Interogările spațiale nu sunt diferite de alte interogări de baze de date. Puteți utiliza coloana de geometrie la fel ca pe orice altă coloană de baze de date. O dată cu instalarea PostGIS în baza noastră de date, avem la dispoziție funcții suplimentare pentru a interoga baza de date.
Scopul acestei lecții: De a afla cum sunt implementate funcțiile spațiale similare cu funcțiile non-spațiale “normale”.
Când doriți să știți care puncte se află la o distanță de 2 grade față de un punct (X,Y), puteți proceda astfel cu:
select *
from people
where st_distance(the_geom,'SRID=4326;POINT(33 -34)') < 2;
Rezultat:
id | name | house_no | street_id | phone_no | the_geom
----+--------------+----------+-----------+---------------+-----------------
6 | Fault Towers | 34 | 3 | 072 812 31 28 | 01010008040C0
(1 row)
Note
Valoarea the_geom de mai sus a fost trunchiată datorită spațierii de pe această pagină. În cazul în care doriți să vedeți punctul în coordonate clare, încercați ceva similar cu ceea ce ați efectuat în secțiunea “Vizualizează un punct sub forma WKT”, de mai sus.
De unde știm că interogarea de mai sus returnează toate punctele incluse în cadrul a 2 grade? De ce nu 2 metri? Sau oricare altă unitate?
De asemenea, putem defini indecși spațiali. Un index spațial accelerează mult interogările spațiale. Pentru a crea un index spațial pe coloana de geometrie folosiți:
CREATE INDEX people_geo_idx
ON people
USING gist
(the_geom);
\d people
Rezultat:
Table "public.people"
Column | Type | Modifiers
-----------+-----------------------+----------------------------------------
id | integer | not null default
| | nextval('people_id_seq'::regclass)
name | character varying(50) |
house_no | integer | not null
street_id | integer | not null
phone_no | character varying |
the_geom | geometry |
Indexes:
"people_pkey" PRIMARY KEY, btree (id)
"people_geo_idx" gist (the_geom) <-- new spatial key added
"people_name_idx" btree (name)
Check constraints:
"people_geom_point_chk" CHECK (st_geometrytype(the_geom) = 'ST_Point'::text
OR the_geom IS NULL)
Foreign-key constraints:
"people_street_id_fkey" FOREIGN KEY (street_id) REFERENCES streets(id)
Modificați tabelul orașelor, astfel încât coloana de geometrie să fie indexată spațial.
În scopul demonstrării funcțiilor spațiale PostGIS , vom crea o nouă bază de date care conține câteva date (fictive).
Pentru a începe, creați o nouă bază de date (ieșiți mai întâi din linia de comandă psql):
createdb postgis_demo
Amintiți-vă să instalați extensiile PostGIS:
psql -d postgis_demo -c "CREATE EXTENSION postgis;"
Mai departe, vom importa datele prezente în directorul exercise_data/postgis/. Revedeți lecția anterioară pentru instrucțiuni, dar nu uitați că va trebui să creați o nouă conexiune PostGIS la noua bază de date. Aveți posibilitatea de import de la terminal sau prin SPIT. Importați fișierele în următoarele tabele ale bazei de date:
points.shp în building
lines.shp în road
polygons.shp în region
Încărcați aceste trei straturi ale bazei de date în QGIS ca de obicei, prin intermediul Adăugării Straturilor PostGIS. Atunci când deschideți tabelele lor cu atribute, veți observa că ambele dețin atât un câmp id cât și unul gid, create în urma importului PostGIS.
Acum, că tabelele sunt importate, putem folosi PostGIS pentru a interoga datele. Mergeți înapoi în ferestra terminalului (linia de comandă) și introduceți promptul psql astfel:
psql postgis_demo
Vom demonstra unele dintre aceste expresii de selectare prin crearea unor vederi, pentru a le deschide apoi în QGIS și pentru a le observa rezultatele.
