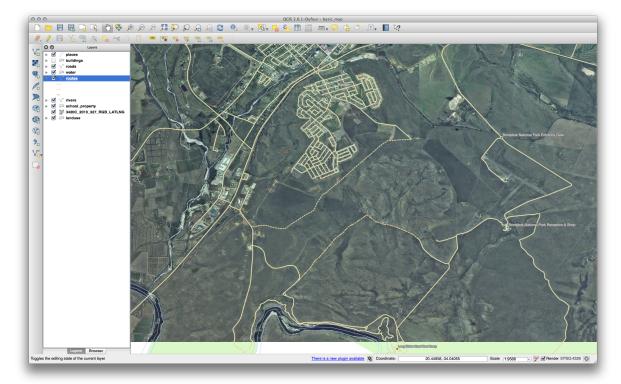


Back to text

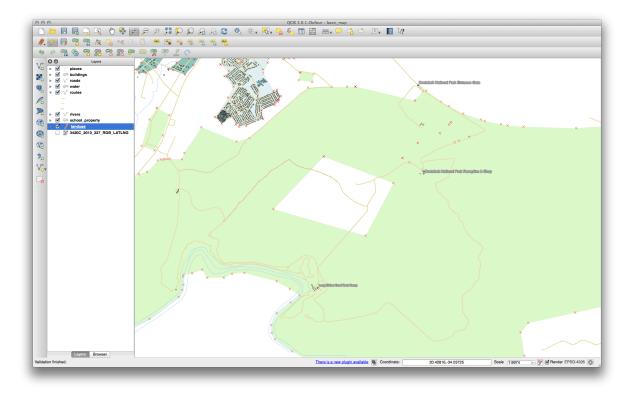

21.7 Results For Classification

21.7.1 *Refine the Classification*

• Use the same method as in the first exercise of the lesson to get rid of the borders:

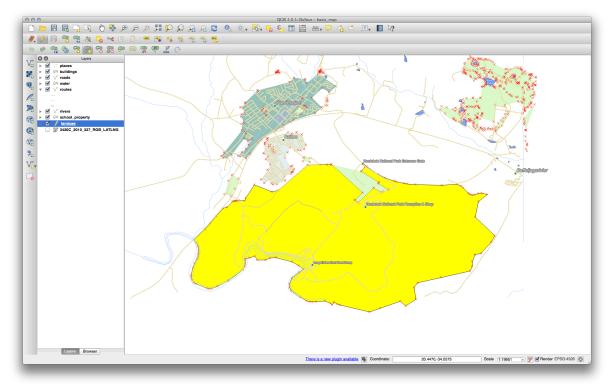

The settings you used might not be the same, but with the values *Classes* = 6 and *Mode* = *Natural Breaks (Jenks)* (and using the same colors, of course), the map will look like this:

21.8 Results For Creating a New Vector Dataset


The symbology doesn't matter, but the results should look more or less like this:

Back to text

The exact shape doesn't matter, but you should be getting a hole in the middle of your feature, like this one:



• Undo your edit before continuing with the exercise for the next tool.

Back to text

• First select the Bontebok National Park:

- Now add your new part:

• Undo your edit before continuing with the exercise for the next tool.

Back to text

- Use the Merge Selected Features tool, making sure to first select both of the polygons you wish to merge.
- Use the feature with the *OGC_FID* of 1 as the source of your attributes (click on its entry in the dialog, then click the *Take attributes from selected feature* button):

Nota:

If you're using a different dataset, it is highly likely that your original polygon's OGC_FID will not be 1. Just choose the feature which has an OGC_FID.

	1	Skip attribute		GEOMETRY	osm_id		osm_way_id	name	-	type	aeroway	amenity	admin_leve	barrier	
14 NULL 2855697 @ NULL Bortebok National Park @ boundary @ NULL NULL NULL at	1		\$	Feature 1 🛟	Feature 1	+	Feature 1 🛟	Feature 1	;	Feature 1	Feature 1 🛟	Feature 1 🛟	Feature 1	Feature 1 🛟	0
		I	⊠	NULL	2855697	⊗	NULL	Bontebok National Park	⊠	boundary 🖾	NULL	NULL	NULL	NULL	at
werge Skipped 2855897 Bortlebok National Park boundary Image: Constraint of the state of the s	4			NULL	2855697	⊗	NULL	Bontebok National Park	×	boundary 🖾	NULL	NULL	NULL	NULL	at
	lerge S	Skipped			2855697			Bontebok National Park		boundary					n
			ure fro	m selection											
Remove feature from selection		Remove feat													
			_			_									

Nota: Using the *Merge Attributes of Selected Features* tool will keep the geometries distinct, but give them the same attributes.

For the *TYPE*, there is obviously a limited amount of types that a road can be, and if you check the attribute table for this layer, you'll see that they are predefined.

