Learning ======== Classification Map Regularization --------------------------------- Description ........... Parameters .......... ``Input classification image`` [raster] ``Structuring element radius (in pixels)`` [number] Default: *1* ``Multiple majority: Undecided(X)/Original`` [boolean] Default: *True* ``Label for the NoData class`` [number] Default: *0* ``Label for the Undecided class`` [number] Default: *0* ``Available RAM (Mb)`` [number] Default: *128* Outputs ....... ``Output regularized image`` [raster] Console usage ............. :: processing.runalg('otb:classificationmapregularization', -io.in, -ip.radius, -ip.suvbool, -ip.nodatalabel, -ip.undecidedlabel, -ram, -io.out) See also ........ ComputeConfusionMatrix (raster) ------------------------------- Description ........... Parameters .......... ``Input Image`` [raster] ``Ground truth`` [selection] Options: * 0 --- raster Default: *0* ``Input reference image`` [raster] ``Value for nodata pixels`` [number] Default: *0* ``Available RAM (Mb)`` [number] Default: *128* Outputs ....... ``Matrix output`` [file] Console usage ............. :: processing.runalg('otb:computeconfusionmatrixraster', -in, -ref, -ref.raster.in, -nodatalabel, -ram, -out) See also ........ ComputeConfusionMatrix (vector) ------------------------------- Description ........... Parameters .......... ``Input Image`` [raster] ``Ground truth`` [selection] Options: * 0 --- vector Default: *0* ``Input reference vector data`` [file] ``Field name`` [string] Optional. Default: *Class* ``Value for nodata pixels`` [number] Default: *0* ``Available RAM (Mb)`` [number] Default: *128* Outputs ....... ``Matrix output`` [file] Console usage ............. :: processing.runalg('otb:computeconfusionmatrixvector', -in, -ref, -ref.vector.in, -ref.vector.field, -nodatalabel, -ram, -out) See also ........ Compute Images second order statistics -------------------------------------- Description ........... Parameters .......... ``Input images`` [multipleinput: rasters] ``Background Value`` [number] Default: *0.0* Outputs ....... ``Output XML file`` [file] Console usage ............. :: processing.runalg('otb:computeimagessecondorderstatistics', -il, -bv, -out) See also ........ FusionOfClassifications (dempstershafer) ---------------------------------------- Description ........... Parameters .......... ``Input classifications`` [multipleinput: rasters] ``Fusion method`` [selection] Options: * 0 --- dempstershafer Default: *0* ``Confusion Matrices`` [multipleinput: files] ``Mass of belief measurement`` [selection] Options: * 0 --- precision * 1 --- recall * 2 --- accuracy * 3 --- kappa Default: *0* ``Label for the NoData class`` [number] Default: *0* ``Label for the Undecided class`` [number] Default: *0* Outputs ....... ``The output classification image`` [raster] Console usage ............. :: processing.runalg('otb:fusionofclassificationsdempstershafer', -il, -method, -method.dempstershafer.cmfl, -method.dempstershafer.mob, -nodatalabel, -undecidedlabel, -out) See also ........ FusionOfClassifications (majorityvoting) ---------------------------------------- Description ........... Parameters .......... ``Input classifications`` [multipleinput: rasters] ``Fusion method`` [selection] Options: * 0 --- majorityvoting Default: *0* ``Label for the NoData class`` [number] Default: *0* ``Label for the Undecided class`` [number] Default: *0* Outputs ....... ``The output classification image`` [raster] Console usage ............. :: processing.runalg('otb:fusionofclassificationsmajorityvoting', -il, -method, -nodatalabel, -undecidedlabel, -out) See also ........ Image Classification -------------------- Description ........... Parameters .......... ``Input Image`` [raster] ``Input Mask`` [raster] Optional. ``Model file`` [file] ``Statistics file`` [file] Optional. ``Available RAM (Mb)`` [number] Default: *128* Outputs ....... ``Output Image`` [raster] Console usage ............. :: processing.runalg('otb:imageclassification', -in, -mask, -model, -imstat, -ram, -out) See also ........ SOM Classification ------------------ Description ........... Parameters .......... ``InputImage`` [raster] ``ValidityMask`` [raster] Optional. ``TrainingProbability`` [number] Default: *1* ``TrainingSetSize`` [number] Default: *0* ``StreamingLines`` [number] Default: *0* ``SizeX`` [number] Default: *32* ``SizeY`` [number] Default: *32* ``NeighborhoodX`` [number] Default: *10* ``NeighborhoodY`` [number] Default: *10* ``NumberIteration`` [number] Default: *5* ``BetaInit`` [number] Default: *1* ``BetaFinal`` [number] Default: *0.1* ``InitialValue`` [number] Default: *0* ``Available RAM (Mb)`` [number] Default: *128* ``set user defined seed`` [number] Default: *0* Outputs ....... ``OutputImage`` [raster] ``SOM Map`` [raster] Console usage ............. :: processing.runalg('otb:somclassification', -in, -vm, -tp, -ts, -sl, -sx, -sy, -nx, -ny, -ni, -bi, -bf, -iv, -ram, -rand, -out, -som) See also ........ TrainImagesClassifier (ann) --------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- ann Default: *0* ``Train Method Type`` [selection] Options: * 0 --- reg * 1 --- back Default: *0* ``Number of neurons in each intermediate layer`` [string] Default: *None* ``Neuron activation function type`` [selection] Options: * 0 --- ident * 1 --- sig * 2 --- gau Default: *1* ``Alpha parameter of the activation function`` [number] Default: *1* ``Beta parameter of the activation function`` [number] Default: *1* ``Strength of the weight gradient term in the BACKPROP method`` [number] Default: *0.1* ``Strength of the momentum term (the difference between weights on the 2 previous iterations)`` [number] Default: *0.1* ``Initial value Delta_0 of update-values Delta_{ij} in RPROP method`` [number] Default: *0.1* ``Update-values lower limit Delta_{min} in RPROP method`` [number] Default: *1e-07* ``Termination criteria`` [selection] Options: * 0 --- iter * 1 --- eps * 2 --- all Default: *2* ``Epsilon value used in the Termination criteria`` [number] Default: *0.01* ``Maximum number of iterations used in the Termination criteria`` [number] Default: *1000* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierann', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.ann.t, -classifier.ann.sizes, -classifier.ann.f, -classifier.ann.a, -classifier.ann.b, -classifier.ann.bpdw, -classifier.ann.bpms, -classifier.ann.rdw, -classifier.ann.rdwm, -classifier.ann.term, -classifier.ann.eps, -classifier.ann.iter, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (bayes) ----------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- bayes Default: *0* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierbayes', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (boost) ----------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- boost Default: *0* ``Boost Type`` [selection] Options: * 0 --- discrete * 1 --- real * 2 --- logit * 3 --- gentle Default: *1* ``Weak count`` [number] Default: *100* ``Weight Trim Rate`` [number] Default: *0.95* ``Maximum depth of the tree`` [number] Default: *1* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierboost', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.boost.t, -classifier.boost.w, -classifier.boost.r, -classifier.boost.m, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (dt) -------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- dt Default: *0* ``Maximum depth of the tree`` [number] Default: *65535* ``Minimum number of samples in each node`` [number] Default: *10* ``Termination criteria for regression tree`` [number] Default: *0.01* ``Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split`` [number] Default: *10* ``K-fold cross-validations`` [number] Default: *10* ``Set Use1seRule flag to false`` [boolean] Default: *True* ``Set TruncatePrunedTree flag to false`` [boolean] Default: *True* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierdt', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.dt.max, -classifier.dt.min, -classifier.dt.ra, -classifier.dt.cat, -classifier.dt.f, -classifier.dt.r, -classifier.dt.t, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (gbt) --------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- gbt Default: *0* ``Number of boosting algorithm iterations`` [number] Default: *200* ``Regularization parameter`` [number] Default: *0.01* ``Portion of the whole training set used for each algorithm iteration`` [number] Default: *0.8* ``Maximum depth of the tree`` [number] Default: *3* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifiergbt', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.gbt.w, -classifier.gbt.s, -classifier.gbt.p, -classifier.gbt.max, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (knn) --------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- knn Default: *0* ``Number of Neighbors`` [number] Default: *32* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierknn', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.knn.k, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (libsvm) ------------------------------ Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- libsvm Default: *0* ``SVM Kernel Type`` [selection] Options: * 0 --- linear * 1 --- rbf * 2 --- poly * 3 --- sigmoid Default: *0* ``Cost parameter C`` [number] Default: *1* ``Parameters optimization`` [boolean] Default: *True* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierlibsvm', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.libsvm.k, -classifier.libsvm.c, -classifier.libsvm.opt, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (rf) -------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- rf Default: *0* ``Maximum depth of the tree`` [number] Default: *5* ``Minimum number of samples in each node`` [number] Default: *10* ``Termination Criteria for regression tree`` [number] Default: *0* ``Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split`` [number] Default: *10* ``Size of the randomly selected subset of features at each tree node`` [number] Default: *0* ``Maximum number of trees in the forest`` [number] Default: *100* ``Sufficient accuracy (OOB error)`` [number] Default: *0.01* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifierrf', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.rf.max, -classifier.rf.min, -classifier.rf.ra, -classifier.rf.cat, -classifier.rf.var, -classifier.rf.nbtrees, -classifier.rf.acc, -rand, -io.confmatout, -io.out) See also ........ TrainImagesClassifier (svm) --------------------------- Description ........... Parameters .......... ``Input Image List`` [multipleinput: rasters] ``Input Vector Data List`` [multipleinput: any vectors] ``Input XML image statistics file`` [file] Optional. ``Default elevation`` [number] Default: *0* ``Maximum training sample size per class`` [number] Default: *1000* ``Maximum validation sample size per class`` [number] Default: *1000* ``On edge pixel inclusion`` [boolean] Default: *True* ``Training and validation sample ratio`` [number] Default: *0.5* ``Name of the discrimination field`` [string] Default: *Class* ``Classifier to use for the training`` [selection] Options: * 0 --- svm Default: *0* ``SVM Model Type`` [selection] Options: * 0 --- csvc * 1 --- nusvc * 2 --- oneclass Default: *0* ``SVM Kernel Type`` [selection] Options: * 0 --- linear * 1 --- rbf * 2 --- poly * 3 --- sigmoid Default: *0* ``Cost parameter C`` [number] Default: *1* ``Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS)`` [number] Default: *0* ``Parameter coef0 of a kernel function (POLY / SIGMOID)`` [number] Default: *0* ``Parameter gamma of a kernel function (POLY / RBF / SIGMOID)`` [number] Default: *1* ``Parameter degree of a kernel function (POLY)`` [number] Default: *1* ``Parameters optimization`` [boolean] Default: *True* ``set user defined seed`` [number] Default: *0* Outputs ....... ``Output confusion matrix`` [file] ``Output model`` [file] Console usage ............. :: processing.runalg('otb:trainimagesclassifiersvm', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.svm.m, -classifier.svm.k, -classifier.svm.c, -classifier.svm.nu, -classifier.svm.coef0, -classifier.svm.gamma, -classifier.svm.degree, -classifier.svm.opt, -rand, -io.confmatout, -io.out) See also ........ Unsupervised KMeans image classification ---------------------------------------- Description ........... Parameters .......... ``Input Image`` [raster] ``Available RAM (Mb)`` [number] Default: *128* ``Validity Mask`` [raster] Optional. ``Training set size`` [number] Default: *100* ``Number of classes`` [number] Default: *5* ``Maximum number of iterations`` [number] Default: *1000* ``Convergence threshold`` [number] Default: *0.0001* Outputs ....... ``Output Image`` [raster] ``Centroid filename`` [file] Console usage ............. :: processing.runalg('otb:unsupervisedkmeansimageclassification', -in, -ram, -vm, -ts, -nc, -maxit, -ct, -out, -outmeans) See also ........