Obțineți toate clădirile din regiunea KwaZulu:
SELECT a.id, a.name, st_astext(a.the_geom) as point
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
Rezultat:
id | name | point
----+------+------------------------------------------
30 | York | POINT(1622345.23785063 6940490.65844485)
33 | York | POINT(1622495.65620524 6940403.87862489)
35 | York | POINT(1622403.09106394 6940212.96302097)
36 | York | POINT(1622287.38463732 6940357.59605424)
40 | York | POINT(1621888.19746548 6940508.01440885)
(5 rows)
Sau, în cazul în care vom crea o vizualizare a ei:
CREATE VIEW vw_select_location AS
SELECT a.gid, a.name, a.the_geom
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'KwaZulu';
Adăugați vederea sub formă de strat, apoi vizualizați-o în QGIS:
Arată o listă cu toate numele regiunilor adiacente regiunii Hokkaido:
SELECT b.name
FROM region a, region b
WHERE st_touches(a.the_geom, b.the_geom)
AND a.name = 'Hokkaido';
Rezultat:
name
--------------
Missouri
Saskatchewan
Wales
(3 rows)
Sub formă de vedere:
CREATE VIEW vw_regions_adjoining_hokkaido AS
SELECT b.gid, b.name, b.the_geom
FROM region a, region b
WHERE TOUCHES(a.the_geom, b.the_geom)
AND a.name = 'Hokkaido';
În QGIS:
Observați lipsa unei regiuni (Queensland). Acest lucru se poate datora unei erori de topologie. Artifactele de acest gen ne poate atenționa asupra unor potențiale probleme în interiorul datelor. Pentru a rezolva această dilemă, fără a fi afectați de anomaliile pe care le-ar putea avea datele, am putea folosi un tampon în locul intersecției:
CREATE VIEW vw_hokkaido_buffer AS
SELECT gid, ST_BUFFER(the_geom, 100) as the_geom
FROM region
WHERE name = 'Hokkaido';
Aceasta va crea o zonă tampon de 100 de metri în jurul regiunii Hokkaido.
Zona mai închisă este tamponul:
Selectați folosind tamponul:
CREATE VIEW vw_hokkaido_buffer_select AS
SELECT b.gid, b.name, b.the_geom
FROM
(
SELECT * FROM
vw_hokkaido_buffer
) a,
region b
WHERE ST_INTERSECTS(a.the_geom, b.the_geom)
AND b.name != 'Hokkaido';
În această interogare, vizualizarea originală a tamponului se face similar oricărui alt tabel. Acesta primește aliasul a iar câmpul de geometrie a.the_geom`este folosit la selectarea oricărui poligon din tabela :kbd:`region (alias b) cu care se intersectează. Totuși, Hokkaido este exclusă din această expresie de selectare, nefiind dorită; vrem să obținem doar regiunile din vecinătate.
În QGIS:
De asemenea, este posibil să se selecteze toate obiectele aflate la o anumită distanță, fără etapa suplimentară de creare a unui tampon:
CREATE VIEW vw_hokkaido_distance_select AS
SELECT b.gid, b.name, b.the_geom
FROM region a, region b
WHERE ST_DISTANCE (a.the_geom, b.the_geom) < 100
AND a.name = 'Hokkaido'
AND b.name != 'Hokkaido';
Prin aceasta se obține același rezultat, fără a fi necesar pasul tamponului intermediar:
Arată o listă cu numele unice, ale tuturor clădirilor din regiunea Queensland:
SELECT DISTINCT a.name
FROM building a, region b
WHERE st_within(a.the_geom, b.the_geom)
AND b.name = 'Queensland';
Rezultat:
name
---------
Beijing
Berlin
Atlanta
(3 rows)
CREATE VIEW vw_shortestline AS
SELECT b.gid AS gid, ST_ASTEXT(ST_SHORTESTLINE(a.the_geom, b.the_geom)) as
text, ST_SHORTESTLINE(a.the_geom, b.the_geom) AS the_geom
FROM road a, building b
WHERE a.id=5 AND b.id=22;
CREATE VIEW vw_longestline AS
SELECT b.gid AS gid, ST_ASTEXT(ST_LONGESTLINE(a.the_geom, b.the_geom)) as
text, ST_LONGESTLINE(a.the_geom, b.the_geom) AS the_geom
FROM road a, building b
WHERE a.id=5 AND b.id=22;
CREATE VIEW vw_road_centroid AS
SELECT a.gid as gid, ST_CENTROID(a.the_geom) as the_geom
FROM road a
WHERE a.id = 1;
CREATE VIEW vw_region_centroid AS
SELECT a.gid as gid, ST_CENTROID(a.the_geom) as the_geom
FROM region a
WHERE a.name = 'Saskatchewan';
SELECT ST_PERIMETER(a.the_geom)
FROM region a
WHERE a.name='Queensland';
SELECT ST_AREA(a.the_geom)
FROM region a
WHERE a.name='Queensland';
CREATE VIEW vw_simplify AS
SELECT gid, ST_Simplify(the_geom, 20) AS the_geom
FROM road;
CREATE VIEW vw_simplify_more AS
SELECT gid, ST_Simplify(the_geom, 50) AS the_geom
FROM road;
CREATE VIEW vw_convex_hull AS
SELECT
ROW_NUMBER() over (order by a.name) as id,
a.name as town,
ST_CONVEXHULL(ST_COLLECT(a.the_geom)) AS the_geom
FROM building a
GROUP BY a.name;
Ați văzut cum se pot interoga obiectele spațiale, cu ajutorul noilor funcții de bază de date din PostGIS.
Mai departe vom investiga structurile geometriilor complexe și cum să le creați cu ajutorul PostGIS.