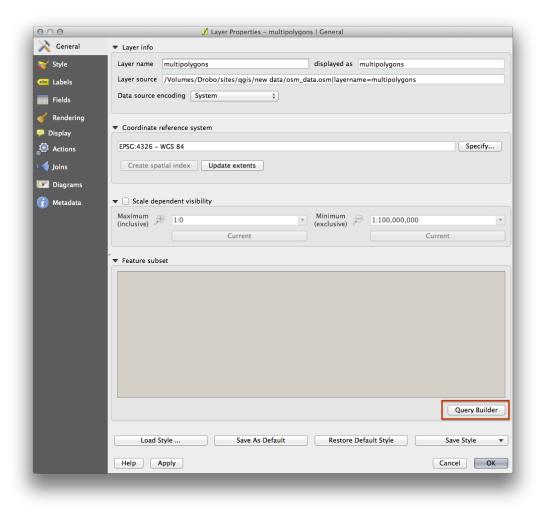
- Set the widget to Value Map and click Load Data from Layer.
- Select roads in the Label dropdown and highway for both the Value and Description options:

	2	highway	QString	String	254	0		Unique values ed	ditable	\checkmark	\checkmark
	0		001	01-1-1-1	054	•		Line edit			1
	00			Attrib	oute Edit Dia	log "highway'	1				
				Editable							
	ine edit Classificatio	•		Label on top				000	Load values fro	m layer	
Ē	Range			Laber on top			Select data from	attributes in sele	cted layer.		
	Jnique value	es		Combo box wit	h predefined i	items. Value is	stored in the attribute,	c Layer	roads		
V	/alue map			shown in the co	ombo box.			Layo	Toddo		
	Enumeration mmutable	1	(Load Data fr	om layer	Load Data	from CSV file	Value	highway	+	
- F	lidden			·	.)			Description	highway	÷ L	View All
	Checkbox Text edit			Value	Desc	ription		Description	Ingitway	*	
Ċ	Calendar			1				Value	Description		
	/alue relatio JUID genera							1 footway	footway		
F	Photo									_	
	Vebview Color							2 path	path		
	20101							3 primary	primary		
								4 residential	residential	_	
										_	
								5 service	service		
								6 tertiary	tertiary		
			(Remove S	elected			 [Cancel	OK	
			`								
							C	ancel OK			
	-										

• Click *Ok* three times.

• If you use the *Identify* tool on a street now while edit mode is active, the dialog you get should look like this:

osm_id	238808188	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
name	Voortrek Street	8
highway	secondary	÷
waterway	NULL	
aerialway	NULL	
barrier	NULL	
man_made		
other_tags	"lanes"=>"2"	8
		Cancel OK


Back to text

21.9 Results For Vector Analysis

21.9.1 *Extract Your Layers from OSM Data*

For the purpose of this exercise, the OSM layers which we are interested in are multipolygons and lines. The multipolygons layer contains the data we need in order to produce the houses, schools and restaurants layers. The lines layer contains the roads dataset.

The Query Builder is found in the layer properties:

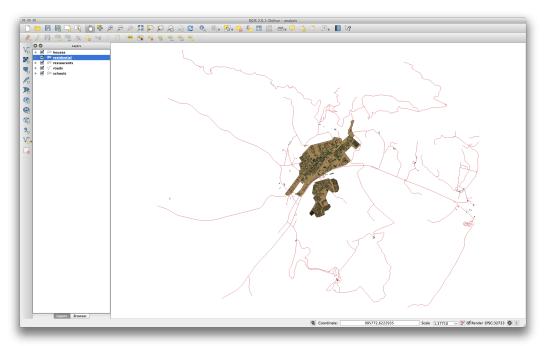
Using the *Query Builder* against the multipolygons layer, create the following queries for the houses, schools, restaurants and residential layers:

000	💋 Layer Properties – multipolygons General									
🔀 General	▼ Layer info									
😽 Style	Layer name multipolygons displayed as multipolygons									
(abc Labels	Lay O O Query Builder									
Fields	Dat multipolygons									
	Fields Values									
🎸 Rendering	aeroway commercial									
🗭 Display	▼ Cc amenity garage hangar									
Actions	EPS barrier house Spe	ecify								
	boundary retail building telephone_exchange									
• Joins	craft yes									
💹 Diagrams	geological Sample All									
🕢 Metadata	historic Use unfiltered layer									
	Max (inc V Operators									
ŕ	▼ Fe ILIKE AND OR NOT									
	Provider specific filter expression									
	"building" != 'church' AND "building" != 'commercial' AND "building" != 'garage' AND "building" != 'hangar' AND "building" != 'retail' AND "building" != 'relephone_exchange'									
	Help Test Clear Cancel OK									
		Builder								
	Query	builder								
	Load Style Save As Default Restore Default Style Save Style	• •								
	Help Apply Cancel	ОК								

000	💋 Layer Properties – multipolygons General	
🔀 General 💌 La	ayer info	
😽 Style 🛛 Laye	ver name multipolygons displayed as multipolygons	
(abc Labels Lay	Query Builder	
Fields Dat	Fields Values	
🞸 Rendering	aeroway	
두 Display	admin_level place_of_worship	
Actions)
Diagrams	craft school	
👔 Metadata 🗾 🗖	historic Jungte All	
Mas (inc ▼ Fe	<pre>v Operators = < > LIKE % IN NOT IN < = >= != ILIKE AND OR NOT Provider specific filter expression "amenity" = school" Help Test Clear Cancel OK Query Builder</pre>	

000	🛒 Layer Properties – multipolygons	s General
🔀 General	▼ Layer info	
😽 Style	Layer name multipolygons	displayed as multipolygons
(abc Labels	Lay O O Query Build	er
Fields	Dat multipolygons Fields Va	lues
🞸 Rendering	aeroway	arking
두 Display		lace_of_worship olice
Sections	EPS barrier p	ub Specify
• Joins	building	etirement_home chool
📴 Diagrams	geological historic	Sample All
🥡 Metadata		Use unfiltered layer
	Ma (inc	NOT IN NOT Cancel OK Query Builder Restore Default Style Save Style V Cancel OK

Once you have entered each query, click *OK*. You'll see that the map updates to show only the data you have selected. Since you need to use again the multipolygons data from the OSM dataset, at this point, you can use one of the following methods:


- Rename the filtered OSM layer and re-import the layer from $\texttt{osm_data.osm}, OR$
- Duplicate the filtered layer, rename the copy, clear the query and create your new query in the Query Builder.

Nota: Although OSM's building field has a house value, the coverage in your area - as in ours - may not be complete. In our test region, it is therefore more accurate to *exclude* all buildings which are defined as anything other than house. You may decide to simply include buildings which are defined as house and all other values that have not a clear meaning like yes.

To create the roads layer, build this query against OSM's lines layer:

000	🛒 Layer Properties – multipolyg	ons General
🔀 General 💌 Lay	yer info	
😽 Style 🛛 Laye	er name multipolygons	displayed as multipolygons
(abc Labels Lay	O O O Query Bu	ilder
Fields Dat	multipolygons Fields	Values
≼ Rendering	osm_id	footway
🗭 Display	name highway	path primary
Actions EPS	waterway aerialway	residential Specify
• Joins	barrier man_made	service tertiary
Diagrams	other_tags	Sample All
👔 Metadata 🔍 🔽 🗌		Use unfiltered layer
Ma) (inc ▼ Fe He	 ✓ Operators = < > LIKE % IN <= >= != ILIKE AND OF Provider specific filter expression "highway" != 'NULL' Help Test Clear Load Style Save As Default Ip Apply 	

You should end up with a map which looks similar to the following:

21.9.2 *Oistance from High Schools*

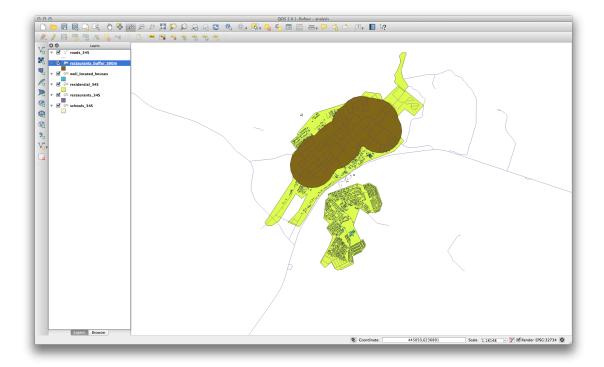
• Your buffer dialog should look like this:

Input vector layer	
schools_34S	A T
Use only selected feature	es
Segments to approximate	20
 Buffer distance 	1000
OBuffer distance field	
osm_id	≜ ▼
🗹 Dissolve buffer results	
Dutput shapefile	
mes/Drobo/sites/qgis/sch	ools_buffer_1km.shp Browse
	Close OK

The Buffer distance is 1000 meters (i.e., 1 kilometer).

• The *Segments to approximate* value is set to 20. This is optional, but it's recommended, because it makes the output buffers look smoother. Compare this:

The first image shows the buffer with the *Segments to approximate* value set to 5 and the second shows the value set to 20. In our example, the difference is subtle, but you can see that the buffer's edges are smoother with the higher value.

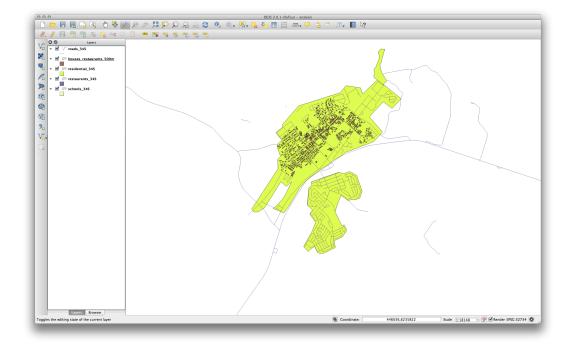

Back to text

21.9.3 *P* Distance from Restaurants

To create the new houses_restaurants_500m layer, we go through a two step process:

• First, create a buffer of 500m around the restaurants and add the layer to the map:

O O Buffer(s)
Input vector layer
restaurants_34S \$
Use only selected features
Segments to approximate 5
Buffer distance 500
O Buffer distance field
osm_id \$
Solve buffer results
Output shapefile
Drobo/sites/qgis/restaurants_buffer_500m.shp Browse
Close OK


• Next, select buildings within that buffer area:

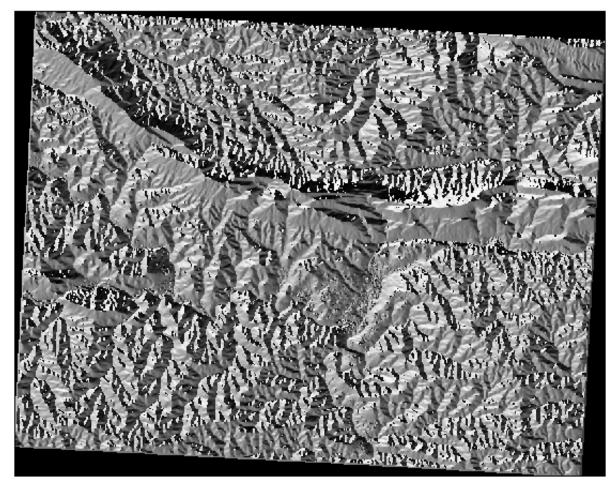
000	Select by location
Select features in:	
well_located_hous	ses 🔹
that intersect featu	ires in:
restaurants_buffe	r_500m \$
Use selected feat	tures only
Modify current sele	ction by:
creating new selec	tion 💠
	Close OK

• Now save that selection to our new houses_restaurants_500m layer:

Format	ESRI Shapefile	÷
Save as	buses_restaurants_500m.shp	Browse
Encoding	System	÷
CDC	Layer CRS	÷
CRS	WGS 84 / UTM zone 34S	Browse
Symbology export	No symbology	÷
Scale	1:50000	A V
0.00		
OGR creation opti	ons	
Data source	ons	
	ons	
Data source	creation	

Your map should now show only those buildings which are within 50m of a road, 1km of a school and 500m of a restaurant:

Back to text

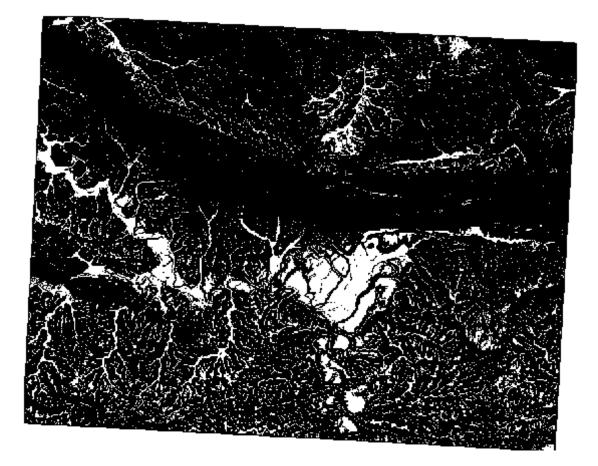

21.10 Results For Raster Analysis

• Set your DEM (Terrain analysis) dialog up like this:

000	DEM (Terrain models)	
Input file (DEM raster)	DEM	▼ Select
	DEM	
Output file	idential_development/as	spect Select
Band	1	
Compute edges	Thorne formula (instead o	f the Horn's one)
Mode	Aspect	
Mode Options	hapeer	*
	15	
Name	Value	+ -
		Validate
SRTM/srtm_41_19.tif Documentation/source/	en finished docs/training_manual/exe docs/training_manual/exe act -zero_for_flat -of GTiff	/QGIS-
Help	(Close

Your result:

Back to text


• Set your *Raster calculator* dialog up like this:

Raster bands	Result layer			
"aspect@1" "aspect_north@1"	Output layer		e_lte2.tif	
"slope@1" "DEM@1"	Current lay	er extent		
	X min	969491.27540	🗘 XMax	1038119.77313
	Y min	6196099.34085	Y max	6250296.99556
	Columns	837	Rows	661
	Output format	Geo	TIFF	*
	Add result	to project		
Operators				
+	* sqrt) sin	^	acos (
-	/ cos	asin	tan	atan)
<	> =	<	>=	AND OR
laster calculator expression	on			
slope@1 <= 2				
				Cancel Ok
xpression valid				

• For the 5 degree version, replace the 2 in the expression and file name with 5.

Your results:

• 2 degrees:

• 5 degrees:

Back to text

21.11 Results For Completing the Analysis

21.11.1 *Raster to Vector*

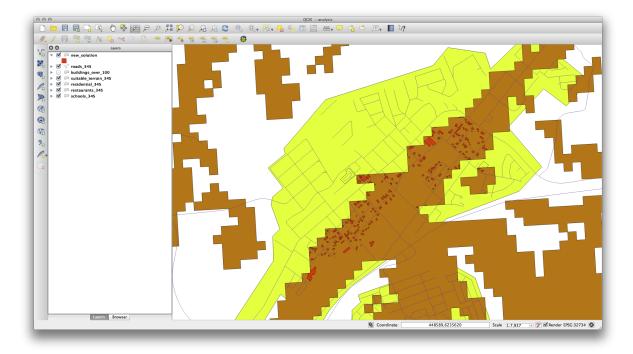
- Open the Query Builder by right-clicking on the all_terrain layer in the Layers list, select the General tab.
- Then build the query "suitable" = 1.
- Click *OK* to filter out all the polygons where this condition isn't met.

When viewed over the original raster, the areas should overlap perfectly:

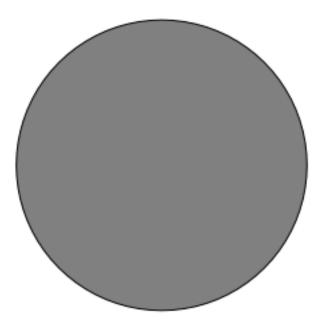
Input file (raster)	all_conditions_simple
Output file for polygons (shapefile)	bo/sites/qgis/all_terrain.shp Select
✓ Field name	suitable
🗌 Use mask	srtm_41_19 Select
Load into canvas when finished gdal_polygonize.py / "ESRI Shapefile" /	'qgis/all_conditions_simple.tif -f /qgis/all_terrain.shp all_terrain suitable

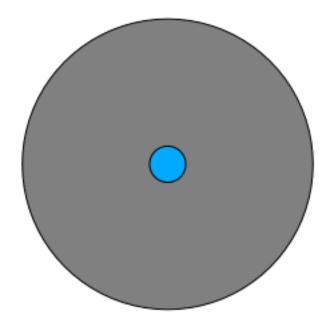
• You can save this layer by right-clicking on the *all_terrain* layer in the *Layers list* and choosing *Save As...*, then continue as per the instructions.

Back to text



You may notice that some of the buildings in your new_solution layer have been "sliced" by the *Intersect* tool. This shows that only part of the building - and therefore only part of the property - lies on suitable terrain. We can therefore sensibly eliminate those buildings from our dataset

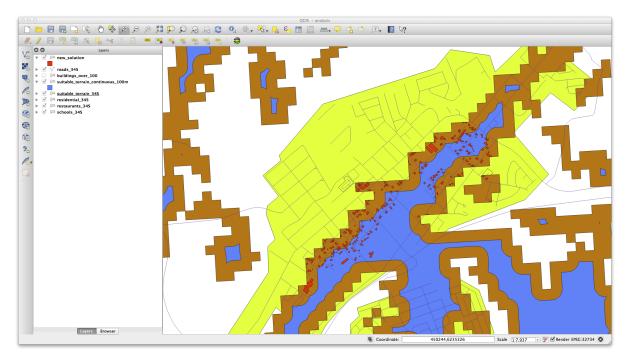

Back to text


At the moment, your analysis should look something like this:

Consider a circular area, continuous for 100 meters in all directions.

If it is greater than 100 meters in radius, then subtracting 100 meters from its size (from all directions) will result in a part of it being left in the middle.

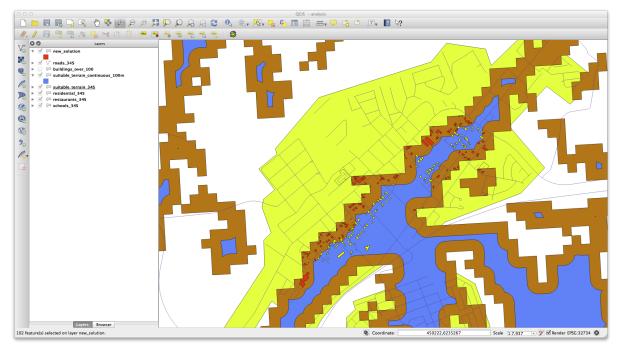
Therefore, you can run an *interior buffer* of 100 meters on your existing *suitable_terrain* vector layer. In the output of the buffer function, whatever remains of the original layer will represent areas where there is suitable terrain for 100 meters beyond.


To demonstrate:

- Go to *Vector* \rightarrow *Geoprocessing Tools* \rightarrow *Buffer*(*s*) to open the Buffer(s) dialog.
- Set it up like this:

O O Buffe	er(s)
Input vector layer	
suitable_terrain_34S	\$
Use only selected featur	es
Segments to approximate	10
 Buffer distance 	-100
O Buffer distance field	
suitable	* *
🗹 Dissolve buffer results	
Output shapefile	
suitable_terrain_continuou	s_100m.shp Browse
Add result to canvas	
	Close OK

- Use the *suitable_terrain* layer with 10 segments and a buffer distance of -100. (The distance is automatically in meters because your map is using a projected CRS.)
- Save the output in exercise_data/residential_development/ as suitable_terrain_continuous100m.shp.
- If necessary, move the new layer above your original suitable_terrain layer.


Your results will look like something like this:

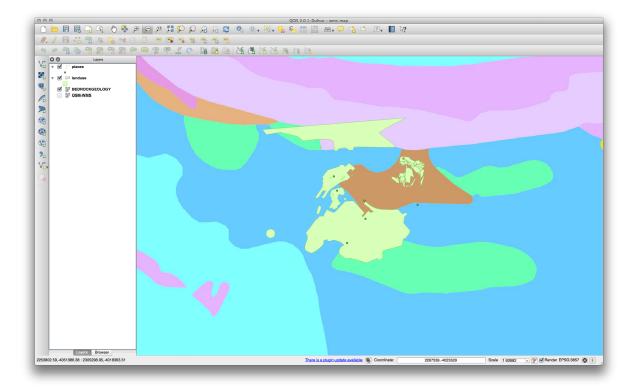
- Now use the Select by Location tool (Vector \rightarrow Research Tools \rightarrow Select by location).
- Set up like this:

Select features in:		•
new_solution		Ŧ
that intersect feat	ures in:	
suitable_terrain_	continuous_100m	\$
Use selected fea	tures only	
Modify current sel	ection by:	
creating new sele	ction	*
Add result to ca	nvas	
	Close	OK

• Select features in *new_solution* that intersect features in *suitable_terrain_continuous100m.shp*.

This is the result:

The yellow buildings are selected. Although some of the buildings fall partly outside the new suitable_terrain_continuous100m layer, they lie well within the original suitable_terrain layer and therefore meet all of our requirements.

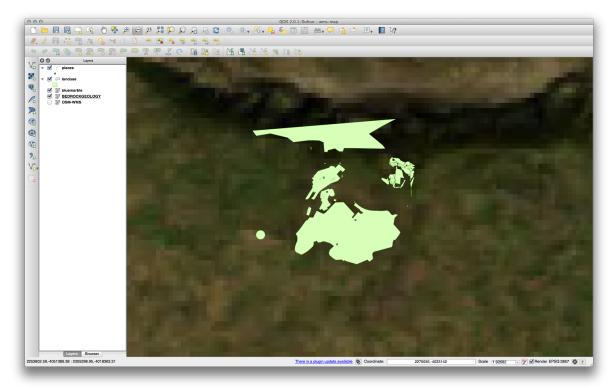

• Save the selection under exercise_data/residential_development/ as final_answer.shp.

Back to text

21.12 Results For WMS

Your map should look like this (you may need to re-order the layers):

Back to text



• Use the same approach as before to add the new server and the appropriate layer as hosted on that server:

		ayer(s) from a Server
Name	ogc	rder Tilesets Server Search
URL	http://ogc.gbif.org:80/wms	
f the servi optional pa	ice requires basic authentication, enter a user name and assword	Load Save Add default serve
User name	e	
Password		
Referer		
Ignoro		
gnore Invert a	GetFeatureInfo URI reported in capabilities axis orientation (WMS 1.3/WMTS) axis orientation h pixmap transform	
gnore Invert a	axis orientation (WMS 1.3/WMTS) axis orientation	
Ignore Invert a Smooth	axis orientation (WMS 1.3/WMTS) axis orientation h pixmap transform	10
Ignore Invert a Smooth Help	axis orientation (WMS 1.3/WMTS) axis orientation h pixmap transform Cancel OK	10 Change

ogc			
Connect	New Edit	Delete	Load Save Add default servers
D	▲ Name	Title	Abstract
▶ 43	gbif:sdr_1_vi	sdr_1_view	Generated from postgis
▶ 45	gbif:sdr_2_vi		Generated from postgis
▶ 47	gbif:tabDensi		
▶ 50	geobon:tax		This GBIF OGC WMS layer provides over 7 million taxon occurrence records for the African continent including
▶ 52	geobon:tax		This GBIF OGC WMS layer provides over 7 million taxon occurrence records for the African continent including
▶ 54	geobon:tax		This GBIF OGC WMS layer provides over 7 million taxon occurrence records for the African continent including
56	bluemarble	bluemarble	Layer-Group type layer: bluemarble
57	geobon occ	geobon_occ	Layer-Group type layer: geobon_occurence
58	geobon_tax	geobon_tax	Layer-Group type layer: geobon_tax_occurrence
	geobon_tax		Layer-Group type layer: geobon_tax_occurrence
58 Image encod	geobon_tax	geobon_tax	
58 Image encod	geobon_tax ding PNG8 JPEG	geobon_tax	
58 Image encod	geobon_tax	geobon_tax	
58 Image encod PNG (Coordinate F	geobon_tax ding PNG8 JPEG	geobon_tax	
58 Image encod PNG (Coordinate F	geobon_tax ding PNG8 JPEG Reference System (44	geobon_tax	
58 Image encod PNG (Coordinate F Layer name Tile size	geobon_tax ding PNG8 JPEG Reference System (44	geobon_tax	
58 Image encod PNG (Coordinate F Layer name Tile size Feature limi	geobon_tax ding PNGB JPEG Reference System (40 bluemarble	geobon_tax	

• If you zoom into the Swellendam area, you'll notice that this dataset has a low resolution:

Therefore, it's better not to use this data for the current map. The Blue Marble data is more suitable at global or national scales.

Back to text

21.12.3 *Finding a WMS Server*

You may notice that many WMS servers are not always available. Sometimes this is temporary, sometimes it is permanent. An example of a WMS server that worked at the time of writing is the *World Mineral Deposits* WMS

at http://appsl.gdr.nrcan.gc.ca/cgi-bin/worldmin_en-ca_ows. It does not require fees or have access constraints, and it is global. Therefore, it does satisfy the requirements. Keep in mind, however, that this is merely an example. There are many other WMS servers to choose from.

Back to text

21.13 Results For Database Concepts

For our theoretical address table, we might want to store the following properties:

House Number Street Name Suburb Name City Name Postcode Country

When creating the table to represent an address object, we would create columns to represent each of these properties and we would name them with SQL-compliant and possibly shortened names:

house_number
street_name
suburb
city
postcode
country

Back to text

21.13.2 *P*Normalising the People Table

The major problem with the *people* table is that there is a single address field which contains a person's entire address. Thinking about our theoretical *address* table earlier in this lesson, we know that an address is made up of many different properties. By storing all these properties in one field, we make it much harder to update and query our data. We therefore need to split the address field into the various properties. This would give us a table which has the following structure:

id			_		street_name		7	· .	1 =
1	Tim Sutton	Ì	3	I	Buirski Plein Avenue du Roix	I	Swellendam	I	071 123 123

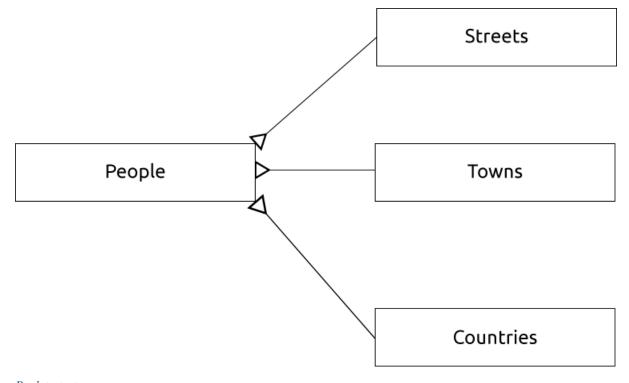
Nota: In the next section, you will learn about Foreign Key relationships which could be used in this example to further improve our database's structure.

Back to text

21.13.3 V Further Normalisation of the People Table

Our people table currently looks like this:

The street_id column represents a 'one to many' relationship between the *people* object and the related *street* object, which is in the *streets* table.


One way to further normalise the table is to split the name field into *first_name* and *last_name*:

id :	first_name		last_name		house_no		street_id	Ι	phone_no
+		-+-		-+		+-		+-	
1	Horst		Duster		4		1	Ι	072 121 122

We can also create separate tables for the town or city name and country, linking them to our *people* table via 'one to many' relationships:

id	first_name		last_name		house_no		street_id		town_id	cou	intry_i	d
+		-+-		-+-		+-		+-		+		
1	Horst		Duster		4		1		2		1	

An ER Diagram to represent this would look like this:

Back to text

The SQL required to create the correct people table is:

The schema for the table (enter d people) looks like this:

Table "public.people"

```
I
Column
                                                   Modifiers
                  Type
                              id
         | integer
                              | not null default
         | nextval('people_id_seq'::regclass)
        | character varying(50) |
name
house_no | integer
                              | not null
street_id | integer
                              | not null
phone_no | character varying
                              Indexes:
 "people_pkey" PRIMARY KEY, btree (id)
```

Nota: For illustration purposes, we have purposely omitted the fkey constraint.

Back to text

The reason the DROP command would not work in this case is because the *people* table has a Foreign Key constraint to the *streets* table. This means that dropping (or deleting) the *streets* table would leave the *people* table with references to non-existent *streets* data.

Nota: It is possible to 'force' the *streets* table to be deleted by using the *CASCADE* command, but this would also delete the *people* and any other table which had a relationship to the *streets* table. Use with caution!

Back to text

The SQL command you should use looks like this (you can replace the street name with a name of your choice):

insert into streets (name) values ('Low Road');

Back to text

Here is the correct SQL statement:

insert into streets (name) values('Main Road'); insert into people (name,house_no, street_id, phone_no) values ('Joe Smith',55,2,'072 882 33 21');

If you look at the streets table again (using a select statement as before), you'll see that the id for the Main Road entry is 2.

That's why we could merely enter the number 2 above. Even though we're not seeing Main Road written out fully in the entry above, the database will be able to associate that with the street_id value of 2.

Nota: If you have already added a new street object, you might find that the new Main Road has an ID of 3 not 2.

Back to text

Here is the correct SQL statement you should use:

```
select count(people.name), streets.name
from people, streets
where people.street_id=streets.id
group by streets.name;
```

Result:

Nota: You will notice that we have prefixed field names with table names (e.g. people.name and streets.name). This needs to be done whenever the field name is ambiguous (i.e. not unique across all tables in the database).

Back to text

21.14 Results For Spatial Queries

21.14.1 *P* The Units Used in Spatial Queries

The units being used by the example query are degrees, because the CRS that the layer is using is WGS 84. This is a Geographic CRS, which means that its units are in degrees. A Projected CRS, like the UTM projections, is in meters.

Remember that when you write a query, you need to know which units the layer's CRS is in. This will allow you to write a query that will return the results that you expect.

Back to text


```
CREATE INDEX cities_geo_idx
ON cities
USING gist (the_geom);
```

Back to text

21.15 Results For Geometry Construction

21.15.1 Creating Linestrings

```
alter table streets add column the_geom geometry;
alter table streets add constraint streets_geom_point_chk check
  (st_geometrytype(the_geom) = 'ST_LineString'::text OR the_geom IS NULL);
```

```
insert into geometry_columns values ('','public','streets','the_geom',2,4326,
    'LINESTRING');
create index streets_geo_idx
    on streets
    using gist
    (the_geom);
```

Back to text


```
delete from people;
alter table people add column city_id int not null references cities(id);
```

(capture cities in QGIS)

```
insert into people (name, house_no, street_id, phone_no, city_id, the_geom)
   values ('Faulty Towers',
           34,
           3,
           '072 812 31 28',
           1,
           'SRID=4326; POINT(33 33)');
insert into people (name, house_no, street_id, phone_no, city_id, the_geom)
   values ('IP Knightly',
           32,
           1,
           '071 812 31 28',
           1,F
           'SRID=4326; POINT(32 -34)');
insert into people (name, house_no, street_id, phone_no, city_id, the_geom)
   values ('Rusty Bedsprings',
           39,
           1,
           '071 822 31 28',
           1,
           'SRID=4326; POINT (34 -34)');
```

If you're getting the following error message:

```
ERROR: insert or update on table "people" violates foreign key constraint
    "people_city_id_fkey"
DETAIL: Key (city_id)=(1) is not present in table "cities".
```

then it means that while experimenting with creating polygons for the cities table, you must have deleted some of them and started over. Just check the entries in your cities table and use any id which exists.

Back to text

21.16 Results For Simple Feature Model

21.16.1 *Populating Tables*

create table cities (id serial not null primary key, name varchar(50),

```
the_geom geometry not null);
alter table cities
add constraint cities_geom_point_chk
check (st_geometrytype(the_geom) = 'ST_Polygon'::text );
```

Back to text


```
insert into geometry_columns values
    ('','public','cities','the_geom',2,4326,'POLYGON');
```

Back to text


```
select people.name,
    streets.name as street_name,
    st_astext(people.the_geom) as geometry
from streets, people
where people.street_id=streets.id;
```

Result:

name		street_name		geometry
	-+-		-+-	
Roger Jones		High street		
Sally Norman		High street		
Jane Smith		Main Road		
Joe Bloggs		Low Street		
Fault Towers		Main Road		POINT(33 -33)
(5 rows)				

As you can see, our constraint allows nulls to be added into the database.

Back to text

CHAPTER 22

Indici e tabelle

- genindex
- modindex
- search